LHC: Status and Results

Dave Newbold, U. Bristol IPPP Annual Theory Meeting

Outline

• Outline:

- LHC status
- The experimental challenge
- Higgs physics
- Standard Model (briefly)
- SUSY & Dark Matter
- Flavour (super-briefly)
- LHC upgrades
- The future
- Executive summary:
 - The Higgs is still there, but no signs of new physics yet...
 - ... though a few developing hints, and some new places to look
 - ... but only 3% of the final dataset collected!
 - Life is hard for experimentalists, and getting harder
 - Lots of new ideas in play keep thinking!

Current LHC Status: OFF

LHC Page 1	•	Vis	tar		Â
LHC Page1	Fill: 6467	E: 0 GeV	1	04-12-17	07:53:53
	SF	IUTDOWN:	NO BEAM		
			BIS status and SMP flags	B1	B2
Comments (0-	4-Dec-2017 06:41:	27)	Link Status of Beam Permits	false	false
	end of 2017 ru	n	Global Beam Permit	false	false
			Setup Beam	true	true
			Beam Presence	false	false
			Moveable Devices Allowed In	false	false
	IPPP Annual Meeting, 20	th Dec 2017	Dave.Newbold@cern.ch	Science & Technology Facilities ()	

Science & Technology Facilities Council Rutherford Appleton Laboratory

3

LHC Performance

LHCb Integrated Recorded Luminosity in pp, 2010-2017

2012

2017 (6.5+2.51 TeV): 1.71 /b + 0.10/b

2018 (6.5 TeV): 1.67 /b 2015 (6.5 TeV): 0.33 m

2012 (4.0 TeV): 2.08 /b 2011 (3.5 TeV): 1.11 /b

01-21h 01-23h

02-01h 02-03h 02-05h

02-13h

02-07h

Though not everything has been smooth...

physics': luminosity is all!

Operational Challenges in 2017

 Snow at 16L2: 'flakes' of frozen magnetic N₂, O₂

- Some generalisations about LHC physics
- The 'energy frontier': CMS and ATLAS
 - Physics is 'dirty', deal with inclusive channels
 - Often, events are not even fully reconstructed (MET...)
 - Most things are invisible beneath huge QCD background
 - Both correlated (light quark jets swamp everything) and uncorrelated (pile-up)
 - Statistics is everything, since detector systematics are 'irreducible'
 - All systematics estimates and controls need to be data-driven
 - As event sample grows, find rarer-but-cleaner ways to access physics
- The 'precision frontier': LHCb
 - Physics is 'clean', usually deal with exclusive channels
 - Flavour ID is possible, everything is (mostly) reconstructed
 - QCD is your friend (b cross-section) and your enemy (QCD pollution)
 - Statistics are sacrificed for experimental precision

7

Pile-Up

Q: How Long Does an LHC Analysis Take?

• "Far too long; years and years" — A. Theorist

- A: About 1µs
 - All events for offline analysis must pass the trigger
- How the trigger works:
 - Can't use tracking data

- Reduce calo / muon data in spatial and E or p resolution
- Stir for no more than ~µs in real time (data is waiting on detector)
- Allow ~100kHz 1MHz of crossings to pass, data is read out
- Then throw away most of the rest in HLT: rate to storage: O(100Hz)
- What you can't have
 - Anything needing tracks: displaced vertex, flavour tag, etc
 - Vertex association; electron / photon ID; invariant mass; complex event shape vars
- Triggering is the #1 problem at LHC, and getting harder
 - Though there are new ideas; more on this later

8

Dave.Newbold@cern.ch

The Challenge of Presentation

Experimentalists' problems

- Models are often complex with large-dimensional parameter space (classic example: SUSY)
- Experiments integrate over phase space, badly
- Phenomenology can wildly from point to point
- What do we actually measure? Depends who you ask!
- Presentation of results
 - Back in 2012 it was easy ("five sigma", mass limits, etc)
 - More difficult now to report progress without being misinterpreted / misunderstood
 - What does a 'two sigma observation' mean anyway?
 - When to publish and when not to?
- Theorists' problems
 - What the hell do all these plots actually mean?
 - Insufficient information to allow proper interpretation
 - Hard to see the big picture in a sea of information / opinion

Dave.Newbold@cern.ch

No Shortage of Results

Science & Te

The Anatomy of a Plot

- 'Brazil' plots giving way to more complex beasts...
 - Note that the points on these plots are all correlated
 - When people talk about 'global' significance, they are talking about *within that analysis*
 - Many analyses 'interpret' the same events and background estimates are correlated!
 - Combination between experiments is a subtle art
 - "If your result needs a statistician, you should design a better experiment" Rutherford

Higgs Physics

- It's still there... so what is it?
- Detailed measurements of couplings (and more) will tell us
 - Thanks to Paris Sphicas for beautiful summary slides...

Science & Te

Rutherford Appleton Laboratory

Coupling to the top quark (special: $y_t \approx 1$)

Тор

update (ATLAS) Events / bin 🛶 Data tīH ATLAS Preliminary tīZ 🗖 tĩ W is = 13 TeV, 36.1 fb Diboson 104 Post-Fit Other q mis-id Fake 🚛 Uncertainty $\mu_{\rm ttH}$ = Pre-Fit Bkgd. 10² 10 10 Data / Pred.

Most recently:

Combination of four channels (ATLAS) Obs: 4.2 σ; Exp: 3.8 σ

 $\mu_{\rm ttH}$

2nd Generation Fermions

$H \rightarrow \mu \mu$ within LHC reach; now only a question of when

Paolo Meridiani

TOL

20

Standard Model

Standard Model Production Cross Section Measurements

Status: July 2017

Science & Tech

ingy Facilities Council Rutherford Appleton Laboratory

Standard Model 'Precision' Measurements

Rutherford Appleton Laboratory

SUSY was meant to be easy... what happened?

Science & Tex

ingy Facilities Council

A Lesson from History

- Bet: SUSY discovery by 2016
 - (an amazingly poor choice of date)

Abstain No g 't Houft *) Neuberger KHINAN Jath Octh Z. Komangodski A JENKINS P.H. Damgaard Alexander Kolberg Euil Bam -Bon Sauves Nessells KIM SPUTIORFF Sman BACKER Ning KOST VA ZARZMILO Ginner Grignon Alberto Gullout (HARD HER) Holger Beck Hube Oliver Schleterer S. Caren-Hert Yang Zhang Henrik M Hiddito Shiwada Song le Advest Brize Kuper Lasson Thomas Sprdergeard (See over.)

*) But both sides will claim victory

Where are We?

'Classic' CMS gluino mass limits for each run

No Stone Unturned

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

	Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[fb	-1] Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
m. Inclusive Searches d.	MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ (compressed) $\tilde{g}\tilde{s}, \tilde{g} \rightarrow q\tilde{g}\tilde{\chi}_{1}^{0}$ (compressed) $\tilde{g}\tilde{s}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}$ ($ggW^{2}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{s}, \tilde{g} \rightarrow qq(\ell\ell/\nu\nu)\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{s}, \tilde{g} \rightarrow qq(\ell\ell/\nu)\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{s}, \tilde{g} \rightarrow qq(\ell\ell/\rho)$ $\tilde{g}\tilde{s}, \tilde{g} \rightarrow qq(\ell\ell/\rho)$ $\tilde{g}\tilde{s}, \tilde{g} \rightarrow qq(\ell/\rho)$ $\tilde{g}\tilde{s}, \tilde{g}$	0-3 e,μ/1-2 τ 0 mono-jet 0 3 e,μ 0 1-2 τ + 0-1 ℓ 2 γ γ γ 2 e,μ(Z) 0	2-10 jets/3 / 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets - 1 b 2 jets 2 jets mono-jet 3 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3 20.3 36.1	4.8 4 4 608 GeV 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 5 900 GeV F ^{1/3} scale 8 900 GeV	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.65 TeV 1.8 TeV 1.8 TeV 1.8 TeV	$m(\hat{q})=m(\hat{q})$ $m(\hat{q})=m(\hat{q})$ $m(\hat{q})=m(\hat{q})^{-1}$ (200 GeV, $m(1^{st} \text{ gen. 4}) = m(2^{sd} \text{ gen. 4})$ $m(\hat{q})=m(\hat{q})^{-1}$ (200 GeV $m(\hat{q})=200$ GeV, $m(\hat{r}^{-1})=0.5(m(\hat{q}_{1}^{-1})+m(\hat{q}))$ $m(\hat{q}_{1}^{-1})<200$ GeV $m(\hat{q}_{1}^{-1})<400$ GeV cr(NLSP)<0.1 mm $m(\hat{q}_{1}^{-1})<250$ GeV, $cr(NLSP)<0.1$ mm, $\mu<0$ $m(\hat{k}_{1}^{-1})>680$ GeV, $cr(NLSP)<0.1$ mm, $\mu>0$ m(NLSP)>430 GeV $m(\hat{G})=1.8 \times 10^{-4}$ eV, $m(\hat{q})=m(\hat{q})=1.5$ TeV $m\hat{q}_{1}^{-1}>600$ GeV	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1608.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518 ATLAS-CONF-2017-021
Ser Se	$\hat{g}\hat{g}, \hat{g} \rightarrow ti\hat{\chi}_{1}^{0}$ $\hat{g}\hat{g}, \hat{g} \rightarrow ti\hat{\chi}_{1}^{+}$	0-1 e.µ 0-1 e.µ	36 36	Yes	36.1 20.1	2	1.97 TeV	m(x ²)<200 GeV m(x ²)<300 GeV	ATLAS-CONF-2017-021 1407.0500
3 rd gen. squarks direct production	$\bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{k}_1^0$ $\bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow t \bar{k}_1^1$ $\bar{f}_1 \bar{f}_1, \bar{f}_1 \rightarrow t \bar{k}_1^0$ $\bar{f}_1 \bar{f}_1, \bar{f}_1 \rightarrow b \bar{k}_1^0$ $\bar{f}_1 \bar{f}_1, \bar{f}_1 \rightarrow b \bar{k}_1^0$ $\bar{f}_1 \bar{f}_1, \bar{f}_1 \rightarrow c \bar{k}_1^0$ $\bar{f}_1 \bar{f}_1, \bar{f}_1 \rightarrow c \bar{k}_1^0$ $\bar{f}_1 \bar{f}_1, \bar{f}_2 \rightarrow \bar{f}_1 + Z$ $\bar{f}_2 \bar{f}_2, \bar{f}_2 \rightarrow \bar{f}_1 + K$	0 2 e, µ (SS) 0-2 e, µ 0-2 e, µ (0 2 e, µ (Z) 3 e, µ (Z) 1-2 e, µ	2 b 1 b 1-2 b 0-2 jets/1-2 i mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1 36.1	\$\vec{b}_1\$ 950 GeV \$\vec{b}_1\$ 275-700 GeV \$\vec{i}_1\$ 117-170 GeV \$\vec{i}_1\$ 90-198 GeV \$\vec{i}_1\$ 90-323 GeV \$\vec{i}_1\$ 90-323 GeV \$\vec{i}_2\$ 290-790 GeV \$\vec{i}_2\$ 290-790 GeV \$\vec{i}_2\$ 320-880 GeV		$\begin{split} m(\tilde{r}_{1}^{0}) <& 420 \text{ GeV} \\ m(\tilde{r}_{1}^{0}) <& 220 \text{ GeV}, m(\tilde{r}_{1}^{0}) + m(\tilde{r}_{1}^{0}) + 100 \text{ GeV} \\ m(\tilde{r}_{1}^{0}) &= 2m(\tilde{r}_{1}^{0}), m(\tilde{r}_{1}^{0}) + 55 \text{ GeV} \\ m(\tilde{r}_{1}^{0}) &= 1 \text{ GeV} \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}) &= 5 \text{ GeV} \\ m(\tilde{r}_{1}^{0}) &= 10 \text{ GeV} \\ m(\tilde{r}_{1}^{0}) &= 10 \text{ GeV} \\ m(\tilde{r}_{1}^{0}) &= 0 \text{ GeV} \\ m(\tilde{r}_{1}^{0}) &= 0 \text{ GeV} \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2018-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{c} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \bar{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \bar{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau(\nu \bar{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_1 \nu \tilde{\tau}_1 \nu (\ell \bar{\nu}), \ell \tilde{\tau}_1 \nu (\ell \bar{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 \tilde{\chi}_2^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 \tilde{\chi}_1^0, \tilde{h} \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_2^+ \tilde{\chi}_2^0, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{\ell}_R \ell \\ GGM (wino NLSP) weak prod., \tilde{\chi}_1^0 - GGM (bino NLSP) weak prod.) $	2 ε,μ 2 ε,μ 3 ε,μ 2 · 3 ε,μ 2 · 3 ε,μ 4 · μ +γ G 1 ε,μ + γ +γ G 2 γ	0 0 -2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	₹ 90-440 GeV \$\overline{x}_1^1\$ 710 GeV \$\overline{x}_1^1\$ 760 GeV \$\overline{x}_1^1\$ 760 GeV \$\overline{x}_1^1\$ 760 GeV \$\overline{x}_1^1\$ 580 GeV \$\overline{x}_1^1\$ 635 GeV \$\overline{x}_1\$ 590 GeV	m(tī [*])-n m(tī [*])-n	$\begin{array}{l} m(\tilde{x}_1^0) = 0 \\ m(\tilde{x}_1^0) = 0, \ m(\tilde{\ell}, \tilde{\gamma}) = 0.5(m(\tilde{k}_1^+) + m(\tilde{k}_1^0)) \\ m(\tilde{k}_1^0) = 0, \ m(\tilde{\ell}, \tilde{\gamma}) = 0.5(m(\tilde{k}_1^+) + m(\tilde{k}_1^0)) \\ (\tilde{k}_2^0), \ m(\tilde{k}_1^0) = 0, \ m(\tilde{\ell}, \tilde{\gamma}) = 0.5(m(\tilde{k}_1^+) + m(\tilde{k}_1^0)) \\ m(\tilde{k}_1^+) = m(\tilde{k}_2^0), \ m(\tilde{k}_1^+) = 0, \ \tilde{\ell} \ decoupled \\ m(\tilde{k}_1^+) = m(\tilde{k}_2^0), \ m(\tilde{k}_1^+) = 0, \ \tilde{\ell} \ decoupled \\ (\tilde{k}_1^0), \ m(\tilde{k}_1^0) = 0, \ m(\tilde{\ell}, \tilde{\gamma}) = 0.5(m(\tilde{k}_2^0) + m(\tilde{k}_1^0)) \\ cr < 1 \ mm \\ cr < 1 \ mm \end{array}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	$\begin{array}{l} \text{Direct}\tilde{\mathcal{X}}_{1}^{*}\tilde{\mathcal{X}}_{1}^{-}\text{prod., long-lived}\tilde{\mathcal{X}}_{1}^{*}\\ \text{Direct}\tilde{\mathcal{X}}_{1}^{*}\tilde{\mathcal{X}}_{1}^{-}\text{prod., long-lived}\tilde{\mathcal{X}}_{1}^{*}\\ \text{Stable, stopped}\tilde{g}\text{R-hadron}\\ \text{Stable}\tilde{g}\text{R-hadron}\\ \text{Metastable}\tilde{g}\text{R-hadron}\\ \text{GMSB, stable}\tilde{\tau},\tilde{\mathcal{X}}_{1}^{0}{\rightarrow}\tilde{\tau}(\tilde{e},\tilde{\mu}){+}\tau(e,\mu)\\ \text{GMSB,}\tilde{\mathcal{X}}_{1}^{0}{\rightarrow}\gamma\tilde{G},\text{long-lived}\tilde{\mathcal{X}}_{1}^{0}\\ \tilde{g}\tilde{g},\tilde{\mathcal{X}}_{1}^{0}{\rightarrow}eev/e\mu v/\mu\mu v\\ \text{GGM}\tilde{g}\tilde{g},\tilde{\mathcal{X}}_{1}^{0}{\rightarrow}Z\tilde{G} \end{array}$	Disapp. trk dE/dx trk 0 trk dE/dx trk 1-2 µ 2 y displ. ee/eµ/µ displ. vtx + jet	1 jet - 1-5 jets - - - - s -	Yes Yes · · Yes ·	36.1 18.4 27.9 3.2 19.1 20.3 20.3 20.3	x̂ ⁴ 430 GeV x̂ ⁴ 495 GeV ≵ 850 GeV ≵ 850 GeV ≵ 537 GeV x̂ ⁴ 440 GeV x̂ ⁴ 1.0 TeV x̂ ⁴ 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{array}{l} m(\tilde{x}_1^+) \cdot m(\tilde{x}_1^0) \sim 160 \ \text{MeV}, \ \tau(\tilde{x}_1^+) = 0.2 \ \text{ns} \\ m(\tilde{x}_1^+) \cdot m(\tilde{x}_1^0) \sim 160 \ \text{MeV}, \ \tau(\tilde{x}_1^+) < 15 \ \text{ns} \\ m(\tilde{x}_1^0) = 100 \ \text{GeV}, \ 10 \ \mu\text{s} < \tau(\tilde{x}) < 1000 \ \text{s} \\ m(\tilde{x}_1^0) = 100 \ \text{GeV}, \ r > 10 \ \text{ns} \\ 10 < \tan_{10} \text{s} < 50 \\ 1 < \tau(\tilde{x}_1^0) < 3 \ \text{ns}, \ \text{SPS8} \ \text{model} \\ 7 < c \tau(\tilde{x}_1^0) < 3 \ \text{ns}, \ \text{SPS8} \ \text{model} \\ 7 < c \tau(\tilde{x}_1^0) < 480 \ \text{mm}, \ m(\tilde{x}) = 1.3 \ \text{TeV} \\ 6 < c \tau(\tilde{x}_1^0) < 480 \ \text{mm}, \ m(\tilde{x}) = 1.1 \ \text{TeV} \\ \end{array}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \widehat{\mathbf{v}}_{T} + \mathcal{X}, \widehat{\mathbf{v}}_{T} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \widehat{\mathcal{X}}_{1}^{+}\widehat{\mathcal{X}}_{1}^{-}, \widehat{\mathcal{X}}_{1}^{+} \rightarrow W \widehat{\mathcal{X}}_{1}^{0}, \widehat{\mathcal{X}}_{1}^{0} \rightarrow eev, e\muv, \mu\muv \\ \widehat{\mathcal{X}}_{1}^{+}\widehat{\mathcal{X}}_{1}^{-}, \widehat{\mathcal{X}}_{1}^{+} \rightarrow W \widehat{\mathcal{X}}_{1}^{0}, \widehat{\mathcal{X}}_{1}^{0} \rightarrow rrv_{e}, erv_{\tau} \\ \widehat{\mathcal{B}}_{2}^{+}, \widehat{\mathcal{B}} \rightarrow qqq \\ \widehat{\mathcal{B}}_{2}^{+}, \widehat{\mathcal{B}} \rightarrow qq\widehat{\mathcal{A}}_{1}^{0}, \widehat{\mathcal{X}}_{1}^{0} \rightarrow qqq \\ \widehat{\mathcal{B}}_{2}^{+}, \widehat{\mathcal{B}} \rightarrow q\widehat{\mathcal{A}}_{1}^{(0)}, \widehat{\mathcal{X}}_{1}^{0} \rightarrow qqq \\ \widehat{\mathcal{B}}_{2}^{+}, \widehat{\mathcal{B}} \rightarrow f_{1}^{+}, \widehat{\mathcal{I}}_{1} \rightarrow bs \\ \widehat{\mathcal{I}}_{1}\widehat{\mathcal{I}}_{1}, \widehat{\mathcal{I}}_{1} \rightarrow b\ell \end{array} $	εμ.ετ.μτ 2 ε.μ (SS) 4 ε.μ 3 ε.μ + τ 0 4 1 ε.μ 8 1 ε.μ 8 0 2 ε.μ	0-3 b - - 5 large-R je -10 jets/0-4 -10 jets/0-4 2 jets + 2 b 2 b	Yes Yes Yes Yes is b b b b b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	\$\vec{v}\$.\$\vec{v}\$ 1.14 Te \$\vec{k}\$ 1.14 Te \$\vec{k}\$ 450 GeV \$\vec{k}\$ 1.08 TeV \$\vec{k}\$ 1.08 TeV	1.9 TeV 1.45 TeV eV 1.55 TeV 2.1 TeV 1.65 TeV -1.45 TeV	$\begin{split} &\mathcal{X}_{j11}\!=\!\!0.11, \mathcal{X}_{j12}\!=\!\!33,\!\!233}\!=\!\!0.07 \\ &m(\tilde{q})\!=\!m(\tilde{q}), c_{T_{22}p}\!<\!1mm \\ &m(\tilde{t}_{1}^{0})\!\!>\!\!400 \text{GeV}, \mathcal{X}_{124}\!\neq\!0 \ (k=1,2) \\ &m(\tilde{t}_{1}^{0})\!\!>\!\!0.2\times m(\tilde{t}_{1}^{0}), \mathcal{X}_{133}\!\neq\!0 \\ &\text{BR}(t)\!=\!\text{BR}(b)\!=\!\text{BR}(c)\!\!+\!076 \\ &m(\tilde{t}_{1}^{0})\!\!=\!\!800 \ \text{GeV} \\ &m(\tilde{t}_{1}^{0})\!\!=\!1 \ \text{TeV}, \mathcal{X}_{122}\!\neq\!0 \\ &m(\tilde{t}_{1})\!\!=\!1 \ \text{TeV}, \mathcal{X}_{123}\!\neq\!0 \\ &\text{BR}(\tilde{t}_{1}\!\rightarrow\!b_{T}/\mu)\!\!>\!20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2017-036
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_1^0$	0	20	Yes	20.3	۶ 510 GeV		m(tt1)<200 GeV	1501.01325
Only phen	a selection of the available ma omena is shown. Many of the	ass limits on r limits are ba	new state: sed on	s or	1	0-1 1		Mass scale [TeV]	

simplified models, c.f. refs. for the assumptions made.

IPPP Annual Meeting, 20th Dec 2017

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

Corners and Cracks

- Possible ways forward:
 - Wait and see; perhaps with 'more advanced' reconstruction techniques
 - New signatures: long-lived particles; boosted final states
 - Hard-to-see places: compressed spectra; R-parity violatir
 - Electroweak-produced SUSY
- Theory input surely needed here, more than any

Long-Lived Particles

- *Generic* phenomenology for small couplings, small Δm
- Constraints on LLP parameter space from cosmology

Long-Lived Particles

CMS long-lived particle searches, lifetime exclusions at 95% CL

For an up-to-date summary of all results -> SUSY17

A Different Persperie ive: Generic DM

• Typically parameterized by 5 parameters:

- mass of DM particle, m_{χ}
- mass and width of mediator particle, $m_{med}, \mbox{ $\pmb{\Gamma}$}_{med}$
- coupling of mediator to SM sector, g_q
- coupling of mediator to DM sector, g_{χ}
- A/A-V: $g_q = 0.25$, $g_\chi = 1$
- S/P-S: $g_q = 1$, $g_{\chi} = 1$

- Parameterise DM (i.e. WIMP) production via simplified models
- Allows comparison with direct detection / cosmology
 - Thanks to Henning Flaecher for beautiful summary slides

Dave.Newbold@cern.ch

- Trigger on 'ISR' system recoiling against DM system
- Complements searches in full UV-complete models, e.g. SUSY

Science & Sec

Imperial College

London

Monomania

Run: 302393 Event: 738941529 2016-06-20 07:26:47 CEST

28

Science & Sec

ingy Facilities Council

Interpretation

Science & Te

Rutherford Appleton Laboratory

Interpretation

- Observations incompatible with relic density limits
 - For particular (and narrow) ranges of couplings
 - More to come with increased statistics

Mediator Searches

- Low-mass mediators swamped by QCD
 - Use clever analysis-in-trigger techniques: 'data scouting'
 - Trigger on high-p_T ISR, look for jet substructure in recoil system

An Old Favourite...

- Classic Z' hunt now interpreted as DM mediator search
 - Signal: same flavour, opposite charge dilepton
 - Control: opposite flavour / same charge dilepton
 - Main background DY production (well-modelled)
 - Current (model-dependent) limits from CMS and ATLAS around 4.5 TeV

Rutherford Appleton Laboratory

The Grand Picture

- Vertical structures are mediator searches
- Exclusion areas strongly depend on coupling assumptions
- Much weaker constraints on scalar and pseudo scalar mediators...

33

Science & Sec

Comparison with Direct Direction

Spin-independent

- Collider and DD searches are clearly complementary
 - Collider competitive at low DM masses, pseudoscalar mediator (hard)
 - Watch this space...

Spin-dependent

ATLAS Preliminary July 2017

Dijet

Dijet 8 TeV **√**s = 8 TeV, 20.3 fb⁻¹

Phys. Rev. D. 91 052007 (2015)

10⁻³⁷ DM Simplified Model Exclusions

Exotica: Nothing to See Here

LHCb: Lumps and Bumps

Rutherford Appleton Laboratory

7-004]

Flavour: CKM

Flavour: Lepton Universality Violation

VV

- 4σ tension with the SM prediction (assuming it stays put)
- Hard to explain with any single (heavy) source of interference...

Dave.Newbold@cern.ch

LHC Upgrades

Push LHC to ultimate limit of 5 - 10 times design luminosity

- Requires upgrades to many parts of CERN infrastructure during LS2, 3, 4
- Highest instantaneous luminosity may not be the best physics option
 - ▶ 7.5E+34 implies 200 overlapping events per crossing; may not be handleable by detectors
 - Levelled scenario provides less integrated lumi, but constant running conditions
- Detector upgrade strategy
 - Upgraded detectors must have *better* performance than the originals
 - As in original detectors, we will push the technological envelope hard
 - Should not forget that lifetime of 'new' detectors will be as long as the originals

Long-Term LHC Physics

The Environment

 $\langle n_{PV} \rangle = 140$

• HI experience with high-occupancy (but low-rate) conditions

• Key challenges for Phase-2 are data rates, long-term detector behaviour

41

Basic improvements

- Denser environment: increased granularity everywhere
- More particle flux: increased rad hardness
- Complete new tracking systems for CMS and ATLAS
- Improved triggering and data-handling
 - Data rates increasing by 1.5 orders of magnitude
 - CMS: put tracks into L1 trigger: ultimate flexibility, but very hard
 - ATLAS: improve fast tracking at L2, much higher L1 trigger rate
- Completely new detector techniques
 - Precision timing layers, to triangulate position of overlapping vertices
 - CMS: 'particle flow' reconstruction on the detector: HGC endcap calo
- Status of approval
 - CMS / ATLAS upgrade ~250MCHF each (LHCb also has ambitions)
 - LHCC approval just starting now; construction kicks off in 2019

CMS Upgrade

Replace Tracker Muon System Radiation tolerant - higher Replace DT & CSC FE/BE electronics granularity - less material -better Complete RPC coverage in region p_T resolution $1.5 < \eta < 2.4$ (new GEM/RPC technology) Extended η region up to $\eta \sim 3.8$ Muon-tagging 2.4 < η < 3 Tracks trigger at L1 **Barrel EM calorimeter** Replace FE/BE electronics Lower operating temperatur **Replace endcap** Calorimeters Radiation tolerant - high granularity 3D capability Trigger/HLT/DAQ Track information at L1 L1-Trigger ~ 750 kHz HLT output ~7.5 kHz

ATLAS Upgrade

ATLAS Upgrades HGTD (Proposed) **Replacement of** readout electronics Higher granularity and power supplies NSW (Phase-1) trigger chambers for **MS** barrel $H \rightarrow ITK$ **Trigger overhaul**

Dave.Newbold@cern.ch

University of BRISTOL

Rutherford Appleton Laboratory

CMS UK Highlights

Calo

Tracking

ATLAS UK Highlights

46

Rutherford Appleton Laboratory

University of BRISTOL

The Far Future (2035++)

- FCC-hh design study due to report in 2018
 - 100TeV, 100km machine, 16T dipoles (similiar tech to an HE-LHC)
 - Detectors will be 'technologically challenging' much R&D needed
- Physics
 - Discovery 40TeV q*/Z', 10TeV gluino; few % on Higgs self-coupling
 - Of course, we expect to be doing *new* and more exciting physics by 2035++
- Plea for help from phenomenologists physics case and data selection
 - It is not at all obvious how or on what to trigger at such a machine!

Summary

- LHC alive, well, and hard at work
 - Machine performance continues to improve -> 'production mode'
 - Experimental programme progressing, but things are getting harder...
- Physics programme
 - No signs of new physics yet patience and care required now
 - Several tensions with SM in the flavour section; more to come here
 - Higgs physics entering the precision era
 - NP searches at GPDs finding new ways to probe into cracks and corners
- Long term future
 - We have only 3% of the 3/ab dataset!
 - New era of experiment construction for HL-LHC coming soon busy times
 - A new machine, new backgrounds, new problems, but physics in 2026
- Interaction between experiment and theory
 - Clearly in rude health, thank you!
 - The 'hard thinking starts here' new ideas please!

