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Organization and Outline

+ Spiritus Movens: the surprising simplicity of QFT
+ Basic Building Blocks: on-shell functions
» tree amplitudes (and graphs of trees)
» the Grassmannian duality (massless, 4d)
+ Constructing Loop Amplitude Integrands
» on-shell, all-loop recursion relations
» generalized and prescriptive unitarity
» amplitude/ correlator bootstrap
+ Loop Integration & Future Directions



Surprising Simplicities of
Quantum Field Theory



Traditional Description of QFT

+ Quantum Field Theory: the marriage of (special)

relativity with guantum mechanics

+ Theories (can be) specified by Lagrangians—or
equivalently, by Feynman rules for virtual particles
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+ Predicted probablhty (amplztudes) from
path integrals (over virtual ‘histories’):
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Perturbation Theory and Loops

+ Predictions (often) made perturbatively,
according to the loop expansion:
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Perturbation Theory and Loops

+ Predictions (often) made perturbatively,

according to the loop expansion: a~1/137.036
197
gghy=2+— | C3—7T210g e T
7T T 72 [Dlrac (1933)]
= 00231930435801 | Feynman; Schwinger; Tomanaga (1947))

ex | Petermann (1957)
g=P= 2.00231930436146. . e




Perturbation Theory and Loops

+ Predictions (often) made perturbatively,

according to the IOOP expansion: v~ 1/137.036
197
gt =2+ =(1) - C3—7T210g )+ £
7T 0 72 [Dlrac (1933)]
= 00231930435801 | Feynman; Schwinger; Tomanaga (1947))
P _ 9 00231930436146. . Petermans €
Ye | Kinoshita (1990)

+ the most precisely tested idea in all of science!



Explosions of Complexity

+ While ultimately correct, the Feynman expansion
renders all but the simplest predictions—

those involving the fewest particles, at the

lowest orders of perturbation— .
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+ Background amplitudes crucial for e.g. colliders
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Supercollider physics | Rey Mod.Phys. 56 (1984)]

E. Eichten
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510

i. Hinchliffe

Lawrence Berkeley Laboratory, Berkeley, California 94720

K. Lane
" The Ohio State University, Columbus, Ohio 43210

C. Quigg
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510

Eichten et al. summarize the motivation for exploring the 1-TeV (=10!2? eV) energy scale in elementary
particle interactions and explore the capabilities of proton-(anti)proton colliders with beam energies between
1 and 50 TeV. The authors calculate the production rates and characteristics for a number of conventional
processes, and discuss their intrinsic physics interest as well as their role as backgrounds to more exotic
phenomena. The authors review the theoretical motivation and expected signatures for several new phe-
nomena which may occur on the 1-TeV scale. Their results provide a reference point for the choice of 4
machine parameters and for experiment design. If
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+ Once considered computioally intractable

The cross sections for the elementary
two—four processes have not been calculated, and their
complexity is such that they may not be evaluated in the
foreseeable future. It is worthwhile to seek estimates of
the four-jet cross sections, even if these are only reliable in
restricted regions of phase space.
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220 diagrams —thousands of terms
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Needs (Once) Beyond Our Reach

+ Background amplitudes crucial for e.g. colliders

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION
BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering 1s given in a form suitable for fast
numerical calculations.

| Nucl.Phys. B269 (1985)]
+ Once considered computationally intractable

The cross sections for the elementary
two—four processes have not been calculated, and their
complexity is such that they may not be evaluated in the
foreseeable future. It is worthwhile to seek estimates of
the four-jet cross sections, even if these are only reliable in
restricted regions of phase space.
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gluons. The cross section for the scattering of two gluons with momenta p,, p; into
four gluons with momenta p, s, ps, pe is obtained from eq. (5) by setting I =2 and
replacing the momenta ps, pa, Ps, Ps bY —Ps, —Par —Ps» —Pe-

As the result of the computation of two hundred and forty Feynman diagrams,
we obtain

A0\ (P1s P2 P Pas Ps, Pe)
(]

K K, K, K, 2
_ |k K K. K| |9,
=@ 9290 kK K|la| (6)
K K K K[\,
3

where 9, @,, 9, and D, are 11-component complex vector functions of the momenta
Pu» Pas Pa» Py Psand pe,and K, K,, K, and K, are constant 11 11 symmetric matrices.
The vectors @, @, and D, are obtained from the vector @ by the permutations
(P24 pa), (s +* pe) and (p +» ps, ps > po), respectively, of the momentum variables
in @ The individual components of the vector 9 represent the sums of all contribu-
tions proportional to the appropriately chosen eleven basis color factors. The
matrices K, which are the suitable sums over the color indices of products of the
color bases, contain two independent structures, proportional to N*(N?~1) and
N*(N?-1), respectively (N is the number of colors, N =3 for QCD):

K ={g'N*(N*~1)K“+1g* N(N* - 1)K? . Q)
Here g denotes the gauge coupling constant. The matrices K and K are given
in table 1. The vector & is related to the thirty-three diagrams D(I =1-33) for
two-gluon to four-scalar scattering, eleven diagrams D"(I =1~ 11) for two-fermion

to four-scalar scattering and sixteen diagrams D(I=1-16) for two-scalar to
four-scalar scattering, in the following way:

{finC®+ D — 4suutinE(ps+ pe, pe)C* - D§

~2514G(ps+ P, ps+p)C* - D3},
2,=%c. pg, (®)
S

where the constant matrices C%(11x33), C™(11x11) and C%(11x 16) are given in
table 2. The Lorentz invariants s, and f, are defined as s,=(p+p)% tu=
(p.+p,+p)? and the complex functions E and G are given by

E(p. p) =31 p)(@.2) ~ (P12 )(B,20) ~ (1 P)(PiPA) + i PEPIPTPLY (P1PA)
G(p» p,)=E(p» PIE(Py Po) » ©)
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4
DE(9) = ———{[(pr = P2+ P)(Pat Py~ P&)1E (s, P5)
SisSa6tias

=[(p1= P2+ P)(Pa=Ps + PIE(Ps, Po) + [Pu(Ps = POIE(ps, P2~ Ps)}

YO = (1 + 12 P ps P+ POE s P
255461125

=((Pi=P2+ Ps)(Pa=Ps+ P6)1E(Ps, Pe) +(Pr(p2= P5)IE(Ps =Py Po)} »

5
D) = 2 (= ssa sl
otz

-8
DE(12) =[5y = 536~ 534],
Sastias

3,
D(13) = [s12= 534835 = s56°+ 8301 ,
S1a836T124
5,

DS(14) =—=
S14836T14s

(15— Sas)s2 = 526~ 536]
. 5
DF(1S) = === (py~pa)(ps =),
S148536

-4
DF(16) = ———[535— 856+ $36]E (P2, P2)
SuaSiehize
o 4
DFan = [s23= 526 536)E (s, Ps) »
S36Sastias

-4
DS(18) = ———[2(p+P2)(Ps=Ps) = 5161 E (P2, Ps)
$1253654s

DF(19)

2 g -
e (P2, Ps=Pe)

N 2
D§(20) = —— E(ps=Pe, Ps) ,
S168as

-4
DE(21) = ———[s536= 56+ 25)E (P, P3) ,
S2553at4

4
DE(22) = ————[533= 535~ 525]E(Ps: Pe) »
Si6S2stias

4
DP(23) = ———[2(p1+ Pe)(P2~ Ps) + 5251 E (P, P3) »
16525834
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TasLe 1
Matrices K(L J){1=1-11, J=1-11].

Matrix K@ Matrix K@
8 4-2 2-1 20 00000000 3 3-3
4 8-1 11 02 00000000330
2108 4 4 11 00000000000
21 4 8 2-1-1 00000000000
1 -1 4 2 12 0000 00O0GO0O0O0OO
2 0 1-1 1 8 4 00000000330
02 1-1 2438 00000000330
112 4 a-1-2 00000000000
00 2 1-2 0 0~ 33000330000
0 1 1 1-1 1 0- 33000330000
1-1 2 1 4 00 -3 0000000000

Matrix K Matrix K2
00001 101 1 0-1 33030003000
0000 20 1 1 2 1-2 33000000000
000 001 1 1 0 11 003 00300330
00001 00 2010 300003 00000
120101 2200 2 000000003 30
101 01 4200 0-1 00330000330
01 102240002 00000000030
11122004000 30000000300
1.2 0 000 00 0 2-1 0 03 03303000
01110000 2 40 00 3 03 330000
42 1 0 2-1-2 0-1 0 4 00000000000

Matrix K& Manx K&
42020101000 000000003 0-3
2 401001 1010 00003003000
004221 11210 00000030000
212 01 210100 000 0000O0O0O0O
00210000422 03000030000
101 200001 20 000003 300 0-3
011 10000 2 40 0 0 3 03 3 3 00 00
11100 00 0 2 01 03 000003000
00 2 1 41 2 2 0 0-4 30000000000
01 10224000 00000000030
0000200 1-4-2 4 3 000 0-300000

Matrix K& Matrix K&
O 1-1-1 1101 200 33000330000
1. 0-2-1 2 0 1 1 4 2 0 33000330000
=2 0 0 0 1 1 1-1 10 0 0 3 3 3 00 3 0 0 0
-1-1 0 1.0 2 1 0 1-1 0 00 3 33003003
1200 1-1-1 0-2 2 1 00333003000
101 2-1 0 1-2 2 4-1 33000 3 300 0-3
0 1 1 1-1 1 0-1 4 8- 3 3000330000
1110 0-2-1 0 2-2 0 0 0 3 3 3003000
2 4-1 12 2 4 21 0-2 00000000330
02 1-1 2482000 00000000330
00 0 0 1-1-1 0-2 0 2 00 0 3 0-3 00 0 0 0
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DF(24)=——E(p=psP)»

525534
o 2
DF(25)=———E(pe P2=Ps) »

16525
o -2
D3(26)=——— E(p2, p2=ps) »

Siztas
G 2
DF(27)=———E(ps=Pe Ps) »

Sistizs
o 2
D?(28)= E(ps, p2=ps)

Sishas
. 2
DF(29)=———E(ps=per P3)

Siatizs
. 4
DF(30) = ———[(P1+P2=ps)(ps+Ps=Pe) ~ 12s) E(p2 Ps)

SaSuhas

4

o [Pt p2=p)(pa=pst pe) + 12s)Ep2, pe) s

1Sustias
. 4
DS(32) =————[(pr= P2+ p)(pat Ps=Pe) + 125 E(Ps, P3) »

SisSaatias
9(33)= —2— an
DF(33)= [(P1 = P2+ Ps)(Pa—Ps+ Pe) = tias] E(Ps, Pe) »

SisSastias

where 8,=1.
The diagrams D§ are obtained from DS by replacing &, by 8 =0and the functions
E(p. p,) by G(p. p,)-
The diagrams D§ are listed below:

- {F(ps, P)E(ps, ps) = F(ps, Ps) E (s, Ps)
SisSaatias
+[F(per P3) * s3] E(ps, ps)}

D§@) = ——2— {{F(pe, ) + i (73, )

S16525534
+LF(p2, p) +1534) E(Per ps) = F(Ps, P E (P2, Ps)} »
4
D)=~ i UF (5 POE (s, ps) = F(ps, Py E e ps)
15536l

=[F(ps, pe) ~Isr6= 1534+ 1516 E(pss P5)}
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- 4
D§(8) =———{F(p2, 3) E(ps, ps) ~ F(ps, 3) E(p2, Ps)
S2583ahi2s
+LF(ps, p2) = 3525~ ds12+1s15) Eps, po)}
2

Di(5)= (835~ 5213+ 525)E (pes Ps) »
46

SieSash

2
D§(6) = ————{[s56= S35~ 52s)E (P2, Ps)
S258340134

DY) = (LF(ps,p2) =L~ s1s)E s )

S2s836h12s.

+[F(pa, ps) +4t12s)E(ps, ps) = [F(ps, p3) + $t12s) E(pa, P},

E(ps—Per Ps) »

14836

2
D{(9) = —=—[s35= 856+ 53] E(P2, Ps)
Sussshian

2
Di(10) = ———[ 513~ 526~ 536} E(ps, Ps) »
S1a83614s

Di() = {Ls23+ 15— $26= 856) E (P2~ Ps, Ps)

1
2814825536

— L2+ 526 = 535 556 E (P — Py Ps) ~ [5237+ 856 535 = 526} E (P2 s, P9)} -
12)

‘The diagrams D§ are listed below:

1
D(1) =r———[ 514 = Su+ S26][s12= 515~ 5251,
Sas8aetizs

1
D(2) = ————[$12~ $20= 514 S25= 856+ $36]
Siasachie

1
DY(3) =515~ Sas+ 514523~ 526~ $26]
SuaSishes

1
D3(4) = ————[s1s+ 525 = Su2[834 = Sas+ $26] »
$15836h12s

1
Dj(s)= prar 6= 815~ S16)l323= S24— 534,

1
DR(6) =———— (516 = s34~ S16l[512= 525~ 5151,
SisS3atizs

Indices I and J specify row numbers and column numbers, respectively.
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where ¢ is the totally antisymmetric tensor, ., = 1. For the future use, we define
one more function,

F(po 2)=1(Pp)(P2) +(P12) (PP = (P12)(PPIY (PiPS) - (10)

Note that when evaluating A, and A; at crossed configurations of the momenta,
care must be taken with the implicit dependence of the functions E, F and G on
the momenta py, pa, ps, Ps.

The diagrams D are listed below:

D) =2 ([(ps=p (ps= P (s~ P s+ P1~L(ps = p)(ps+ p0)]

S1452s536

X [(pr=Pa)(Ps= o)1+ [(P2+ P5)(Ps = ) ) (P1 —~ Pa) (P2~ )]},

1
DF(2) oovs QE(P2=psy 3= P6) = 2E(ps=pe, 2= ps) + 8:l(p2 = p5)(Ps =PI},
25526
4
DS3)= {L(pr+p2= ) (pat s = Pe)IE (P, p3)
SasSiehias

=[(pi+P2=ps)(Pa=Ps+PO)IE (P2, P6)

~[(p1=P2+ P5)(pa+ ps = Pe)1E(ps, p3)

FL(P1=P2+Ps)(Pa=ps+ PO E(ps, pe)

=[Pi(P2=P)IE(Ps =Py Ps+ Ps) = [Pa(ps =~ P6)IE(p+ Ps, P2 —Ps)
+8:0pi(p2=p)1lpulps—po)]} s

DS =2 {E(ps=po s+ p) - 3:lpipa= )
S3stias

DE(S) = ——{E(pat pss 12— p9) = 8 Pi(p2= P91}
astas
pg©=2,
s
4
DE(T) L1+ P2~ ps)(Pa = POE (P2, p3)

S12536t12s

=1 +P2=P)(Pa=Ps+ POIE (P2, P6) ~[Pu(Ps = PIE (P2, 2= P5)}

4
D) =————{[(ps+ P2~ ps)(Ps+ps—Pe)JE (P2, P3)
SuaSashias

=[(Pi =2+ P5)(Pat Ps = PIVE (s, p3) = [Ps(p2= P E(ps = s, P3)}

S.J. Parke, T.R. Taylor / Four ghuon production a9

s [ set sullsin = sis= sl
SasSatias

1
Di(8) = ————[ss+ s15= Sl 51a=Sus+ 1],
Si6Sasties

1

DY9)=
S2583ah3a

1t s34 =s13)ls26 = 856+ 526)

DI10) == (=300,

1
S14836

Di1)=

(Pr=P)(Ps=Pe)

D3(12) -ﬁ (Ps=p)(P2=ps)

D.’:(ls)-ﬁ(ps—p.)(p;—m).

D14 ﬁ(m*h)(h’h).

D315 =— {[(p2+ps)(ps = Pe)I(Pr ~ P (P2~ ps)]
514525536
+[(P2=Ps)(Py= P (Pr = P)(Ps+ Pe)]
+[(pi+pa)(p2=ps)I(Pr =~ P)(ps =P},

2

Di(16) = {L(p2=P)(ps + PN (P1 = Po) (P3 = Pa)]
SieSrasas
+ U1 +26)(Ps = PO (P1 = o) (P2 = s)]
+(p1=pe) P2+ PN (Ps—P) (P2~ )]} - 13)

The preceding list completes the result. Let us recapitulate now the numerical
procedure of calculating the full cross section. First the diagrams D are calculated
by using eqs. (11)-(13). The result is substituted to q. (8) to obtain the vectors @
and 9,. After generating the vectors Do, Do,, Bo,, 5, D5, and B, by the appropriate
permutations of momenta, eq. (6) is used to obtain the functions A, and A,. Finally,
the total cross section is calculated by using eq. (5). The FORTRAN S program
based on such a scheme generates ten Monte Carlo points in less than a second on
the heterotic CDC CYBER 175/875.

Given the complexity of the final result, it is very important to have some reliable
testing procedures available for numerical calculations. Usually in QCD, the multi-
gluon amplitudes are tested by checking the gauge invariance. Due to the specifics
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gluons. The cross section for the scattering of two gluons with momenta p,, p; into
four gluons with momenta p, s, ps, pe is obtained from eq. (5) by setting I =2 and
replacing the momenta ps, pa, Ps, Ps bY —Ps, —Par —Ps» —Pe-

As the result of the computation of two hundred and forty Feynman diagrams,
we obtain

A0\ (P1s P2 P Pas Ps, Pe)
(]

K K, K, K\ [2
o 9 o an . |K K K K||9
~@.9. 9.9\« K Kl al 0]
K K K K[ \afo
§

where @, 9, @, and D, are 11-component complex vector functions of the momenta
Pus P2, Py P Psand pe,and K, K, K, and K, are constant 11 11 symmetric matrices.
The vectors @,, @, and D, are obtained from the vector @ by the permutations
(p24> p3), (ps ¢ pe) and (pa > s, ps > ps), respectively, of the momentum variables
in @, The individual components of the vector 9 represent the sums of all contribu-
tions proportional to the appropriately chosen eleven basis color factors. The
matrices K, which are the suitable sums over the color indices of products of the
color bases, contain two independent structures, proportional to N*(N>~1) and
N(N?—1), respectively (N is the number of colors, N =3 fo

14836

4
————[515= 556+ $36]E(P2, P2) »

DF(16)= ——
S125361124

4
DF(17) = ——— 523 526~ $5) E (ps, s) ,
Sy6Sashias

-4

DS(18) = ———[2(p+P2)(Ps=Ps) = 5161 E (P2, Ps)
$1253654s

DF(19)

2 g -
e (P2, Ps=Pe)

N 2
D§(20) = —— E(ps=Pe, Ps) ,
S168as

-4
D(21) = ———[526— 536+ 52} E(P3, P3) ,
S2553at4

DS =——

[s23= 835 = 5251 E (P, Pe) »
Si6S2stias

4
DP(23) = ———[2(p1+ Pe)(P2~ Ps) + 5251 E (P, P3) »
16525834
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TasLE 1
Matrices K(L J){1=1-11, J=1-11].
Matrix K9 Matrix K@
8 4-2 2-1 2 0 -1 000000003 3-3
4 81 1-1 0 1-1 00000000330
2-1 8 4 41 12 00000000000
201 4 8 2-1 11 00000000000
G114 2 8 1 -1 4 00000000000
20 1-1 18 10 00000000330
02 1-1 2 4 00 00000000330
1102 4 4-1 -2 00000000000
002 1-20 42 33000330000
011 111 8 -1 33000330000
1-1 2 1 40 -1 8 =3 0000000000
Matrix K( Matrix K&
0000 1 101 1 0-1 33030003000
0000201 12 1-=2 33000000000
00000 1 1 1011 00300300330
00001002010 30000300000
12010122002 00000000330
101 01 4200 0-1 00330000330
01 1022400 0= 00000000030
11122004000 30000000300
120000000 2-1 00303303000
01 110000240 00303330000
-2 1 0 2-1-2 0-1 0 4 00000000000
S e g o oo S Ta Y

Furthermore, we hope to obtain a simple analytic
‘form for the answer, making our result not only an experimentalist’s, but
theorist’s delight.

DS(32)= [(py= 2+ Ps)(Pat P = Pe) + 1i2s)Eps, p3) »
SisSratias
4
DF(33) = ———[(p1= P2+ ) (Pa=Ps+ Ps) ~ sl E(Ps, Po) » an
S1sSastias
where 8,

The diagrams D§ are obtained from DS by replacing &, by 8 =0and the functions
E(p.p) by G(p, p).
The diagrams D§ are listed below:

- {F(ps, P)E(ps, ps) = F(ps, Ps) E (s, Ps)
SisSaahias

+[F(per P3) * s3] E(ps, ps)}

D§@) = ——2— {{F(pe, ) + i (73, )
$16525534

+[F(p2, p2) +15:4)E (pes ps) = F(pe, P E (P, P3)} s
4
SisSishas

=[F(ps, pe) ~Isr6= 1534+ 1516 E(pss P5)}

Di(3)=

{F(ps, P6)E(P3, Ps) ~ F(ps, p3) E(pe, Ps)

D§(11) =

1-11] and CS(L, )T =1-11, J =1-16].
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cococccoomooo
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Matrix C5

coscccccc~oco

cocccocco~o

wZle |memgeccccns
wal©
F1|2|ecccc-cccos
L]

< 2 < ’

1
2814825536

— L2+ 526 = 535 556 E (P — Py Ps) ~ [5237+ 856 535 = 526} E (P2 s, P9)} -
12)

The diagrams D§ are listed below:

D(1) =r———[ 514 = Su+ S26][s12= 515~ 5251,
Sas5a6ias
1
D(2) = ————[$12~ $20= 514 S25= 856+ $36]
S148360124
s, 1
Di(3) = ———[s15=sas+ 51523 = 526 = 5361 »
S1a8361as
S, 1
D) = ————[s15+ 525 = 512)[ 824~ Sas+ 5361 »
$15836h12s
s 1
DY(5) = ———[ss6= 15 S16)l5m= S24= 5541
Sis83ah1s6
1
D3(6) = ————[ 516~ 524 s36]l515= 525~ 5151,
SisS3atizs

ccccccoomoo
~reeeqr~ccoo
ccnoqocorco
cocco~cocoo~
cocoscccoomno
T
~~coc~—cococo
co-mmco~coe
T
cer-s-ccc-co
ccoocccooomo
co-eoroccsoce

cccc~cocccce

coccocccoocon

{Ls23+ 535 526~ $56] E (P2 = Ps, Ps)
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where ¢ is the totally antisymmetric tensor, ., = 1. For the future use, we define
one more function,

F(po 2)=1(Pp)(P2) +(P12) (PP = (P12)(PPIY (PiPS) - (10)

Note that when evaluating A, and A; at crossed configurations of the momenta,
care must be taken with the implicit dependence of the functions E, F and G on
the momenta py, pa, ps, Ps.

The diagrams D are listed below:

D) =2 ([(ps=p (ps= P (s~ P s+ P1~L(ps = p)(ps+ p0)]

S1452s536

X [(pr=Pa)(Ps= o)1+ [(P2+ P5)(Ps = ) ) (P1 —~ Pa) (P2~ )]},

1
DF(2) S {2E(p2=Ps, 3= Pe) = 2E(ps=Per P2=Ps) + 8:ll (P2~ ps) (ps—po) 1},

DEG) == ([(p1+ ps=ps)(ps+ ps—p)IE P, ps)

SasSiehias
=[(pi+P2=ps)(Pa=Ps+PO)IE (P2, P6)
- . - it - L

~ A . L ~. .

D3(15)= {l(p2+ ps)(ps= P L(P1 — Pu) (P2~ p5)]
514525536
+[(P2=Ps)(Py= P (Pr = P)(Ps+ Pe)]
+[(pi+pa)(p2=ps)I(Pr =~ P)(ps =P},

2

D3(16) = {L(p2=P)(ps + PN (P1 = Po) (P3 = Pa)]
16534525
+ U1 +26)(Ps = PO (P1 = o) (P2 = s)]
+(p1=pe) P2+ PN (Ps—P) (P2~ )]} - (13)

The preceding list completes the result. Let us recapitulate now the numerical
procedure of calculating the full cross section. First the diagrams D are calculated
by using eqs. (11)-(13). The result is substituted to q. (8) to obtain the vectors @
and 9,. After generating the vectors Do, Do,, Bo,, 5, D5, and B, by the appropriate
permutations of momenta, eq. (6) is used to obtain the functions A, and A,. Finally,
the total cross section is calculated by using eq. (5). The FORTRAN S program
based on such a scheme generates ten Monte Carlo points in less than a second on
the heterotic CDC CYBER 175/875.

Given the complexity of the final result, it is very important to have some reliable
testing procedures available for numerical calculations. Usually in QCD, the multi-
gluon amplitudes are tested by checking the gauge invariance. Due to the specifics

also a
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Discovery of Shocking Simplicity

+ Within six months, Parke-Taylor stumbled on a
simple guess—unquestionably a theorist’s delight:
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Goal: make the simplicity of amplitudes
manifest in the way we compute them,
dramatically extending the reach of the
predictions we can make for experiment
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:  To What extent can QFT be reformulated W1th0ut |
reference to (s1mp11c1ty spoﬂmg) redundancres7 |
Answer: most (all?) of perturbatzan theory

+ Building Blocks:

» tree amplitudes and on-shell functions—recursion
relations, scattering equations, (twistor) string
theory, cluster varieties, the amplituhedron, ...

+ Loop Integrands: unitarity, Q-cuts, bootstraps, ...

+ Loop Integration: symbology, motives, bootstraps,
symmetry-preserving regularization/evaluation, ...



Basic Building Blocks:
On-Shell Functions



H amtAotnTa TOU CXEOIOV KAVEI
EVKOAN TNV KATOKELN

(the simplicity of the design
makes it easy to build)
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The Vernacular of the S-Matrix

+ On-Shell Functions: scattering amplitudes, and
functions built thereof—as networks of amplitudes

JomNe!

+ defined for all all quantum field theories—
exclusively in terms of physical (observable) states

+ can be used to reconstruct all loop amplitudes

fr=]] (hz / dd‘lLIPSi) 1] A

1€1 veV

11



What’s Special about Massless, 4d?

+ Massless, 3-particle amplitudes in 4 dimensions:

h2 h2
hl i <12>h3—h1—h2<23>h1—h2—h3<31>h2—h3—h1 hl Sids [12]h1+h2—h3 [23]h2+h3—h1 [31]h3+h1—h2
hi+ hh+ hs < 0 h+h+hz=0

h3 hg

2 Y 2% 9
| —('< E 1 »—C{ 1 4({ 1 )—C{
3 3 3 3
pure Yang-Mills massless QED
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What’s Special about Massless, 4d?

+ Massless, 3-particle amplitudes in 4 dimensions:
hz h2

hl — <12>h3—h1—h2<23>h1—h2—h3<31>h2—h3—h1 hl — [12]h1+h2—h3 [23]h2+h3—h1 [31]h3+h1—h2
hi+ hh+ hs < 0 n o ks =

h3 h3

+ Enhanced szmplzczty of maximal supersymmetry
| Arkani-Hamed, Cachazo, Kaplan (2008) ]

52X4()\°77) D2 N 2
: d: A2 2361 " () = A7

3
2

51X4(XL'7A7/) SO
1_C< 12] [23] [31] RV

3




Primitive On-Shell Functions

+ On-shell functions built from 3-point vertices—
edges label states (which dictate the vertices)

2 S
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The Grassmannian Correspondence

i+41

On-Shell Physics
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Z

- on-shell diagrams and functions o {strata CeG(k,n), volume-form QC}
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On-Shel Physic
- on-shell diagrams and functions o {strata CeG(k,n), volume-form QC}
- physical symmetries @ - volume-preserving diffeomorphisms

— trivial symmetries (identities) — cluster coordinate mutations

- functional relations of observables - homological identities among strata

v v

+ general characteristics: Z i %”f 7:; n—Wn; nr

+ reducibility into functions with non-degenerate Q.

+ volume-preserving diffeomorphisms correspond to
active symmetry transformations:

[968(C.p,1)> [920:5(Cip, h)=[ 90 8(Clp.h)=[ 20 6(C.p1H)
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The Grassmannian Correspondence
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On-Shell Physics

- on-shell diagrams and functions

- physical symmetries
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« functional relations of observables
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The Grassmannian Correspondence

fng(; / dBLIPSi) E[sz / Qo 0(C,p, h)

i)Q’L

On-Shel Physic

- on-shell diagrams and functions o {strata CeG(k,n), volume-form QC}

- physical symmetries @ - volume-preserving diffeomorphisms

— trivial symmetries (identities) — cluster coordinate mutations

- functional relations of observables - homological identities among strata
Implications: Questions (math/physics )
e finite in number *how many?
eecach enjoys infinite- edo these extend to full

dimensional symmetries  scattering amplitudes?
espan rational functions,  ®a functional basis tor
distributions, & integrals amplitude integrands?:
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massless particles enjoy infinite dimensional symmetries

» soft theorems are Ward identities for these symmetries
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+ Proving the finiteness of N=8?

+ Connections to the Yangian?
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+ Two identities among on-shell diagrams:

(=) 69=0Y

16



Diagrammatic Relations for SYM

+ Two identities among on-shell diagrams:

(=) 69=0Y
A e

5 4 S 4

N AN AN/

1 2 |
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Planar Combinatoric Classification

| Postnikov (2006) |
+ Moves leave invariant path-permutation-labels

H)- D 69-6Y
&° [

[Arkam Hamed, JB, Cachazo, Goncharov, Postnikov, Trnka (2012)]



Web of Dualities for Planar SYM
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» non-planar theories with maximal supersymmetry
» planar theories without (or less) supersymmetry

+ An experimental / phenomenological approach:
» construct all (reduced) diagrams
» enumerate all inequivalent varieties that result
» directly classify their functional relations and symmetries

+ Implications for physics far beyond amplitudes

+ Implications for diverse areas of mathematics—

graph theory, combinatorics, algebraic geometry, ...
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Explorations Beyond Planarity

+ For k=2 (MHV) on-shell functions, planar tree
amplitudes (Parke-Taylor) form a complete basis:

ol } : [ Arkani-Hamed, JB, ez al. (2014)]
fF— PT(O’l,...,O'n)
{0 €(Gn/Zn)|VTET: 0 <0r,<0ry3}

9
((91)(32

)(46) — (16)(43) (20))’
(12)(24)(41)(18)(91)(29)(93)(32)(36)(43)(65) (54) (87)(76)(69)
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+ For k=2 (MHV) on-shell functions, planar tree
amplitudes (Parke-Taylor) form a complete basis:
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Prescriptive Approaches

to Perturbation Theory
(prior to loop integration)
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(Re)construction of Loop Integrands

+ Loop integrands, being rational functions, are
determinable by their cuts: on-shell functions

+ For many quantum field theories, on-shell all-loop
recursion relations do (or almost certainly) exist:

@ L.R
[Arkani—Hamed, JB, Cachazo, Caron-Huot, Trnka (2010)]

+ COmpllcatlonS : [Benincasa (2015-6); JB, Caron-Huot, Benincasa (in prep)]
» spurious propagators, mixture of components, ...

+ someday may prove ideal; usefulness is moot today
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The Unitarity-Based Approach

+ Pick an arbitrary (but complete) basis of Feynman
integrals, and use cuts to determine coeftficients
(given as on-shell functions)

3

+ Extremely general and powerful, with important
applications at the LHC—e.¢., BlackHat @ NLO

| Bern, Dixon, Dunbar, Kosower|

&

| Berger, Bern, et al. | 24
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Perturbations of Parke-Taylor
+ Recall the famous Parke-Taylor amplitude (MHV):

= | Bern, Dixon, Dunbar, Kosower (1994)]
2
. (12)° .
" & 12233445 .- LA
T
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Perturbations of Parke-Taylor

| Vergu (2009) ]

complexity of the computations. 1t has also been useful to use the results for the cuts
already computed when computing the coefficients of integrals detected by new cuts. In this
way, one can insure the consistency of results from different cuts and reduce the number of
unknowns at the same time.

Let us make a further comment about our computation procedure. The conformal inte-
grals with pentagon loops have numerators containing the loop momenta. in combinations
like (k + 1)2, where [ is the loop momentum and k is an external on-shell momentum. If
the propagator with momentum { is cut then, on that cut, one cannot, distinguish between
(k+1)? and 2k 1. However, it is casy to sce that one can choose to cut another propagator

and in that case this ambiguity does not arise and the numerator factor is uniquely defined.

IV. RESULTS

We use dual variable notation (see Ref. [48]) for the integrals. The external dual variables
are listed in clockwise direction. To the left loop we associate the dual variable z, and to

the right loop we associate the dual variable r,. We use the notation ;;

We introduce the following notation which will be useful in the following

aboe ,
= a2 afyal, -+ (permutations of {1, ¢, .. }) (©)
o' Vo

The sign  above takes into account,the signature of the permutation of {a'. ¥, .. }. It

] T el

For some topologies, the expansion of the [ ] symbol yields terms that would cancel

is easy to show that

propagators. For those cases we make the convention that all the terms that would cancel

propagators &

o absent. Tn fact, as we will see, terms that would cancel propagators of the
double pentagon topologies naturally yield coefficients for some of the topologies with

smaller number of propagators.
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B. Kissing double-box topologics
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A. Double box topologies

In the ease of the double box tapologies the massive legs attached to the vertices incident

with the common edge have to be a sum of at least three massless momenta. The cases

where these massive legs are the sum of two massless momenta are treated separately in the

subsection. IV A 7. This distinction only arises for the double box topologies.
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Note that in the previous formula we suppress the terms containing

11,0 Which would

otherwise cancel a propagator of the underlying topology. When expanded out, the expres-
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5. Two massless legs attached
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We have written down this formula to emphasize how nontrivial it is. We suppress

the terms containing o2, , and 22

2. 4r Tespectively. These terms would otherwise cancel

propagator of the underlying topology. We will sce below that the box-pe 1 topologics

with massless legs attached to the vertices of the edge common to both loops can in fact be

seen to originate in double-pentagon topologics, by cancelling some propagators.

D. Double pentagon topologies

1. Nolegs attached
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In the expansion of the above formula we drop terms that would cancel propagators (in

this case, the terms containing o2, a2, o3, 2%, or a2,). This expression has 6 terms when

expanded.
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In the formula above we drop terms that would cancel propagators (in this case, the

terms are of,, zf, and a2,). This expression
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has 15 terms when expanded.
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4. Two massless legs attached
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+ Recall the famous Parke-Taylor amplitude (MHV):
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6. Two massive legs attached

This expression has 78 terms when expanded.
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Tn the formula above we drop terms that would cancel propagators (in this case, the terms

conformal dressings is 160 (the number of cocfficients unrelated by symmetries is lower).

|
containing +2,). When expanded, the above expression contains 96 terms. The number of |
|

E. Assembly of the result

As explained in Sec. 11, for the MHV amplitudes the ratio between the (-loop amplitude |

and the tree-level amplitude can be written as a sum between parity even and parity odd

contributions

Then, the even part can be written

”41"/47“”‘,/”.,,; > salk (80)

e

MO = g 4yl (9)

where the first sum runs over cyclic and anti-cyelie permutations of the external legs, the

second sum runs over all the topologies, & is a symmetry factor associated to topology i

|
!
|
|
eTpcgin |
|
|
|

¢ is the numerator of the topology i, as listed in Sec. IV and 7, is the denominator or the

product of propagators in the topology i

Apart from the parity odd part which we have not computed, there is also a contribution |

which s not detectable from four-dimensional cuts, denoted by M@#. This part of the

result is such that its integrand vanishes in four dimensions, but the integral itself can give

contributions to the divergent and finite parts. In Ref. [32], for n = 6 case, this part of the

result was found to be eloscly related to O(c) contributions at one loop, M

Based on previous computations we expeet that the odd part and the j integrals will

i
|
|
|
not. be needed in order to compare with the Wilson loop results. The odd parts could be ‘

—
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Perturbations of Parke-Taylor
+ Recall the famous Parke-Taylor amplitude (MHV):

3 | Arkani-Hamed, JB, Cachazo, Trnka (2010)]

2 . 4 . <12>4

2 GEAMEE)

b

152
i (12
nCL
|
- D 0
a<b a<b<c<d /

25



Perturbations of Parke-Taylor
+ Recall the famous Parke-Taylor amplitude (MHV):

3 | Arkani-Hamed, JB, Cachazo, Trnka (2011)]
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+ Rather than starting from an arbitrary basis of loop
integrands, tailor each to manifestly match one cut

+ one loop:
|JB, Caron-Huot, Trnka (2013)]

+ two loop [JB Trnka <2015>] |
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+ This procedure continues to work at three loops
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+ Application to non-planar amplitudes
is also now known—to all orders(!) E@' _@

[J B, Herrmann, McLeod, Stankowicz, Trnka (in prep)]

+ Construction of N=8 integrands? Eg _Cg
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Probing the Limits of Our Reach

+ As an illustration of the current state of the art,
consider the case of 2-to-2 scattering in planar SYM
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Novel Approaches, Novel Insights

+ The soft-collinear bootstrap: the four-point
amplitude is uniguely fixed by the criterion that its
logarithm is at most log-squared divergent:(ss. bire. et al
Res (log A4) =0
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+ Some surprising tensions discovered at 8 loops:
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Res(logA) =0 (log As) “=AP-AL VAP~ 7 (D)
<€§>,[—€>a?—> 0

|JB, Heslop, Tran]
+ Some surprising tensions discovered at 8 loops:

» finite terms even on-shell—with elliptic cuts(!)
» individually divergent integrals even off-shell(!)
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Amplitude/Correlator Duality

+ There is a lossless translation between the off-shell
correlator and the on-shell scattering amplitude!

Ll ge (xz) (n) 2
2 £(4) g(O)( ) Hpa (Pa+Pat1)

1
lim (69FO) = L (4,600%)® = 4D + ALOAD 4.
4-point 2

light-like

F &) —
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Amplitude/Correlator Duality

+ There is a lossless translation between the off-shell
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Amplitude/Correlator Duality

+ There is a lossless translation between the off-shell
correlator and the on-shell scattering amplitude!

f@ f> o=
oo &5

+ Importantly, the four pomt correlator contains
(complete?) information of all n-point amplitudes!
n—4
1
: ol iy 0 k jn—k—4 n—4,(0)
0 ];)AnAn [(ADAI

n-point
light-like
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Simplicity Surviving
Loop Integration
and Future Directions



Can Simplicity Survive Integration?

+ Loop integration remains a serious challenge for

preserving simplicity of observable quantities
» finite observables given in terms of divergent quantities
requiring regularization (is this necessary?)

» most regularization schemes severely break symmetries
known to exist for finite observables

» most versitile integration techniques spoil symmetries
along the way

+ The traditional toolbox for loop integration can be

theoretically opaque/computationally intractable
32



Does Simplicity Survive?
+ Consider again the Parke-Taylor 2-to-4 amplitude;

» divergences captured by BDS, leaving a finite remainder
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Does Simplicity Survive?

+ Consider again the Parke-Taylor 2-to-4 amplitude
» divergences captured by BDS, leaving a finite remainder
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Does Simplicity Survive?
+ Consider again the Parke-Taylor 2-to-4 amplitude;

» divergences captured by BDS, leaving a finite remainder

+ Heroically computed by Del Duca, Duhr, Smirnov
in 2010, in terms of ‘Goncharov’ polylogarithms

Classical Polylogarithms for Amplitudes and Wilson Loops

A. B. Goncharov,! M. Spradlin,?2 C. Vergu,? and A. Volovich?

! Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912, USA
“Department of Physics, Brown University, Box 1843, Providence, Rhode Island 02912, USA

We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N' = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Liy with cross-ratios of

momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.
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Recent Advances in Integration

+ [terated integrals: symbology and the symbolic
bootstrap method for entire amplitudes

|Dixon et al.; ...]

+ Integration by parts (& algebraic geometry thereof)

+ Differential equations for iterated integration

[Caron-Huot, Henn; Drummond, Trnka; .. ]

+ Symmetry-preserving regularization schemes
(pa— 1 + Dg ) 2 (pa - D )2 |JB, Caron-Huot, Trnka (2013) ]

(Pa—1 + Pa + Pa+1)?
+ (Nearly) finite integrals for finite observables

+ |JB, Dixon, Dulat, Panzer, (in prep)]

Do po 44
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Presvering (Dual-)Conformality

+ Using the ‘dual-conformal’ regularization scheme,

(pa—l +pa)2(pa +pa—|—1)2
(pa—l + Da _|_pa—|—1)2

ps > p2+ 8

all planar loop integrals take the form:
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Presvering (Dual-)Conformality

+ Using the ‘dual-conformal’ regularization scheme,

(pa—l +pa)2(pa +pa—|—1)2
(pa—l + Da _|_pa—|—1)2

ps > p2+ 8

all planar loop integrals take the form:
2L

I+ Y I logh(s)
k=0
|JB, Dixon, Dulat, Panzer, (in prep)]
+ Coeftficients can be calculated individually as
manifestly finite (easy to integrate) integrals

» which are manifestly dual-conformal
if the initial integral were; if not, then:

as an expansion of DCI ints, with non-DCI coefficients .
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Objectives for Going Forward

+ Develop new techniques for integration
» make evaluation as simple and easy as finding integrands

+ Exploit simplicity into powerful new technology
» better representations of amplitudes prior to integration

+ Reformulate foundations using only observables
» make no reference to unobservable quantities
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