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b → s data

 RK =
BR (B+→K+μμ)[1,6]

BR(B+→K+ e e)[1,6]

= 0.745⋅(1±13%)
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(2.6 effect)

We know that BR measurements suffer from large f.f. uncertainties.
However, here’s a clean quantity:
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The other mentioned b → s μμ  modes fit a coherent picture with R
K
  :

➋  BR(B
s
 → φ μμ): >3 below SM prediction.     Same kinematical region m2

μμ
 ∈ [1, 6 ] GeV2

Initially found in 1/fb of LHCb data, then confirmed by a full Run-I analysis (3/fb)
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(2.6 effect)

We know that BR measurements suffer from large f.f. uncertainties.
However, here’s a clean quantity:

The other mentioned b → s μμ  modes fit a coherent picture with R
K
  :

➋  BR(B
s
 → φ μμ): >3 below SM prediction.     Same kinematical region m2

μμ
 ∈ [1, 6 ] GeV2

Initially found in 1/fb of LHCb data, then confirmed by a full Run-I analysis (3/fb)

 B → K* μμ angular analysis: discrepancy in one combination of the 
                                                 angular expansion coefficients, known as P'

5
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The P'

5
  anomaly

From LHCb’s full angular analysis of the decay products in B → K* μμ, one can
construct observables with limited sensitivity to form factors.

B → K* μμ angular analysis:
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 form factors.
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What cancels is the dependence on the 
large-m

b
 form factors.

Crucial issue:

How important departures from the
infinite-m 

b
 limit are, for q 2 approaching 

4 m 
c
2.

Caveat: 
this obs needs be taken cum grano salis

The P'
5
  anomaly

From LHCb’s full angular analysis of the decay products in B → K* μμ, one can
construct observables with limited sensitivity to form factors.

One of such “clean” observables is called P'
5

B → K* μμ angular analysis:

In fact, cc contributions are
suppressed by q2 – 4 m 

c
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arXiv:1604.04042

What cancels is the dependence on the 
large-m

b
 form factors.

Crucial issue:

How important departures from the
infinite-m 

b
 limit are, for q 2 approaching 

4 m 
c
2.

Caveat: 
this obs needs be taken cum grano salis

Effect is again in the same region: 
m2

μμ
 ∈ [1, 6 ] GeV 2

Compatibility between 1/fb and 3/fb 
LHCb analyses and a recent Belle analysis

But interesting nonetheless, because:

The P'
5
  anomaly

From LHCb’s full angular analysis of the decay products in B → K* μμ, one can
construct observables with limited sensitivity to form factors.

One of such “clean” observables is called P'
5

B → K* μμ angular analysis:
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There are long-standing discrepancies in b → c transitions as well.

R(D(*)) =
BR (B→D(*)τ ν)
BR(B→D(*)ℓν) (with ℓ=e ,μ)

b → c data

Simultaneous fit to R(D) & R(D*) about 4σ away from SM
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Wrap-up

Q1:   Can we (easily) make theoretical sense of data?

Q2:   What are the most immediate signatures to expect ?

 Focusing for the moment on the b → s discrepancies

R
K
  hints at Lepton Universality Violation (LUV), the effect being in

muons, rather than electrons

 Also R(D(*)) points to LUV.    But  can we really  trust final-state taus?

 R
K
   significance fairly low.  

Yet  interesting that  all b → s μμ  modes go in a consistent direction
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there’s no tree-level contribution:  it’s an “FCNC”

Why interesting

In the SM:



Loop suppression

the contribution from each up-type quark goes as:

V qu b
* ⋅V qu s

⋅ f (mqu)
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  B → K(*) ℓℓ decays: basic theory considerations

(among the other diagrams)

there’s no tree-level contribution:  it’s an “FCNC”

Why interesting

In the SM:



Loop suppression

the contribution from each up-type quark goes as:

V qu b
* ⋅V qu s

⋅ f (mqu)

So, if the up-type quark masses were equal,
the corresponding  3  diagrams would sum to 0

“GIM” suppression
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  B → K(*) ℓℓ decays: basic theory considerations

In practice, the short-distance part is dominated
by the top loop, because of the large top mass:
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Caveat
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  B → K(*) ℓℓ decays: basic theory considerations

In practice, the short-distance part is dominated
by the top loop, because of the large top mass:



mt
2

mW
2 =O(1) “Hard” GIM breaking

Caveat

Two consequences

One can shrink the above diagram to a point, and describe the decay
as an effective interaction of the kind

H = ∑i

C i
Λ2 (b̄Γq(i)s ) (ℓ̄ Γℓ
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Among the measurable FCNCs, b → s transitions 
are the closest to  3 rd generation physics.
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In practice, the short-distance part is dominated
by the top loop, because of the large top mass:



mt
2

mW
2 =O(1) “Hard” GIM breaking

Among the measurable FCNCs, b → s transitions 
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Two consequences
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as an effective interaction of the kind
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☑

That the top mass be intriguingly close 
to the EW scale makes the top a 
candidate portal to new states.

b → s decays then provide an indirect
test of such physics
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  Concerning Q1:  can we easily make theoretical sense of these data?

 Yes we can. Consider the following Hamiltonian

HSM+NP( b̄→ s̄μμ) = −
4GF
√2

V tb
* V ts

αem

4 π [b̄L γλ sL⋅(C9
(μ) μ̄ γλμ + C10

(μ) μ̄ γλ γ5μ) ]
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 Advocating the same (V –  A) x (V – A) structure also for the corrections to C
9,10

SM 

(in the µµ-channel only!) would account for:

R
K
 lower than 1

b → s µµ   BR data below predictions

 A fully quantitative test requires a global fit.

 [Altmannshofer, Straub, EPJC '15]

  Concerning Q1:  can we easily make theoretical sense of these data?

For analogous conclusions, see also  [Ghosh, Nardecchia, Renner, JHEP '14] 
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As we saw before, all b → s data 
are explained at one stroke if:

  
Model example:
Glashow et al.,  2015

(V – A structure)C9
(ℓ) ≈ −C10

(ℓ)

(LUV)|C9,NP
(μ) | ≫ |C9, NP

(e ) |





  

D. Guadagnoli, Flavour anomalies

As we saw before, all b → s data 
are explained at one stroke if:

 This pattern can be generated from a purely 3rd-generation interaction of the kind

  
Model example:
Glashow et al.,  2015

(V – A structure)C9
(ℓ) ≈ −C10

(ℓ)

(LUV)|C9,NP
(μ) | ≫ |C9, NP

(e ) |
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As we saw before, all b → s data 
are explained at one stroke if:

 This pattern can be generated from a purely 3rd-generation interaction of the kind

  
Model example:
Glashow et al.,  2015

(V – A structure)C9
(ℓ) ≈ −C10

(ℓ)

(LUV)|C9,NP
(μ) | ≫ |C9, NP

(e ) |

HNP = G b̄ ' Lγ
λb ' L τ̄ ' Lγλ τ ' L expected e.g. in

partial-compositeness 
frameworks 

Fields are in the “gauge” basis (= primed)

They need to be rotated to the mass eigenbasis

Note: primed fields

b 'L ≡ (d ' L)3 = (U L
d )3 i (d L)i

τ ' L ≡ (ℓ ' L)3 = (U L
ℓ )3 i (ℓL)i

mass
basis

☞





with G = 1/ΛNP
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As we saw before, all b → s data 
are explained at one stroke if:

 This pattern can be generated from a purely 3rd-generation interaction of the kind

  
Model example:
Glashow et al.,  2015

(V – A structure)C9
(ℓ) ≈ −C10

(ℓ)

(LUV)|C9,NP
(μ) | ≫ |C9, NP

(e ) |

HNP = G b̄ ' Lγ
λb ' L τ̄ ' Lγλ τ ' L expected e.g. in

partial-compositeness 
frameworks 

Fields are in the “gauge” basis (= primed)

They need to be rotated to the mass eigenbasis

Note: primed fields

This rotation induces  LUV and LFV effects

b 'L ≡ (d ' L)3 = (U L
d )3 i (d L)i

τ ' L ≡ (ℓ ' L)3 = (U L
ℓ )3 i (ℓL)i

mass
basis

☞





with G = 1/ΛNP
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|(U L
ℓ)32|

2

The current BR(B+ → K+ µe)
limit yields the weak bound

|(U L
ℓ)31 /(U L

ℓ)32| < 3.7

would be even more promising, as it scales with BR (B+→K +μ τ) |(U L
ℓ)33 /(U L

ℓ)32|
2

= 0.1592 
according to R

K

An analogous argument holds for purely leptonic modes

Actually, the expected ballpark of LFV effects can be predicted  from BR(B → K μμ) and the 
R

K
  deviation alone  [Glashow et al., 2015]

☑

☑

☑
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 But this coin has a flip side.

Through RGE running, one gets also LFU-breaking effects in τ → ℓ v v  

                                                                      (tested at per mil accuracy)

Such effects  “strongly disfavour an explanation of the R(D(*)) anomaly model-independently”

Feruglio, Paradisi, Pattori, 2016

and
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B → K(*)ℓℓ :  again 25% effect, but this is a loop effect in the SM

Most (all?) model-building possibilities involve: Constraints from direct searches
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And yes they are!
See: [Greljo-Isidori-Marzocca]
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The above being said, many attempts towards plausible UV completions 
able to produce the needed operators have been made

These models involve typically the introduction of:

a new Lorentz-scalar (S) or -vector (V)

with  any of the following transformation properties under the SM gauge group:

SU(3)
c
:  1  or  3 (→ “leptoquark”)

SU(2)
L
: 1 or 2 or 3
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Interesting test:   define                              with

Deviations from unity in the double ratios X
H
 can only come from RH currents

Hiller, Schmaltz, JHEP 2015

 Extract LD effects from data

Recently, LHCb measured BR(B+ → K+ μμ) including an accurate parameterization
of the LD component in the cc region

Idea:     Sizable LD contributions far from the resonance region could explain away tensions

Method:      Measure m
μμ

 spectrum, including the cc resonances as a sum of BW, and fit ‘em all

Result:       BR compatible with previous measurements, and (again) smaller than SM

Similar approach as

Lyon, Zwicky, ‘14

LHCb, 1612.06764

What’s the BR result for q2 in [1, 6] GeV 2 ?
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The B
s
 → μμ γ  decay offers sensitivity to C

7
, C

9
, C

10
    (and its total BR is 10–8)

Dettori, DG, Reboud, ‘16

Its direct measurement (= with photon detection) is veeery challenging at hadron colliders

Extract  B
s
 → μμ γ  from  B

s
 → μμ  event sample, by enlarging m

μμ
  window downwards

Note in fact:

ISR and FSR components in B
s
 → μμ γ  can be treated as independent 

                         (relevant in different regions & interference is negligible)

The FSR component can be systematically subtracted from data 
                                                      (the same way it is in B

s
 → μμ)

So this measurement gives access to the ISR spectrum, to be compared with theory
                                                                                                   [Melikhov-Nikitin, ‘04]

But LQCD calculation of   B → γ   f.f.’s required
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Conclusions

 In flavor physics there are by now several persistent discrepancies with respect to the SM.

Data vs. theory: Discrepancies go in a consistent direction.
                            A BSM explanation is already possible within an EFT approach.

Experiments: Results are consistent between LHCb and B factories.

 Early to draw conclusions. But Run II will provide a definite answer

 Timely to pursue  further tests. 

Their most convincing aspects are the following:

Data: Deviations concern two independent sets of data:  b → s  and  b → c  decays.

 Theory:  EFT makes sense rather well of data.   But hard to find convincing UV dynamics

Examples: more measurements of R
K
  

more LUV quantities

other observables sensitive to C
9
 & C

10
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