

Status and prospects of the LHCb experiment The b quark @ 40

@GreigCowan (Edinburgh) Higgs-Maxwell workshop 8th February 2017

The LHCb collaboration

http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary all.html

- ~ 900 physicists from ~ 70 universities/laboratories in 16 countries.
- Running since 2010, > 360 papers.
- $\mathcal{O}(100k) \ b\overline{b}$ pairs produced/sec.

• CP violation in the b sector • $b \rightarrow sll$ FCNC decays • Lepton (non-)universality • Exotic hadron spectroscopy (pentaquarks)

The LHCb detector

 Covers 4% of solid angle, but accepts 40% of heavy quark production cross section.

A typical LHCb event

nPVs ~ 2 nTracks ~ 200

Run 1 and 2

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2016

b-quark cross-section

- b-quark production crosssection in $pp \rightarrow bbX$.
- Use semileptonic decays.
- Use open-charm mass and IP distribution to separate D-from-B and prompt components.
- Some indications that the crosssection does not follow predictions.

 σ (7 TeV) = 72.0±0.3± 6.8µb σ (13 TeV) = 154.3±1.5±14.3µb

1 MeV

Events /

2500

2000

1500 E

1000

500 E

[PRL 118, 052002 (2017)]

The b-quark: then and now

CP violation in the (b) quark sector

CKM metrology

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} V_{\rm us} V_{\rm ub} \\ V_{\rm cd} V_{\rm cs} V_{\rm cb} \\ V_{\rm td} V_{\rm ts} V_{\rm tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / \lambda \\ -\lambda \\ A\lambda^3 (1 - \bar{\rho}) \end{pmatrix}$$

 \smile

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

CKM angle 7

- Extracted from tree-level decays.
- "Standard candle" for SM.
 - $|\delta \gamma| \le O(10^{-7})$ [Brod, Zupan JHEP 1401 (2014) 051]
- Exploit interference between amplitudes, e.g.

$$A_{B} D^{0}K^{-} A_{D}r_{D}e^{i\delta_{D}} f_{D} = \pi$$

$$B^{-} \overline{D^{0}}K^{-} f_{D}K^{-} K^{-}$$

$$A_{B}r_{b}e^{i(\delta_{B}-\gamma)} A_{D} K^{-} K^{-}$$

$$K$$

Y from combination of measurements

- Combination of $B \rightarrow DK^+$ measurements
- Most precise measurement of γ

D decer D decer Method	
<i>B</i> decay <i>D</i> decay Method	
$B^+ \to Dh^+$ $D \to h^+h^-$ GLW/Al	DS
$B^+ \to Dh^+$ $D \to h^+ \pi^- \pi^+ \pi^-$ GLW/Al	DS
$B^+ \to Dh^+$ $D \to h^+ h^- \pi^0$ GLW/Al	DS
$B^+ \to DK^+$ $D \to K^0_{\rm s} h^+ h^-$ GGSZ	
$B^+ \to DK^+ \qquad D \to K^0_{\rm s} K^- \pi^+ \qquad { m GLS}$	
$B^+ \to Dh^+\pi^-\pi^+ D \to h^+h^- \qquad \text{GLW/A}$	DS
$B^0 \to DK^{*0} \qquad D \to K^+\pi^- \qquad ADS$	
$B^0 \to DK^+\pi^- \qquad D \to h^+h^- \qquad \text{GLW-Determinant}$	alitz
$B^0 \to DK^{*0} \qquad D \to K^0_{\rm s} \pi^+ \pi^- \qquad { m GGSZ}$	
$B_s^0 \to D_s^{\mp} K^{\pm} \qquad D_s^+ \to h^+ h^- \pi^+ \qquad \text{TD}$	

Neutral B meson oscillations

- V_{ts}^* V_{tb} s Mass and weak eigenstates are not the same. Oscillation frequency given by mass difference between heavy and light states. V_{ts}^* V_{tb} • Ratio of oscillation frequencies can be computed precisely in Lattice QCD (see next talk) $|B_{\rm L,H}^0\rangle = p|B^0\rangle \pm q|\overline{B}^0\rangle$ • Measure time evolution of flavour-defined states. $\frac{\Delta m_d}{\Delta m_s} = \left(\frac{f_{B0} \sqrt{\hat{B}_{B0}}}{f_{R0} \sqrt{\hat{B}_{B0}}} \right) \frac{m_{B0}}{m_{B_s^0}} \frac{|V_{td}|^2}{|V_{ts}|^2}$ [Fermilab-MILC PRD 93 (2016) 113016]

 $\begin{aligned} \operatorname{Prob}(B^0 \to B^0) &= \frac{\Gamma e^{-\Gamma t}}{2} [\operatorname{cosh}(\Delta \Gamma/2t) + \operatorname{cos}(\Delta mt)] \\ \operatorname{Prob}(B^0 \to \overline{B}^0) &= \frac{\Gamma e^{-\Gamma t}}{2} [\operatorname{cosh}(\Delta \Gamma/2t) - \operatorname{cos}(\Delta mt)] |q/p|^2 \\ \operatorname{Prob}(\overline{B}^0 \to B^0) &= \frac{\Gamma e^{-\Gamma t}}{2} [\operatorname{cosh}(\Delta \Gamma/2t) - \operatorname{cos}(\Delta mt)] |p/q|^2 \end{aligned}$ $\operatorname{Prob}(\overline{B}^0 \to \overline{B}^0) = \frac{\Gamma e^{-\Gamma t}}{2} [\cosh(\Delta \Gamma/2t) + \cos(\Delta mt)]$

$$\Delta m \equiv (m_H - m_L)$$
$$\Gamma \equiv (\Gamma_L + \Gamma_H)/2$$
$$\Delta \Gamma \equiv \Gamma_L - \Gamma_H$$

Observables we want to measure

Favour tagging

 \bullet flavour at the production time.

$$A_{CP}(t) \equiv \frac{\Gamma_{\overline{B}{}^0 \to f} - \Gamma_{B^0 \to f}}{\Gamma_{\overline{B}{}^0 \to f} + \Gamma_{B^0 \to f}} = \frac{S_f \sin(\Delta m t) - C_f \cos(\Delta r t)}{\cosh(\Delta r t/2) + A_{\Delta r} \sin(\Delta r t)}$$

Same Side (SS): correlation between flavour of the b-hadron and charge of the particle (pion,kaon,proton) produced next to the signal bhadron in the hadronisation process.

Opposite Side (OS): correlation between flavour of the b-hadron and charge of a particle (pion, kaon,lepton,charmed hadron) or the reconstructed secondary vertex produced from the other bhadron in the event.

[EPJC 72:2022 (2012)]

Measurements of time-dependent asymmetries and decay rates require knowledge of B

Neutral B⁰ meson oscillations

Neutral B⁰_s meson oscillations

- 34k $B_s^0 \rightarrow D_s^- \pi^+$ events, 4 different Ds decay modes.
- Dominant systematic uncertainty from momentum scale of LHCb.

[NJP 15 (2013) 053021]

CPV in neutral B meson mixing

- So-called semileptonic asymmetry sensitive to CPV in mixing.
- $B^0 \to D^{(*)-} \mu^+ \nu X$ and $B^0_s \to D^-_s \mu^+ \nu X$
- Decay-time dependent measurement for B^0 , independent for B_s .

[PRL 114, 041601 (2015)] [PRL 117, 061803 (2016)]

$$A_{\rm SL} \equiv \frac{\Gamma(\overline{B^0} \to B^0 \to f) - \Gamma(B^0 \to \overline{B^0} \to \overline{f})}{\Gamma(\overline{B^0} \to B^0 \to f) + \Gamma(B^0 \to \overline{B^0} \to \overline{f})} = \frac{|p/q|^2 - |q|^2}{|p/q|^2 + |q|^2}$$

[Artuso et al. arXiv:1511.09466] - tiny in Sl

$$A_{SL}^d = (-4.1 \pm 0.6) \times 10^{-4}$$

 $A_{SL}^s = (+2.22 \pm 0.27) \times 10^{-5}$

$$A_{\rm meas}(t) = \frac{N(f,t) - N(\overline{f},t)}{N(f,t) + N(\overline{f},t)} = \frac{A_{\rm SL}}{2} \left(1 - \frac{\cos(\Delta m t)}{\cosh(\Delta \Gamma t)}\right)$$

Visible asymmetry only from detector effects

CPV in neutral B meson mixing

- Crucial to understand production and detection asymmetries using control samples
- Reversal of LHCb magnet polarity a big help here!
- Dominant systematic from background

$A_{SL}(B^0) = (-0.02 \pm 0.19 \pm 0.30)\%$ $A_{SL}(B_s) = (+0.39 \pm 0.26 \pm 0.20)\%$

 $\Delta \chi^2 = 1$ $LHCb \\ B^0_{(s)} \rightarrow D^{(*)}_{(s)} \mu X$ Theory $\times 10$ -...World average ---- Magnet up -0.01 DØ $D 0 B_{(s)}^{0} \rightarrow D_{(s)}^{(*)} \mu X$ muon DØ -0.02 average HFAG B factory 10 $p_{\rm T}$ [GeV/c] average Summer 2016 -0.01 0.01 -0.02 0

CP violation in mixing+decay in the B⁰ system

 A_{CP}

- $B^0 \to J/2$ $S_{J/\psi K_{\rm S}^0} \approx {\rm s}$

$$\Phi(t) \equiv \frac{\Gamma_{\overline{B}{}^{0} \to f} - \Gamma_{B^{0} \to f}}{\Gamma_{\overline{B}{}^{0} \to f} + \Gamma_{B^{0} \to f}} = \frac{S_{f} \sin(\Delta m t) - C_{f} \cos(\Delta m t)}{\cosh(\Delta \Gamma t/2) + A_{\Delta \Gamma} \sinh(\Delta \Gamma t/2)}$$

$$\psi K_S^0 = +0.731 \pm 0.035 \text{ (stat)} \pm 0.020 \text{ (symmetry)}$$

$$C = -0.038 \pm 0.032 \text{ (stat)} \pm 0.005 \text{ (symmetry)}$$

• Similar precision to the Bfactories, but LHCb measurement pulled world average up towards indirect determination from global fit

$$\phi_{mix} = 2\arg(V_{tb}V_{ts}^*)$$

CP violation in interference between mixing and decay: $\phi_s \equiv -\arg(\lambda_f) \equiv -\arg\left(\frac{q}{p}\frac{A_f}{\overline{A}_f}\right) \neq 0$

Assuming we ignore sub-leading B_s^0 hadronic contributions

$$b_{dec} = \arg(V_{cb}V_{cs}^*)$$

$$\phi_s \stackrel{\text{SM}}{=} -2 \arg \left(-\frac{V_{cb}V_{cs}^*}{V_{tb}V_{ts}^*} \right) \equiv -2\beta_s$$
$$\phi_s \stackrel{\text{SM}}{=} -0.0376 \pm 0.0008 \,\text{rad} \,\left[\text{CKMFitter} \right]$$

- $\quad I/\psi \to \mu^+\mu^-, \ \phi \to K^+K^-$
- Time-dependent tagged analyses $(\sigma_t \sim 45 \,\mathrm{fs}, \varepsilon \mathcal{D}^2 \sim 4\%)$.
- $B_s^0 \to J/\psi \phi$ is $P \to VV$ decay so use angular information to disentangle *CP*-odd and *CP*-even components.
- Measure $\phi_s, \Delta m_s, \Gamma_s, \Delta \Gamma_s, |\lambda_f| \dots$ [this makes $B_s^0 \to J/\psi \phi$ special]

 $\operatorname{CP}|\mathrm{J}/\psi\phi\rangle_{\ell} = (-1)^{\ell}|\mathrm{J}/\psi\phi\rangle_{\ell}$

- $\quad I/\psi \to \mu^+\mu^-, \ \phi \to K^+K^-$
- Time-dependent tagged analyses $(\sigma_t \sim 45 \,\mathrm{fs}, \varepsilon \mathcal{D}^2 \sim 4\%)$.
- $B_s^0 \to J/\psi \phi$ is $P \to VV$ decay so use angular information to disentangle *CP*-odd and *CP*-even components.
- Measure $\phi_s, \Delta m_s, \Gamma_s, \Delta \Gamma_s, |\lambda_f| \dots$ [this makes $B_s^0 \to J/\psi \phi$ special]

[PRL 114 (2015) 041801]

ϕ_s	$-0.058 \pm 0.049 \pm 0.006$ r
$\lambda $	$0.964 \pm 0.019 \pm 0.007$
- s	$0.6603 \pm 0.0027 \pm 0.0015~\mathrm{p}$
$\Delta \Gamma_s$	$0.0805 \pm 0.0091 \pm 0.0032$ p
Δm_s	$17.711 \ ^{+0.055}_{-0.057} \pm 0.011 \ \mathrm{ps}^{-0.057}$

- Everything consistent with the SM Dominant sysmtematics from decay-time and angular efficiencies
- No sign of polarisation dependent ϕ s
- Penguin pollution likely to be small

φ_s - $\Delta\Gamma_s$ global combination

 $\sigma(\phi_s) \sim \pm 0.400 \text{ rad}$ $\sigma(\Delta\Gamma_s) \sim \pm 0.060 \text{ ps}^{-1}$ $\phi_s = -0.030 \pm 0.033 \text{ rad}$ $\Delta \Gamma_s = 0.086 \pm 0.006 \text{ ps}^{-1}$ Dominated by LHCb [PRL 114 (2015) 041801]

Unfortunately, new physics not a large effect... Important to control size of unknown hadronic

φ_s from charmless B decays

- $B_s^0 \to \phi\phi$: $b \to s$ penguin decays sensitive to NP in the loops.
- $\phi \to KK$: 5 different polarisation amplitudes \Rightarrow angular analysis.
- Decay time resolution: ~ 43 fs.
- Tagging power: $\varepsilon(1-2\omega)^2 = 3.04 \pm 0.24\%$
- Angular efficiency from MC.

 $|\phi_{s}^{s\overline{s}s}|^{\mathrm{SM}} < 0.02 \,\mathrm{rad}$ [Bartsch et al. arXiv:0810.0249][Beneke et al. NPB 774 (2007) 64-101] [Cheng et al. PRD 80 (2009) 114026]

As an aside...

• When LHCb Run 1 results started to appear, the space for new physics contributions started to shrink, which prompted this response from certain theorists...

Lepton-Photon 2011

 $\mathcal{B}(B_s^0 \to \pi^+ \pi^-) = (6.91 \pm 0.54 \pm 0.63 \pm 0.19 \pm 0.40) \times 10^{-7}$

V_{ub} measurement with $\Lambda_b \rightarrow p \mu \overline{\nu}_{\mu}$

Most precise measurement $|V_{ub}| = (3.27 \pm 0.15 \pm 0.17 \pm 0.06) \times 10^{-3}$ LQCD V_{cb} exp

[LatticeQCD for R_{FF} - Detmold et al., PRD 92 (2015) 034503]

- Background estimated using control samples.
- Largest expt uncertainty from $BR(L_c \rightarrow pKpi)$
- In agreement with other exclusive measurements (see other talks today)

CP-violation in b-baryon decays

- similar magnitude. Large relative weak phase alpha

• Never observed CPV in baryon sector before - potential for non-zero CPV effects in SM. - Transitions governed by b
ightarrow u du tree and b
ightarrow duu penguin amplitudes of

CPV in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decays

- Search for localised CPV effects, enhanced sensitivity
- Use 4-body topology to build P-violating asymmetries \bullet

[arXiv:1609.05216, accepted Nature Physics]

P-odd, T-odd triple products

$$\begin{split} C_{\widehat{T}} &= \vec{p_p} \cdot (\vec{p_{h_1^-}} \times \vec{p_{h_2^+}}) \ \propto \sin \Phi \text{ , for } \Lambda_b^0 \\ \overline{C}_{\widehat{T}} &= \vec{p_{\overline{p}}} \cdot (\vec{p_{h_1^+}} \times \vec{p_{h_2^-}}) \ \propto \sin \overline{\Phi} \text{ , for } \overline{\Lambda}_b^0 \end{split}$$

First evidence for CPV in b-baryon decays

[arXiv:1609.05216, accepted Nature Physics]

Rare (FCNC) b-hadron decays

Theoretical framework

Use effective Hamiltonian to describe b -> s transitions.

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \left[\underbrace{C_i(\mu)O_i(\mu)}_{\text{left-handed part}} + \underbrace{C'_i(\mu)O'_i(\mu)}_{\text{right-handed part}} \right]$$

- Ci Wilson coefficients: short-distance physics (perturbative) couplings, μ=energy scale.
- New physics can modify C_i Wilson coefficients and/or add new operators.

 $O'_i(\mu)$

i = 7 i = 9,10i = Si = P

i = 1,2

i = 3 - 6,8

Tree Gluon penguin Photon penguin Electroweak penguin Higgs (scalar) penguin Pseudoscalar penguin

i=9, 10, P, S

• Oi operators: long-distance (non perturbative) matrix elements, e.g. from lattice QCD calculations.

Observation of $B_{(s)}^0$

• CKM, loop and helicity suppressed $((m_{\mu}/m_B)^2)$.

- $\begin{array}{l} \mathbf{\mathcal{B}}(B^0_s \to \mu\mu)_{\rm SM} = (3.66 \pm 0.23) \times 10^{-9} \\ \mathbf{\mathcal{B}}(B^0 \to \mu\mu)_{\rm SM} = (1.06 \pm 0.09) \times 10^{-10} \end{array}$
- $\blacksquare [PRL 112, 101801 (2014)]$
- Sensitive to scalar and pseudoscalar NP couplings, e.g., in MSSM $\mathcal{B} \propto (\tan \beta)^6$

 $(s) \rightarrow \mu^+ \mu^-$

Observation of B_{ℓ}^0

[Nature 522, 68-72 (2015)]

S

Calibrate mass resolution using Jpsi and Upsilon control modes

Observation of $B_{(s)}^0$

- ATLAS sets an upper limit of BR(Bs) < 3.0×10^{-9} [EPJC 76 (2016) 513]

$B^0 \to K^{*0} \mu^+ \mu^-$

$$\frac{\mathrm{d}^4\Gamma[\overline{B}^0 \to \overline{K}^{*0}\mu^+\mu^-]}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \sum_{j=1}^{11} I_j(q^2) f_j(\vec{\Omega}), \quad I_j \to \overline{I}_j \text{ fo}$$
$$S_j = \left(I_j + \overline{I}_j\right) \Big/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} + \frac{\mathrm{d}\overline{\Gamma}}{\mathrm{d}q^2}\right), \quad A_j = \left(I_j - \overline{I}_j\right) \Big/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} + \frac{\mathrm{d}\overline{\Gamma}}{\mathrm{d}q^2}\right)$$

In the end we measure each S_j and A_j in each bin of q^2 .

2398 ± 57 events, excluding the charmonia.

- Di-muon final state is experimentally clean signature, but BR $\sim 10^{-7}$.
- $P \rightarrow VV'$ decay, fully described by $q^2 \equiv m(\mu^+\mu^-)^2$ and 3 helicity angles.
- $B^0 \to K^* \mu^+ \mu^-$ has rich system of observables (rates, angles, asymmetries) that are sensitive to NP.

[JHEP 02 (2016) 104]

or B^0

 $\mathrm{d}ar{\Gamma}$

 $\overline{\mathrm{d}q^2}$

37

 $B^0 \to K^{*0} \mu^+ \mu^-$

• S_i , A_i 's extracted using a max likelihood fit.

38

 $B^0 \to K^{*0} \mu^+ \mu^-$

- 05 (2013) 137].

$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

software] in q^2 bins.

 $\Delta \operatorname{Re}(\mathcal{C}_9) = -1.04 \pm 0.25 \Rightarrow 3.4\sigma$ from SM

- Possible Z'? Leptoquarks? [many] authors

"Theoretically clean" observables less dependent on hadronic form factors [Descotes-Genon et al, JHEP

These divide out the hadronic uncertainties to leading order.

• χ^2 -fit between the *CP*-averaged observables (including correlations) and SM prediction from [EOS

How well do we understand QCD-effects? [Lyon, Zwicky]

$b \rightarrow s \mu^+ \mu^-$ branching fractions

- Many BR's of similar decay modes are lower than predictions.
- QCD effect?
- See Guadagnoli talk.

Lepton flavour universality

$B^0 \to K^+ \mu^+ \mu^-$

- In the SM only the Higgs boson has non-universal lepton couplings.

Lepton universality

- CKM mechanism well tested, but room for NP if coupling more to 3rd generation (e.g., charged Higgs).
- Study tree-level decays, $\overline{B}^0
 ightarrow D^{*+} l^- \nu$
- Theoretically clean predictions since only lepton mass differs.
- Experimental challenges at LHCb:
 - Missing neutrino, so no narrow peak to fit
 - Signal and normalisation mode have identical final state
 - Background from partially reconstructed decays

$$\mathcal{B}(\tau \to \mu \nu_{\mu} \nu_{\tau}) = (17.41 \pm 0.04)\%$$

(Exotic) hadron spectroscopy

B_c physics: production

- At the LHC, all types of b-hadrons are produced, including B_c mesons.
- LHCb making huge progress measuring production and decay properties.

B_c physics: decay

- hadrons due to presence of the c-quark.

Exotic charmonium spectroscopy (cc)

- Many different exotic (XYZ) states have been seen since ~2003.
- BESIII, Belle/BaBar, CDF/D0, LHC.
- Are these [QQ][qq] (tetraquarks), mesonic molecules, hybrids, threshold effects...?
- No clear pattern: need experimental, theoretical study to understand strong interaction dynamics that can cause their production and structure.

[Godfrey, Olsen, Ann.Rev.Nucl.Part.Sci.58:51-73,2008]

[TWQCD PLB 646 (2007) 95–99]

Pentaquark observation [PRL 115 (2015) 072001]

Pentaquark observation [PRL 115 (2015) 072001]

Amplitude mode [PRL 115 (2015) 072001]

- $J^{P} = (3/2^{+}, 5/2^{-})$ and $(5/2^{+}, 3/2^{-})$ also give good fits: **need** more data.
- Addition of other resonances does not give improvement.
- Significance evaluated using toy simulation, including lacksquaresystematics.

Resonant behaviour - a bound state?

- Replace BW amplitude with 6 independent complex numbers in 6 bins of $m(J/\Psi p)$ in region of P_r^+ mass peak.
- Allows P_c^{\top} shape to be constrained only by amplitudes in Kp sector.
- Observe rapid change of phase near maximum of magnitude ⇒ **resonance!**

X(4140): some history $B^{\pm/0} \to XK^{\pm/0}, X \to J/\psi\phi$

MeV

6

ndidates

- Seen by CDF, D0 and CMS
- Not seen by LHCb, BaBar, BES-III or Belle (in $\gamma\gamma$ fusion).
- Well above open-charm threshold but has **narrow width** \rightarrow not conventional c \overline{c} .
- Also second state at higher mass...
- Full amplitude analysis of decay is essential! Ö

CCSS

Experiment	Y(4140)			
CDF [<mark>69</mark>]	$M = 4143.0 \pm 2.9 \pm 1.2, \Gamma$	$= 11.7^{+8.3}_{-5.0} \pm 3.7$		
CDF [100]	$M = 4143.4^{+2.9}_{-3.0} \pm 0.6$, Γ =	$15.3^{+10.4}_{-6.1} \pm 2.5$	М	
DØ [102]	$M = 4159.0 \pm 4.3 \pm 6.6, \Gamma$	$= 19.9 \pm 12.6^{+1.0}_{-8.0}$		
CMS [74]	$M = 4148.0 \pm 2.4 \pm 6.3,$	$\Gamma = 28^{+15}_{-11} \pm 19$	N	

$$A = 4313.8 \pm 5.3 \pm 7.3, \Gamma = 38^{+30}_{-15} \pm 16$$

•
$$B_{+}^{+} \rightarrow K_{+}^{*+} J/\Psi, K_{+}^{*+} \rightarrow \Phi K_{+}^{+}$$

•
$$B^+ \to XK^+, \quad X \to J/\psi\phi$$

•
$$B^{\top} \rightarrow Z^{\top} \phi$$
, $Z^{\top} \rightarrow J/\psi k$

Fit results including exotic components

Looking to the future

LHCb upgrade (phase 1)

LHCb upgrade (phase 1)

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$	0.068	0.035	0.012	~ 0.01
	$A_{ m sl}(B^0_s)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{ m eff}(B^0_s o \phi \gamma)/ au_{B^0_s}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{ m FB}(B^0 o K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{ m I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/c^4})$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	$\mathbf{2.4\%}$	$\sim 10\%$
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9 °	negligible
triangle	$\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$	17°	11°	2.0 °	negligible
angles	$eta(B^0 o J/\psiK^0_{ m S})$	1.7°	0.8°	0.31 °	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	_
$C\!P$ violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.1	_

LHCb upgrade (phase 1b and 2)

- LHCb-upgrade will be installed in LS2 and operate during Run-3.
- Putting together plans for LHCb-upgrade in LS3 so that it can operate in Run-4 (HL-LHC operation).
 - Stations in the magnet (to improve reconstruction of multi-body final states).
 - Improvements to PID via time-of-flight (TORCH project)
- Increase luminosity to 10³⁴.

		LHC era		HL-L	HC era
$\mathcal{L} dt$	2010-12	2015 - 18	2021-23	2026-29	2031
	(Run-1)	(Run-2)	(Run-3)	(Run-4)	(Rui
AS, CMS	$25{ m fb}^{-1}$	$100{\rm fb}^{-1}$	$300{ m fb}^{-1}$	\rightarrow	3000
HCb	$3 \mathrm{fb}^{-1}$	$8{ m fb}^{-1}$	$23{ m fb}^{-1}$	$46{\rm fb}^{-1}$	$100\mathrm{f}$

LHCb upgrade (phase 1b and 2)

- ~440k $B^0 \to K^{*0} \mu^+ \mu^-$
- ~8M $B \to D \tau \nu, \tau \to \mu \nu \nu$
- Charm physics and spectroscopy.
- Preparing Eol document now.

$$\sigma_{\text{syst}} < 1^{\circ}$$

Summary

- Huge progress in understanding the b-quark properties over the past 40 years and from using it as a **platform for further exploration**.
- LHCb delivering many **precision** results and opening new areas of investigation.
 - b-baryons, B_c mesons, very rare decays, charm, exotic spectroscopy...
- Several anomalies in Run 1 data (lepton universality, b -> s ll processes).
 - How will these develop as we add Run 2 and study more channels?
- Phase-1 upgrade to be installed in 2019, ready for Run 3.
- Starting to plans for phase-1b and phase-2 upgrades to that we can extend programme into HL-LHC era (~2035).

Should be plenty of new results for the 50th anniversary!

om · 113691004 charged Higgs, Z'

Remarkable progress

Overall picture is consistent with SM Still room for new physics

2008: K + M

 $\bar{\rho} = 0.150 \pm 0.012$ $\overline{\eta} = 0.354 \pm 0.007$

63

Background subtracted using sPlot

[arXiv:1609.05216, accepted Nature Physics]

V_{ub} measurement with $\Lambda_b ightarrow p \mu \overline{ u}_{\mu}$

- Challenging at hadron collider to separate $b
 ightarrow u \mu
 u$ and $b
 ightarrow c \mu
 u$ processes without beam energy constraint of e+e- machine.
- Use L_b flight direction and mass to determine q^2 with two-fold ambiguity (neutrino). Require both solutions $>15 \text{ GeV}^2$ to minimise migration to low q² bins
- To cancel many systematic uncertainties we measure the branching ratio relative to $\Lambda_b \to \Lambda_c \mu \overline{\nu}_{\mu}, \Lambda_c \to p K \pi$

$$\frac{|V_{ub}|^2}{|V_{cb}|^2} = \frac{\mathcal{B}(\Lambda_b \to p\mu\nu)_{q^2 > 15 \,\text{GeV}}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu\nu)_{q^2 > 7 \,\text{GeV}}} R_{\text{FF}}$$

$$m_{
m corr} = \sqrt{m_{h\mu}^2 + p_{
m T}^2} + p_{
m T}$$

[Nature Physics 10 (2015) 1038]

