Flavour Anomalies on the Eve of the Run-2 Verdict

Diego Guadagnoli LAPTh Annecy (France)

A1111111

0 A first qualitative observation

A whole range of $b \rightarrow s$ measurements involving a $\mu\mu$ pair display a consistent pattern: Exp < SM

Flavor anomalies ····· 0 A first qualitative observation A whole range of $b \rightarrow s$ measurements involving a $\mu\mu$ pair display a consistent pattern: Exp < SMLCSR Lattice - Data LCSR Lattice - Data Lattice - Data LCSR c^4/GeV^2 $dB/dq^2 [10^{-8} \times c^4/GeV^2]$ $B^+ \rightarrow K^+ \mu^+ \mu^-$ 5E $B^0 \rightarrow K^0 \mu^+ \mu^-$ LHCb $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ Gev LHCb LHCb LHCb 2014 × dB/dq^{2} [10⁻ 10 dB/dq^{2} [10⁻⁸ 0 00 $q^{2} [GeV^{2/}c^{4}]$ $q^{20} q^{20} [\text{GeV}^2/c^4]$ 5 10 15 5 10 15 0 $q^{2} [GeV^{2}/c^{4}]$ 10 15 5 9E $\mathrm{dB}(B_s^0 \to \phi \mu \mu)/\mathrm{d}q^2 \ [10^{-8} \mathrm{GeV}^{-2} c^4]$ 1.6 LHCb $\frac{{\rm d} {\cal B}}{{\rm d} q^2} ~~[10^{-7}~{\rm GeV}^{-2}]$ 1.4 SM pred. ဖ 5 1.2 LHCb 2015 -Data 6 **Detmold+Meinel** 5 1.0 LHCb 2015 $\Lambda_{\rm b} \rightarrow \Lambda \ \mu^+ \mu^-$ 0.8 0.6 0.4 0.2 10 15 5

0.0

0

 $q^2 \,[{
m GeV}^2/c^4]$

20

15

10

 $q^2 \, \, [{
m GeV}^2]$

õ

D. Guadagnoli, Flavour anomalies

$$R_{K} = \frac{BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}}{BR(B^{+} \rightarrow K^{+} e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$$
(2.6 σ effect)

D. Guadagnoli, Flavour anomalies

$$R_{K} = \frac{BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}}{BR(B^{+} \rightarrow K^{+} e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$$

(2.6 σ effect)

- the electron channel would be an obvious culprit (brems + low stats).
 But disagreement is rather in muons
- muons are among the most reliable objects within LHCb

$$R_{K} = \frac{BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}}{BR(B^{+} \rightarrow K^{+} e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$$

 $(2.6\sigma \text{ effect})$

- the electron channel would be an obvious culprit (brems + low stats).
 But disagreement is rather in muons
- muons are among the most reliable objects within LHCb

The other mentioned $b \rightarrow s \mu \mu$ modes fit a coherent picture with R_{κ} :

$$R_{K} = \frac{BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}}{BR(B^{+} \rightarrow K^{+} e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$$

 $(2.6\sigma \text{ effect})$

- the electron channel would be an obvious culprit (brems + low stats).
 But disagreement is rather in muons
- muons are among the most reliable objects within LHCb

The other mentioned $b \rightarrow s \mu \mu$ modes fit a coherent picture with R_{κ} :

2 $BR(B_s \rightarrow \varphi \mu\mu): >3\sigma$ below SM prediction. Same kinematical region $m_{\mu\mu}^2 \in [1, 6]$ GeV² Initially found in 1/fb of LHCb data, then confirmed by a full Run-I analysis (3/fb)

B

We know that BR measurements suffer from large f.f. uncertainties. However, here's a clean quantity:

$$R_{K} = \frac{BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}}{BR(B^{+} \rightarrow K^{+} e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$$

 $(2.6\sigma \text{ effect})$

- the electron channel would be an obvious culprit (brems + low stats).
 But disagreement is rather in muons
- muons are among the most reliable objects within LHCb

The other mentioned $b \rightarrow s \mu \mu$ modes fit a coherent picture with R_{κ} :

2 $BR(B_s \rightarrow \varphi \mu\mu): >3\sigma$ below SM prediction. Same kinematical region $m_{\mu\mu}^2 \in [1, 6]$ GeV² Initially found in 1/fb of LHCb data, then confirmed by a full Run-I analysis (3/fb)

 $B \rightarrow K^* \mu \mu$ angular analysis: discrepancy in one combination of the angular expansion coefficients, known as P'_{5}

 $m{B}
ightarrow m{K}^* \, \mu\mu$ angular analysis: The P'₅ anomaly

B

- From LHCb's full angular analysis of the decay products in $B \rightarrow K^* \mu\mu$, one can construct observables with limited sensitivity to form factors.

b → c data

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$R(D^{(*)}) = \frac{BR(B \rightarrow D^{(*)}\tau\nu)}{BR(B \rightarrow D^{(*)}\ell\nu)} (\text{with } \ell = e,\mu)$$

 $b \rightarrow c data$

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$R(D^{(*)}) = \frac{BR(B \rightarrow D^{(*)}\tau\nu)}{BR(B \rightarrow D^{(*)}\ell\nu)} (\text{with } \ell = e,\mu)$$

 $b \rightarrow c data$

.........................

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$R(D^{(*)}) = \frac{BR(B \rightarrow D^{(*)}\tau\nu)}{BR(B \rightarrow D^{(*)}\ell\nu)} (\text{with } \ell = e,\mu)$$

D. Guadagnoli, Flavour anomalies

• R_{κ} hints at Lepton Universality Violation (LUV), the effect being in muons, rather than electrons

- R_{κ} hints at Lepton Universality Violation (LUV), the effect being in muons, rather than electrons
- Also R(D^(*)) points to LUV. But can we really trust final-state taus?

- R_{κ} hints at Lepton Universality Violation (LUV), the effect being in muons, rather than electrons
- Also R(D^(*)) points to LUV. But can we really trust final-state taus?
- R_{κ} significance fairly low. Yet interesting that all $b \rightarrow s \mu \mu$ modes go in a consistent direction

- R_{κ} hints at Lepton Universality Violation (LUV), the effect being in muons, rather than electrons
- Also R(D^(*)) points to LUV. But can we really trust final-state taus?
- R_{κ} significance fairly low. Yet interesting that all $b \rightarrow s \mu \mu$ modes go in a consistent direction
- Focusing for the moment on the $b \rightarrow s$ discrepancies
 - **Q1:** Can we (easily) make theoretical sense of data?
 - **Q2:** What are the most immediate signatures to expect ?

$\mathsf{B} ightarrow \mathsf{K}(*) \,\ell\ell$ decays: basic theory considerations

The second se

$\mathsf{B} ightarrow \mathsf{K}(*) \,\ell\ell$ decays: basic theory considerations

The second se

$\mathsf{B} ightarrow \mathsf{K}(*)\,\ell\ell$ decays: basic theory considerations

D. Guadagnoli, Flavour anomalies

D. Guadagnoli, Flavour anomalies

$B \to K(\mbox{*}) \ \ell \ell$ decays: basic theory considerations

Caveat

• In practice, the short-distance part is dominated by the top loop, because of the large top mass:

0¹¹

$$\frac{m_t^2}{m_W^2} = O(1)$$

$B \to K(\mbox{*}) \ \ell \ell$ decays: basic theory considerations

Caveat

• In practice, the short-distance part is dominated by the top loop, because of the large top mass:

0¹¹

$$\frac{m_t^2}{m_W^2} = O(1)$$
 \Longrightarrow "Hard" GIM breaking

D. Guadagnoli, Flavour anomalies

5......

• Yes we can. Consider the following Hamiltonian

$$H_{\rm SM+NP}(\bar{b} \rightarrow \bar{s}\mu\mu) = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{\rm em}}{4\pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]$$

Concerning Q1: can we easily make theoretical sense of these data?
• Yes we can. Consider the following Hamiltonian

$$H_{SM+NP}(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4G_F}{\sqrt{2}} V_b^* V_B \frac{\alpha_{em}}{4\pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \underbrace{C_0^{(*)}}_{(*)} \bar{\mu} \gamma_\lambda \mu + \underbrace{C_{10}^{(*)}}_{(*)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right]$$

- Advocating the same $(V A) \times (V A)$ structure also for the corrections to $C_{9,10}^{SM}$ (in the $\mu\mu$ -channel only!) would account for:
 - R_{κ} lower than 1
 - $b \rightarrow s \mu \mu$ BR data below predictions
 - the P_5' anomaly in $B \rightarrow K^* \mu \mu$

- Advocating the same (V A) x (V A) structure also for the corrections to C_{9,10}SM (in the μμ-channel only!) would account for:
 - R_{κ} lower than 1
 - $b \rightarrow s \mu \mu$ BR data below predictions
 - the P_5' anomaly in $B \rightarrow K^* \mu \mu$

A fully quantitative test requires a global fit.

new physics contributions to the Wilson coefficients. We find that the by far largest decrease in the χ^2 can be obtained either by a negative new physics contribution to C_9 (with $C_9^{\text{NP}} \sim -30\% \times C_9^{\text{SM}}$), or by new physics in the $SU(2)_L$ invariant direction $C_9^{\text{NP}} = -C_{10}^{\text{NP}}$, (with $C_9^{\text{NP}} \sim -12\% \times C_9^{\text{SM}}$). A positive NP contribution to C_{10} alone would also improve the fit, although to a lesser extent. [Altmannshofer, Straub, EPJC '15]

For analogous conclusions, see also [Ghosh, Nardecchia, Renner, JHEP '14]

44.....

- $C_{9}^{(\ell)} \approx -C_{10}^{(\ell)}$ (V A structure) $|C_{9,\text{NP}}^{(\mu)}| \gg |C_{9,\text{NP}}^{(e)}|$ (LUV)

- $C_{9}^{(\ell)} \approx -C_{10}^{(\ell)}$ (V A structure) - $|C_{9,NP}^{(\mu)}| \gg |C_{9,NP}^{(e)}|$ (LUV)
- This pattern can be generated from a purely 3rd-generation interaction of the kind
 - $H_{\rm NP} = G \bar{b}'_{L} \gamma^{\lambda} b'_{L} \bar{\tau}'_{L} \gamma_{\lambda} \tau'_{L}$ with $G = 1/\Lambda_{\rm NP}^{2} \ll G_{F}$ expected e.g. in partial-compositeness frameworks

- $C_{9}^{(\ell)} \approx -C_{10}^{(\ell)}$ (V A structure) - $|C_{9,NP}^{(\mu)}| \gg |C_{9,NP}^{(e)}|$ (LUV)
- This pattern can be generated from a purely 3rd-generation interaction of the kind
 - $H_{\rm NP} = G \bar{b}'_L \gamma^{\lambda} b'_L \bar{\tau}'_L \gamma_{\lambda} \tau'_L$ with $G = 1/\Lambda_{\rm NP}^2 \ll G_F$ expected e.g. in
 partial-compositeness
 frameworks
- Note: primed fields
 - Fields are in the "gauge" basis (= primed)

......

- $C_{9}^{(t)} \approx -C_{10}^{(t)}$ (V A structure) - $|C_{9,NP}^{(\mu)}| \gg |C_{9,NP}^{(e)}|$ (LUV)
- This pattern can be generated from a purely 3rd-generation interaction of the kind
 - $H_{\rm NP} = G \bar{b}'_{L} \gamma^{\lambda} b'_{L} \bar{\tau}'_{L} \gamma_{\lambda} \tau'_{L}$ with $G = 1/\Lambda_{\rm NP}^{2} \ll G_{F}$ expected e.g. in partial-compositeness frameworks
- Note: primed fields
 - Fields are in the "gauge" basis (= primed)
 - They need to be rotated to the mass eigenbasis

$$mass \\ b'_{L} \equiv (d'_{L})_{3} = (U_{L}^{d})_{3i} (d_{L})_{i} \\ \tau'_{L} \equiv (\ell'_{L})_{3} = (U_{L}^{\ell})_{3i} (\ell_{L})_{i}$$

- $C_{9}^{(t)} \approx -C_{10}^{(t)}$ (V A structure) - $|C_{9,\text{NP}}^{(\mu)}| \gg |C_{9,\text{NP}}^{(e)}|$ (LUV)
- This pattern can be generated from a purely 3rd-generation interaction of the kind
 - $H_{\rm NP} = G \bar{b}'_{L} \gamma^{\lambda} b'_{L} \bar{\tau}'_{L} \gamma_{\lambda} \tau'_{L}$ with $G = 1/\Lambda_{\rm NP}^{2} \ll G_{F}$ expected e.g. in partial-compositeness frameworks
- Note: primed fields
 - Fields are in the "gauge" basis (= primed)
 They need to be rotated to the mass eigenbasis
 This rotation induces <u>LUV and LFV</u> effects *b* '_L = (*d* '_L)₃ = (*U*^{*d*}_L)_{3i} (*d*_L)_i *t* '_L = (*t* '_L)₃ = (*U*^{*d*}_L)_{3i} (*t*_L)_i

Numeral and the second se

9......

As mentioned: if R_{κ} is signaling BSM LUV, then, in general, expect BSM LFV as well

As mentioned: if R_{κ} is signaling BSM LUV, then, in general, expect BSM LFV as well

As mentioned: if R_{κ} is signaling BSM LUV, then, in general, expect BSM LFV as well

$$\square \qquad \frac{BR(B^+ \to K^+ \mu e)}{BR(B^+ \to K^+ \mu \mu)} = \frac{|\delta C_{10}|^2}{|C_{10}^{SM} + \delta C_{10}|^2} \cdot \frac{|(U_L^{\ell})_{31}|^2}{|(U_L^{\ell})_{32}|^2} \cdot 2$$

As mentioned: if R_{κ} is signaling BSM LUV, then, in general, expect BSM LFV as well

As mentioned: if R_{κ} is signaling BSM LUV, then, in general, expect BSM LFV as well

$$\boxed{ \begin{array}{c} \blacksquare \\ \hline \\ \blacksquare \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline$$

As mentioned: if R_{κ} is signaling BSM LUV, then, in general, expect BSM LFV as well

As mentioned: if R_{κ} is signaling BSM LUV, then, in general, expect BSM LFV as well

Actually, the expected ballpark of LFV effects can be predicted from $BR(B \rightarrow K \mu\mu)$ and the R_{κ} deviation alone [Glashow et al., 2015]

D. Guadagnoli, Flavour anomalies

As mentioned: if R_{κ} is signaling BSM LUV, then, in general, expect BSM LFV as well

• Being defined above the EWSB scale, our assumed operator

 $\bar{b}'_L \gamma^{\lambda} b'_L \bar{\tau}'_L \gamma_{\lambda} \tau'_L$

must actually be made invariant under $SU(3)_c \times SU(2)_L \times U(1)_Y$

······

 Being defined above the EWSB scale, our assumed operator

$$\bar{b}'_L \gamma^{\lambda} b'_L \bar{\tau}'_L \gamma_{\lambda} \tau'_L$$

must actually be made invariant under $SU(3)_c \times SU(2)_L \times U(1)_Y$

$$\begin{array}{c} \mathsf{SU(2)}_{\mathsf{L}} \\ \mathsf{v}^{\mathsf{T}}{}_{\mathsf{L}} \\ \mathsf{inv.} \end{array} \quad \begin{cases} \bullet \quad \bar{Q}'{}_{\mathsf{L}} \gamma^{\lambda} Q'{}_{\mathsf{L}} \quad \bar{L}'{}_{\mathsf{L}} \gamma_{\lambda} L'{}_{\mathsf{L}} \\ \bullet \quad \bar{Q}'{}_{\mathsf{L}}^{i} \gamma^{\lambda} Q'{}_{\mathsf{L}}^{j} \quad \bar{L}'{}_{\mathsf{L}}^{j} \gamma_{\lambda} L'{}_{\mathsf{L}} \\ \bullet \quad \bar{Q}'{}_{\mathsf{L}}^{i} \gamma^{\lambda} Q'{}_{\mathsf{L}}^{j} \quad \bar{L}'{}_{\mathsf{L}}^{j} \gamma_{\lambda} L'{}_{\mathsf{L}} \\ \bullet \quad \bar{Q}'{}_{\mathsf{L}}^{i} \gamma^{\lambda} Q'{}_{\mathsf{L}}^{j} \quad \bar{L}'{}_{\mathsf{L}}^{j} \gamma_{\lambda} L'{}_{\mathsf{L}} \\ \bullet \quad \mathsf{Ialso charged-current int's]} \\ \mathsf{x} U(1)_{\mathsf{v}} \end{cases}$$

D. Guadagnoli, Flavour anomalies

 Being defined above the EWSB scale, our assumed operator

$$\bar{b}'_L \gamma^{\lambda} b'_L \bar{\tau}'_L \gamma_{\lambda} \tau'_L$$

must actually be made invariant under $SU(3)_c \times SU(2)_L \times U(1)_Y$

Thus, the generated structures are all of:

$$t't'\nu'_{\tau}\nu'_{\tau}, \quad b'b'\nu'_{\tau}\nu'_{\tau},$$
$$t't'\tau'\tau', \quad b'b'\tau'\tau'$$

 $\left\{ \begin{array}{c} \bullet \quad \bar{Q}'_{L} \gamma^{\lambda} Q'_{L} \quad \bar{L}'_{L} \gamma_{\lambda} L'_{L} \\ \bullet \quad \bar{Q}'_{L}^{i} \gamma^{\lambda} Q'_{L}^{j} \quad \bar{L}'_{L}^{j} \gamma_{\lambda} L'_{L}^{i} \end{array} \right.$

SU(2)_L

inv.

[neutral-current int's only]

[also charged-current int's]

 Being defined above the EWSB scale, our assumed operator

$$ar{b}'_L \gamma^\lambda b'_L ar{ au}'_L \gamma_\lambda au'_L$$

must actually be made invariant under $SU(3)_c \times SU(2)_L \times U(1)_Y$

Thus, the generated structures are all of:

$$t't'v'_{\tau}v'_{\tau}, \quad b'b'v'_{\tau}v'_{\tau},$$
$$t't'\tau'\tau', \quad b'b'\tau'\tau'$$

 $\left\{ \begin{array}{c} \bullet \quad \bar{Q}'_{L} \gamma^{\lambda} Q'_{L} \quad \bar{L}'_{L} \gamma_{\lambda} L'_{L} \\ \bullet \quad \bar{Q}'^{i}_{L} \gamma^{\lambda} Q'^{j}_{L} \quad \bar{L}'^{j}_{L} \gamma_{\lambda} L'^{i}_{L} \end{array} \right.$

SU(2)_L

inv.

[neutral-current int's only]

Being defined above the EWSB scale, our assumed operator

$$\bar{b}'_L \gamma^{\lambda} b'_L \bar{\tau}'_L \gamma_{\lambda} \tau'_L$$

must actually be made invariant under $SU(3)_c \times SU(2)_1 \times U(1)_{\gamma}$

Thus, the generated structures are all of:

 $\left\{ \begin{array}{c} \bullet \quad \bar{Q}'_{L} \gamma^{\lambda} Q'_{L} \quad \bar{L}'_{L} \gamma_{\lambda} L'_{L} \\ \bullet \quad \bar{Q}'_{L}^{i} \gamma^{\lambda} Q'_{L}^{j} \quad \bar{L}'_{L}^{j} \gamma_{\lambda} L'_{L}^{i} \end{array} \right.$

SU(2)_L

inv.

See.

and a second second second

Bhattacharya, Datta, London,

Shivashankara, PLB 15

[neutral-current int's only]

After rotation to the mass basis (unprimed), the last structure contributes to $\Gamma(b \rightarrow c \ \tau \ v)$

i.e. it can explain deviations on R(D())*

Being defined above the EWSB scale, our assumed operator

 $\bar{b}'_L \gamma^{\lambda} b'_L \bar{\tau}'_L \gamma_{\lambda} \tau'_L$ must actually be made invariant

under $SU(3)_c \times SU(2)_L \times U(1)_Y$

$$t't'\nu'_{\tau}\nu'_{\tau}, \quad b'b'\nu'_{\tau}\nu'_{\tau},$$
$$t't'\tau'\tau', \quad b'b'\tau'\tau',$$

and a state of the state of the

Bhattacharya, Datta, London,

Shivashankara, PLB 15

See.

After rotation to the mass basis (unprimed), the last structure contributes to $\Gamma(b \rightarrow c \tau v)$ i.e. it can explain deviations on R(D(*))

......

Being defined above the EWSB scale, our assumed operator

must actually be made invariant under SU(3), x SU(2), x U(1),

 $\bar{b}'_{L} \gamma^{\lambda} b'_{L} \bar{\tau}'_{L} \gamma_{\lambda} \tau'_{L}$

Thus, the generated structures are all of:

 $t't'v'_{\tau}v'_{\tau}$, $b'b'v'_{\tau}v'_{\tau}$, $t't'\tau'\tau'$, $b'b'\tau'\tau'$, and

 $\left\{ \bullet \ \bar{Q}'_L \gamma^\lambda Q'_L \bar{L}'_L \gamma_\lambda L'_L \right\}$

• $\bar{Q}_{I}^{\prime i} \chi^{\lambda} Q_{I}^{\prime j} \bar{L}_{I}^{\prime j} \chi_{\lambda} L_{I}^{\prime i}$

[neutral-current int's only] [also charged-current int's] $t'b'\tau'\nu'$

and the second second

Bhattacharya, Datta, London,

Shivashankara, PLB 15

See

After rotation to the mass basis (unprimed), the last structure contributes to $\Gamma(b \rightarrow c \tau v)$ i.e. it can explain deviations on R(D(*))

But this coin has a flip side.

Through RGE running, one gets also LFU-breaking effects in $\tau \rightarrow \ell v v$ (tested at per mil accuracy)

SU(2)_L

inv.

Such effects "strongly disfavour an explanation of the R(D(*)) anomaly model-independently"

^{Feruglio,} Paradisi, Pattori, 2016

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

 $B \rightarrow D(*) \tau v$: arises at tree level in the SM, and the effect is O(25%) tree-level charged mediators?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $B \rightarrow D(*) \tau v$: arises at tree level in the SM, and the effect is O(25%) tree-level charged mediators?
- **B** \rightarrow **K**(*)*ll*: again 25% effect, but this is a loop effect in the SM

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $B \rightarrow D(*) \tau v$: arises at tree level in the SM, and the effect is O(25%) tree-level charged mediators?
- **B** \rightarrow **K**(*) $\ell\ell\ell$: again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{quark} \times J_{lepton}$ Hard to believe that it leaves no traces in $J_{quark} \times J_{quark}$ and $J_{lepton} \times J_{lepton}$ as well

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $B \rightarrow D(*) \tau v$: arises at tree level in the SM, and the effect is O(25%) tree-level charged mediators?
- **B** \rightarrow **K**(*)*ll*: again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{quark} \times J_{lepton}$ Hard to believe that it leaves no traces in $J_{quark} \times J_{quark}$ and $J_{lepton} \times J_{lepton}$ as well

Strong constraints from B_s-mixing & purely leptonic LFV or LUV decays

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $B \rightarrow D(*) \tau v$: arises at tree level in the SM, and the effect is O(25%) tree-level charged mediators?
- **B** \rightarrow **K**(*)*ll*: again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{quark} \times J_{lepton}$ Hard to believe that it leaves no traces in $J_{quark} \times J_{quark}$ and $J_{lepton} \times J_{lepton}$ as well

Strong constraints from B_s-mixing & purely leptonic LFV or LUV decays

Third obstacle

Most (all?) model-building possibilities involve:

new charged (and possibly colored) states

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $B \rightarrow D(*) \tau v$: arises at tree level in the SM, and the effect is O(25%) tree-level charged mediators?
- **B** \rightarrow **K**(*)*tt*: again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{quark} \times J_{lepton}$ Hard to believe that it leaves no traces in $J_{quark} \times J_{quark}$ and $J_{lepton} \times J_{lepton}$ as well

Strong constraints from B_s-mixing & purely leptonic LFV or LUV decays

Third obstacle

Most (all?) model-building possibilities involve:

- new charged (and possibly colored) states
- with masses in the TeV region and

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $B \rightarrow D(*) \tau v$: arises at tree level in the SM, and the effect is O(25%) tree-level charged mediators?
- **B** \rightarrow **K**(*)*tt*: again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{quark} \times J_{lepton}$ Hard to believe that it leaves no traces in $J_{quark} \times J_{quark}$ and $J_{lepton} \times J_{lepton}$ as well
 - Strong constraints from B_s-mixing & purely leptonic LFV or LUV decays

Third obstacle

Most (all?) model-building possibilities involve:

- new charged (and possibly colored) states
- with masses in the TeV region and
- with significant couplings to 3rd gen. SM fermions

Constraints from direct searches (e.g. \rightarrow TT) potentially strong

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $B \rightarrow D(*) \tau v$: arises at tree level in the SM, and the effect is O(25%) tree-level charged mediators?
- **B** \rightarrow **K**(*)*tt*: again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{quark} \times J_{lepton}$ Hard to believe that it leaves no traces in $J_{quark} \times J_{quark}$ and $J_{lepton} \times J_{lepton}$ as well
 - Strong constraints from B_s-mixing & purely leptonic LFV or LUV decays

Third obstacle

Most (all?) model-building possibilities involve:

- new charged (and possibly colored) states
- with masses in the TeV region and
- with significant couplings to 3rd gen. SM fermions

Constraints from direct searches (e.g. \rightarrow TT) potentially strong

And yes they are! See: [Greljo-Isidori-Marzocca] [Faroughy-Greljo-Kamenik]

- The above being said, many attempts towards plausible UV completions able to produce the needed operators have been made
- These models involve typically the introduction of:
 - a new Lorentz-scalar (S) or -vector (V)

- The above being said, many attempts towards plausible UV completions able to produce the needed operators have been made
- These models involve typically the introduction of:
 - a new Lorentz-scalar (S) or -vector (V)

with any of the following transformation properties under the SM gauge group:

- $SU(3)_c$: 1 or 3 (\rightarrow "leptoquark")
- SU(2)₁: 1 or 2 or 3

en la companya de la companya

Recap of model-building attempts focused on models accounting for $R_{\kappa} \& R(D(*))$

Measure more LUV ratios:
$$R_{K^*}$$
, R_{ϕ} , R_{X_s} , $R_{K_0(1430)}$, R_{f_0} Hiller, Schmaltz, JHEP 2015Interesting test:define $X_H \equiv \frac{R_H}{R_K}$, with $H = K^*$, ϕ , X_s , $K_0(1430)$, f_0

Deviations from unity in the double ratios X_{μ} can only come from RH currents

Measure more LUV ratios: R_{K^*} , R_{ϕ} , R_{X_s} , $R_{K_0(1430)}$, R_{f_0} ٠

Interesting test: define
$$X_H \equiv \frac{R_H}{R_K}$$
, with $H = K^*$, ϕ , X_s , $K_0(1430)$, f_0

Deviations from unity in the double ratios X_{μ} can only come from RH currents

Extract LD effects from data ٠

Recently, LHCb measured BR($B^+ \rightarrow K^+ \mu\mu$) including an accurate parameterization of the LD component in the $c\bar{c}$ region

Hiller, Schmaltz, JHEP 2015

LHCb, 1612.06764

approach as

Zwicky, '14

• Measure more LUV ratios: R_{K^*} , R_{ϕ} , R_{X_s} , $R_{K_0(1430)}$, R_{f_0}

Interesting test: define $X_H \equiv \frac{R_H}{R_K}$, with $H = K^*$, ϕ , X_s , $K_0(1430)$, f_0

Deviations from unity in the double ratios X_{μ} can only come from RH currents

Extract LD effects from <u>data</u>

Recently, LHCb measured BR($B^+ \rightarrow K^+ \mu\mu$) including an accurate parameterization of the LD component in the $c\bar{c}$ region

Idea: Sizable LD contributions far from the resonance region could explain away tensions

Hiller, Schmaltz, JHEP 2015

proach as

LHCb, 1612.06764

• Measure more LUV ratios: R_{K^*} , R_{ϕ} , R_{X_s} , $R_{K_0(1430)}$, R_{f_0}

Interesting test: define
$$X_H \equiv \frac{R_H}{R_K}$$
, with $H = K^*$, ϕ , X_s , $K_0(1430)$, f_0

Deviations from unity in the double ratios X_{μ} can only come from RH currents

Extract LD effects from <u>data</u>

Recently, LHCb measured BR($B^+ \rightarrow K^+ \mu\mu$) including an accurate parameterization of the LD component in the $c\bar{c}$ region

Idea: Sizable LD contributions far from the resonance region could explain away tensions

Method: Measure $m_{\mu\mu}$ spectrum, including the $c\bar{c}$ resonances as a sum of BW, and fit 'em all

D. Guadagnoli, Flavour anomalies

Hiller, Schmaltz, JHEP 2015

^{/proach} as

LHCb, 1612.06764

Measure more LUV ratios: R_{K^*} , R_{ϕ} , R_{X_s} , $R_{K_0(1430)}$, R_{f_0}

Interesting test: define
$$X_{H} \equiv \frac{R_{H}}{R_{K}}$$
, with $H = K^{*}$, ϕ , X_{s} , $K_{0}(1430)$, f_{0}

Deviations from unity in the double ratios X_{μ} can only come from RH currents

Extract LD effects from data

Recently, LHCb measured BR($B^{+} \rightarrow K^{+} \mu \mu$) including an accurate parameterization of the LD component in the cc region

Idea: Sizable LD contributions far from the resonance region could explain away tensions

Measure $m_{\mu\mu}$ spectrum, including the $c\overline{c}$ resonances as a sum of BW, and fit 'em all Method:

Result: BR compatible with previous measurements, and (again) smaller than SM

What's the BR result for q^2 in [1, 6] GeV²?

Hiller, Schmaltz, JHEP 2015

^{Jroach} as

LHCb, 1612.06764

But LQCD calculation of $B \rightarrow \gamma$ f.f.'s required

·····

ATTENT (1111)

- In flavor physics there are by now several persistent discrepancies with respect to the SM. Their most convincing aspects are the following:
 - Experiments: Results are consistent between LHCb and B factories.
 - **Data:** Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
 - Data vs. theory: Discrepancies go in a consistent direction.
 A BSM explanation is already possible within an EFT approach.

4......

ATTENT OF A DECEMPTOR AND A DE

- In flavor physics there are by now several persistent discrepancies with respect to the SM. Their most convincing aspects are the following:
 - Experiments: Results are consistent between LHCb and B factories.
 - **Data:** Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
 - Data vs. theory: Discrepancies go in a consistent direction.
 A BSM explanation is already possible within an EFT approach.
- Early to draw conclusions. But Run II will provide a definite answer

......

- In flavor physics there are by now several persistent discrepancies with respect to the SM. Their most convincing aspects are the following:
 - Experiments: Results are consistent between LHCb and B factories.
 - **Data:** Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
 - Data vs. theory: Discrepancies go in a consistent direction.
 A BSM explanation is already possible within an EFT approach.
- Early to draw conclusions. But Run II will provide a definite answer
- Theory: EFT makes sense rather well of data. But hard to find convincing UV dynamics

4......

......

- In flavor physics there are by now several persistent discrepancies with respect to the SM. Their most convincing aspects are the following:
 - Experiments: Results are consistent between LHCb and B factories.
 - **Data:** Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
 - Data vs. theory: Discrepancies go in a consistent direction.
 A BSM explanation is already possible within an EFT approach.
- Early to draw conclusions. But Run II will provide a definite answer
- Theory: EFT makes sense rather well of data. But hard to find convincing UV dynamics
- Timely to pursue further tests.

Examples:

- more measurements of R_{κ}
- more LUV quantities
- other observables sensitive to $C_{g} \& C_{10}$