Recent Developments in Analytic Bootstrap

Annual Theory Meeting, Durham, 2017

Alexander Zhiboedov, Harvard U

How do we compute when the coupling is strong?

• No small coupling expansion

• No extra symmetries/integrability

Bootstrap is an old idea of solving theories based on consistency.

Radical Bootstrap

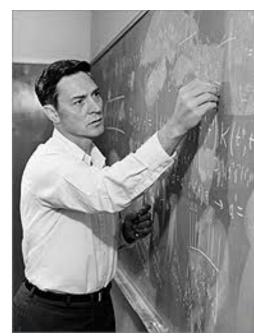
"Nature is as it is because this is the only possible Nature consistent with itself"

G. Chew

(In other words, a consistent theory of quantum gravity compatible with all known experimental data is unique)

This is too ambitious! But for Conformal Field Theories (CFTs) it is almost true.

Conformal Bootstrap is a method to solve them based on consistency.

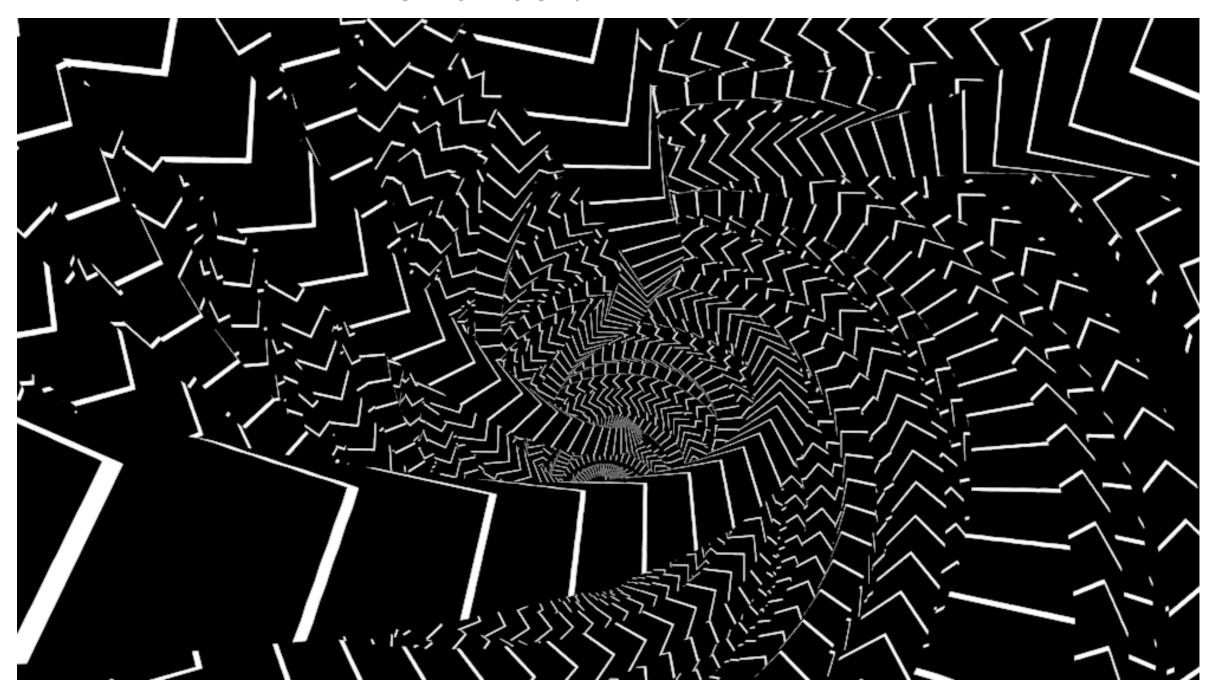


Д A Q

THEORETICAL PHYSICS

Physicists Uncover Geometric 'Theory Space'

 A decades-old method called the "bootstrap" is enabling new discoveries about the geometry underlying all quantum theories.



Why CFTs?

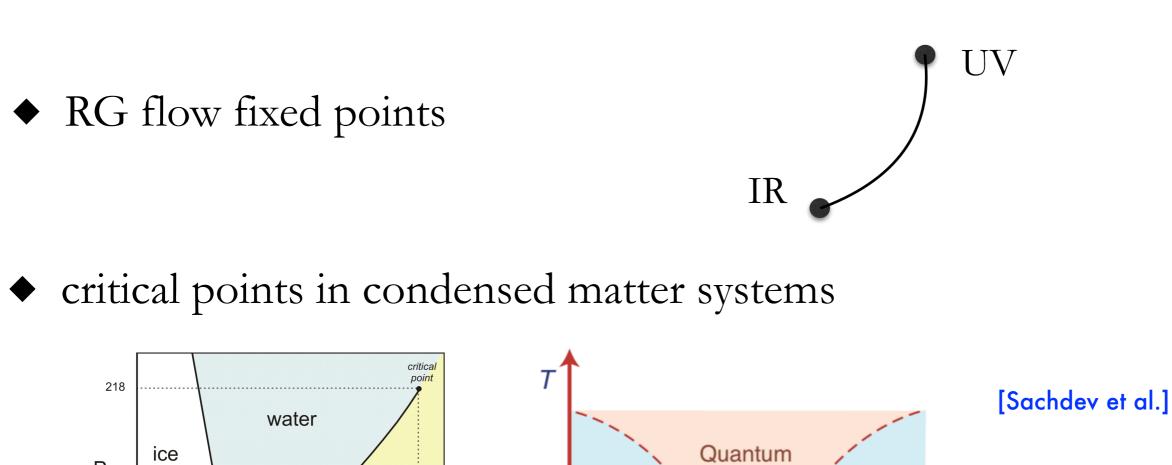
critical

 s_c

Insulator

T_{KT}

Superfluid



 non-perturbative quantum gravity in Anti-de Sitter (AdS/CFT) [Maldacena]

0

Ρ

atm

0.006

triple

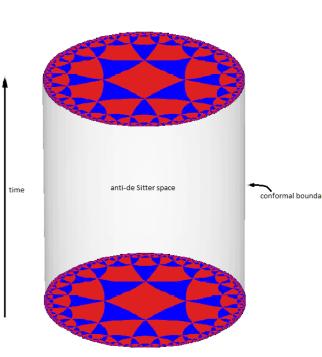
° ∖ T °C

water

vapor

100

374



Plan

1. Basics of Conformal Bootstrap

2. Analytic Bootstrap: Spin = Expansion Parameter

3. Applications

Basics of Conformal Bootstrap

Conformal Bootstrap

Conformal Bootstrap is based on **symmetries** and **consistency conditions**:

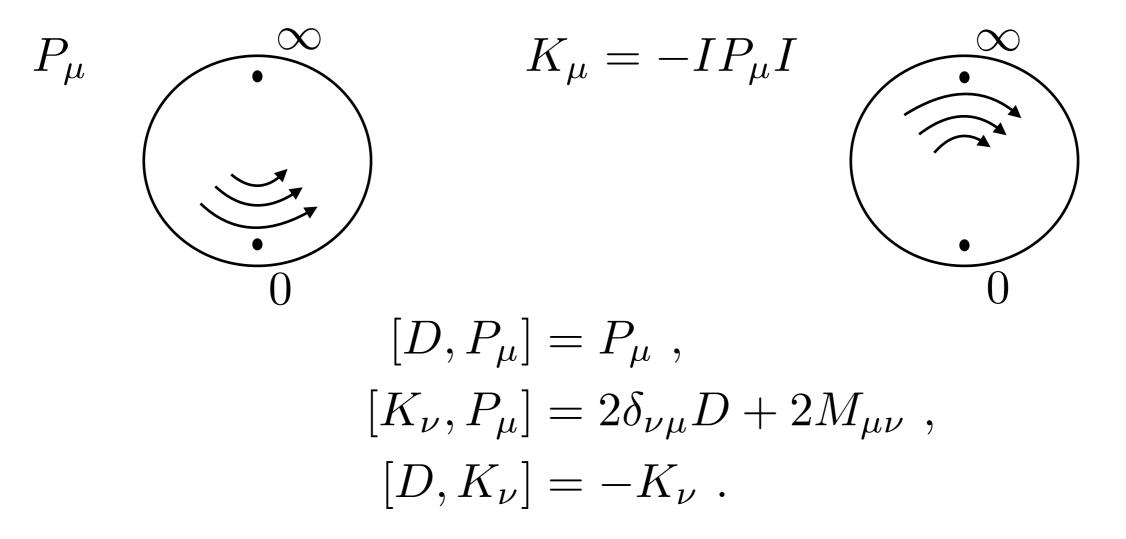
Conformal Symmetry

• Unitarity and the OPE

As such it is suitable for strongly coupled theories.

Basics of Conformal Symmetry

- Poincare symmetry: translations P_{μ} and rotations $M_{\mu\nu}$
- Scale or dilatation invariance $D \qquad \delta x^{\mu} = \lambda x^{\mu}$
- Special conformal transformation K_{μ} $\delta x^{\mu} = 2(b.x)x^{\mu} b^{\mu}x^2$



Observables

The basic observables are correlation functions of local operators

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)...\mathcal{O}_n(x_n) \rangle$$

* Each operator is characterized by

ullet Scaling dimension Δ

Descendants

₩

♦ Representation under rotations (spin J)

* Primary operators
$$[K_{\nu}, \mathcal{O}_{\Delta, \mathbf{J}}(0)] = 0$$

could not be written
as a derivative of smth $\mathcal{O}(x') = \lambda^{-\Delta} \mathcal{O}(x)$
 $\lambda = \left| \frac{\partial x'}{\partial x} \right|^{\frac{1}{d}}$

 $P_{\mu_k}...P_{\mu_1}\mathcal{O} = \partial_{\mu_k}...\partial_{\mu_1}\mathcal{O}$

Operators

Simple examples present in every CFT are

* Unit operator $\Delta = 0$ J = 0(lightest operator = dominates the OPE)

* Stress energy tensor $\partial_{\mu}T^{\mu\nu} = 0$ $T^{\mu}_{\ \mu} = 0$ (gravity dual) $\Delta = d$ J = 2

Unitarity bounds

 $\Delta \geq d-2+J$

Two- and Three-point Functions

Correlation functions are invariant under symmetries.

Conformal symmetry fixes 1-, 2-, and 3-point functions.

$$\langle \mathcal{O}_{i}(x) \rangle = 0 \qquad \text{(measured in experiments)} \\ \langle \mathcal{O}_{i}(x_{1})\mathcal{O}_{j}(x_{2}) \rangle = \frac{\delta_{ij}}{x_{ij}^{2\Delta}} \\ \langle \mathcal{O}_{\Delta_{i}}(x_{1})\mathcal{O}_{\Delta_{j}}(x_{2})\mathcal{O}_{\Delta_{k}}(x_{3}) \rangle = \frac{\lambda_{ijk}}{(x_{12}^{2})^{\frac{\Delta_{i}+\Delta_{j}-\Delta_{k}}{2}}(x_{13}^{2})^{\frac{\Delta_{i}+\Delta_{k}-\Delta_{j}}{2}}(x_{23}^{2})^{\frac{\Delta_{j}+\Delta_{k}-\Delta_{i}}{2}}} \\ \text{CFT data:} \qquad (\Delta, \mathbf{J}) \qquad \lambda_{ijk} \qquad \text{[Polyakov 70']} \end{cases}$$

Goal: Find it!

Operator Product Expansion

Operators form an algebra (OPE)

$$\mathcal{O}_{i}(x)\mathcal{O}_{j}(0) = \sum_{k} \lambda_{ijk} |x|^{\Delta_{i} + \Delta_{j} - \Delta_{k}} \left(\mathcal{O}_{k}(0) + x^{\mu} \partial_{\mu} \mathcal{O}_{k}(0) + \ldots \right)$$
expansion in powers
of distance

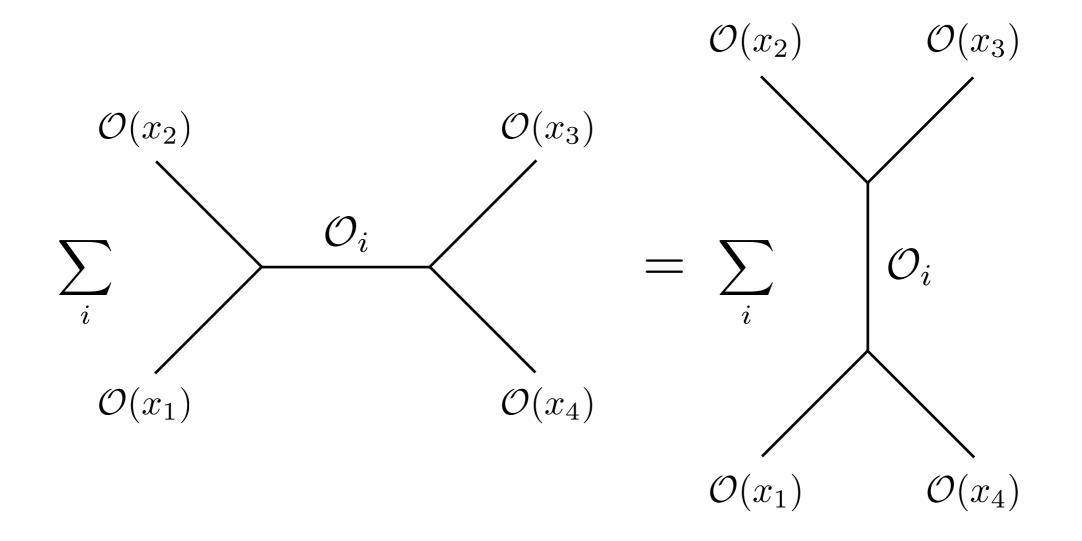
Consider now the four-point function of identical operators:

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \frac{\mathcal{G}(u,v)}{(x_{12}^2x_{34}^2)^{\Delta}}$$

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} , \quad v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$

Crossing Equations

We can apply the OPE inside the correlation function



Nonperturbative!

Conformal Bootstrap

Original Idea

[Ferrara, Gatto, Grillo 73'] [Polyakov 74']

• Realization in 2d

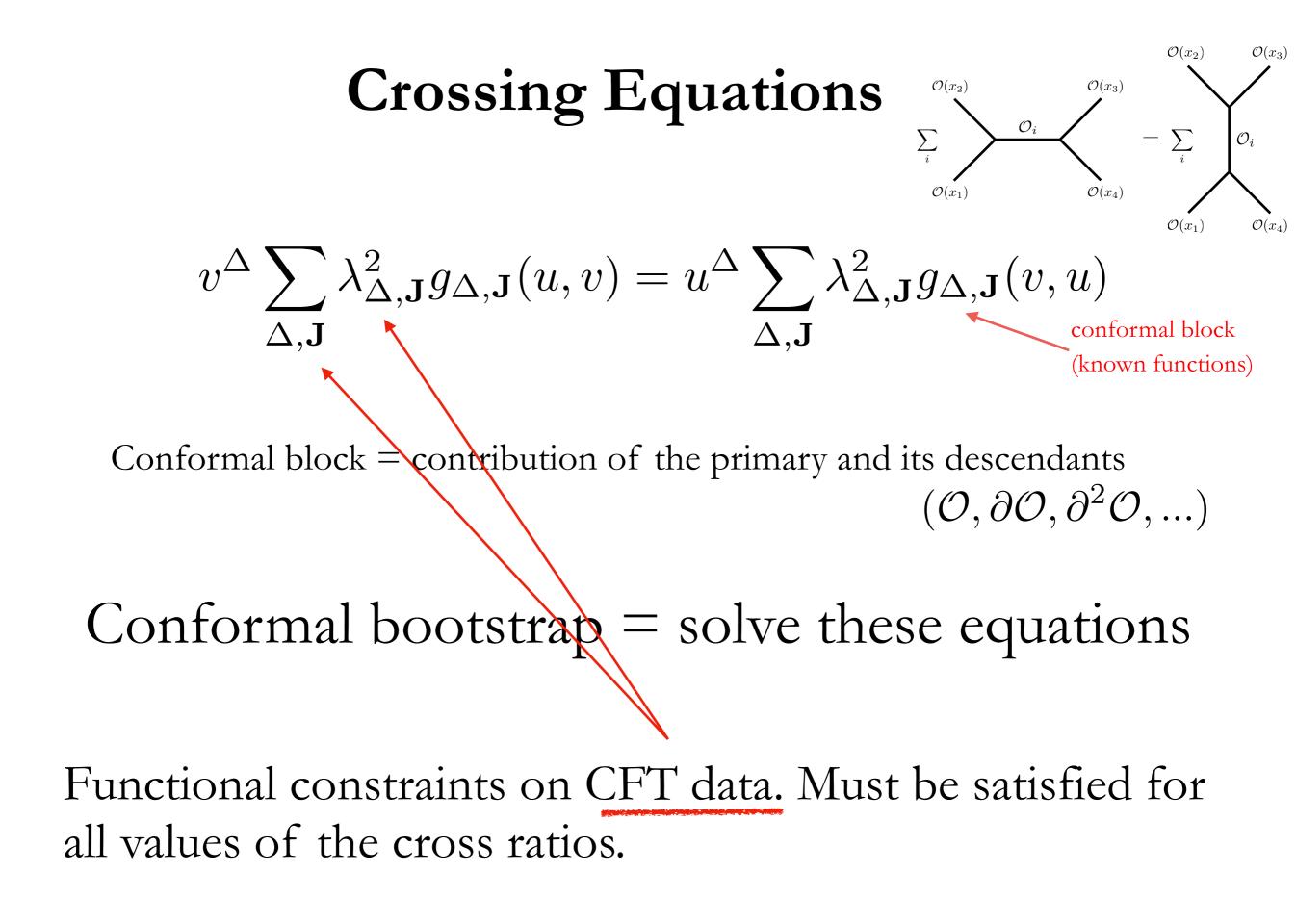
[Belavin, Polyakov, Zamolodchikov 83']

- Realization in 4d (based on results of [Dolan, Osborn 0)']
 [Rattazzi, Rychkov, Tonni, Vichi 08']
- Numerical Solution of the Critical 3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin 12'-14']

Analytic Bootstrap

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin 12'] [Komargodski, AZ 12']



Conformal Blocks (Technical Details)

Let us list few basic properties of conformal blocks:

+ Eigenfunctions of the Casimir operator

$$\hat{\mathcal{C}}g_{\Delta,J}(u,v) = (\Delta+J)(\Delta+J-1)g_{\Delta,J}(u,v)$$

* Small u<<1 limit

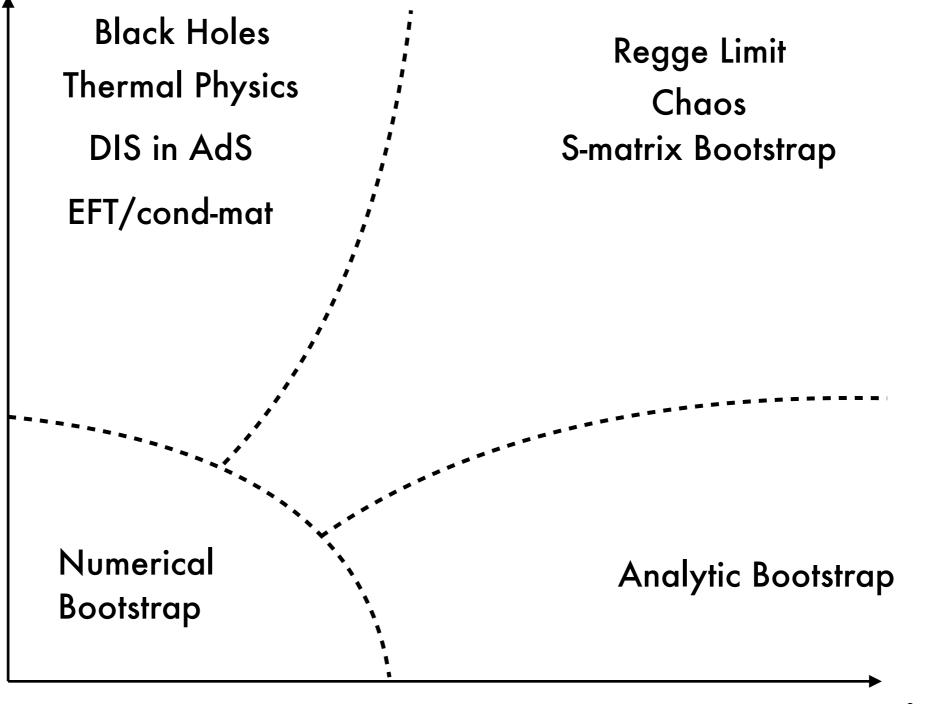
$$g_{\Delta,J}(u,v) \sim u^{\frac{\tau}{2}} f_{\tau,J}(v), \quad \tau = \Delta - J$$

* Small v<<1 limit
* Small v<<1 limit

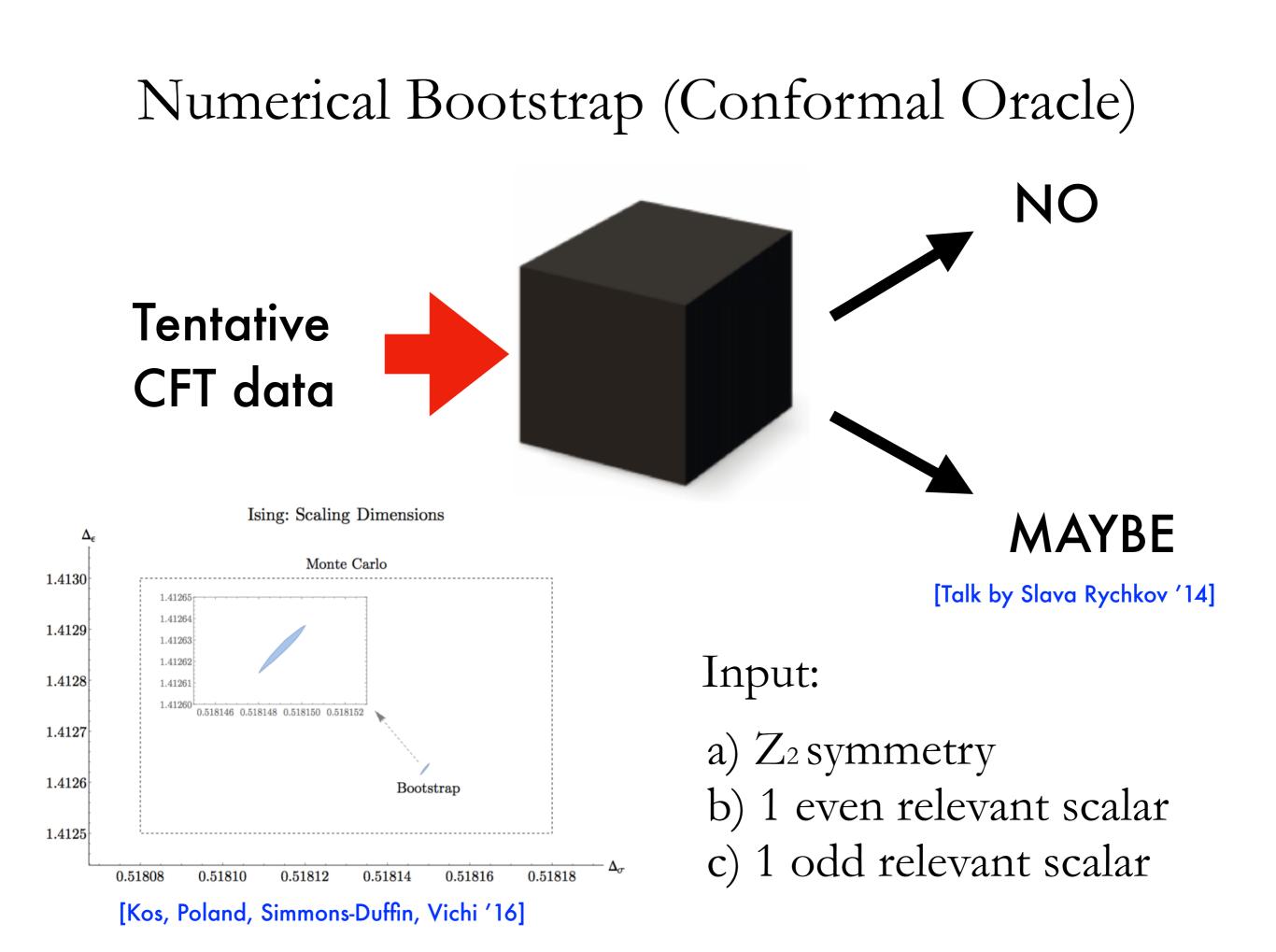
 $g_{\Delta,J}(u,v) \sim \log v$

Conformal Map of the World

twist $\Delta - J$



spin J



Analytic Methods

Protected Observables

[Dolan, Osborn; Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees; Chesler, Lee, Pufu, Yacoby, ...]

Integrability

[Escobedo, Gromov, Sever, Vieira; Basso, Coronado, Komatsu, Tat Lam, Vieira, Zhong; Bargheer, Caetano, Fleury, Komatsu, ...]

◆ Large Central Charge

[Heemskerk, Penedones, Polchinski, Sully; Fitzpatrick, Kaplan; Alday, Bissi, Lukowski; Rastelli, Zhou, ...]

Bootstrap in 2d Cardy: Hellerman: Hartman, Keller, Str

[Cardy; Hellerman; Hartman, Keller, Stoica; Fitzpatrick, Kaplan, Walters; Lin, Shao, Simmons-Duffin, Wang, Yin, ...]

• Crossing in Mellin space

[Mack; Penedones; Gopakumar, Kaviraj, Sen, Sinha; Dey; Rastelli, Zhou; Alday, Bissi, Lukowski, ...]

◆ Large Global Charge

[Hellerman, Orlando, Reffert, Watanabe; Alvarez-Gaume, Loukas; Monin, Pirtskhalava, Rattazzi, Seibold; Jafferis, Mukhametzhanov, AZ ...]

S-matrix bootstrap

[Caron-Huot, Komargodski, Sever, AZ; Paulos, Penedones, Toledo, van Rees, Vieira]

Study of the crossing equations in the Lorentzian regime.

Analytic/Light-Cone Bootstrap

Analyticity in Spin

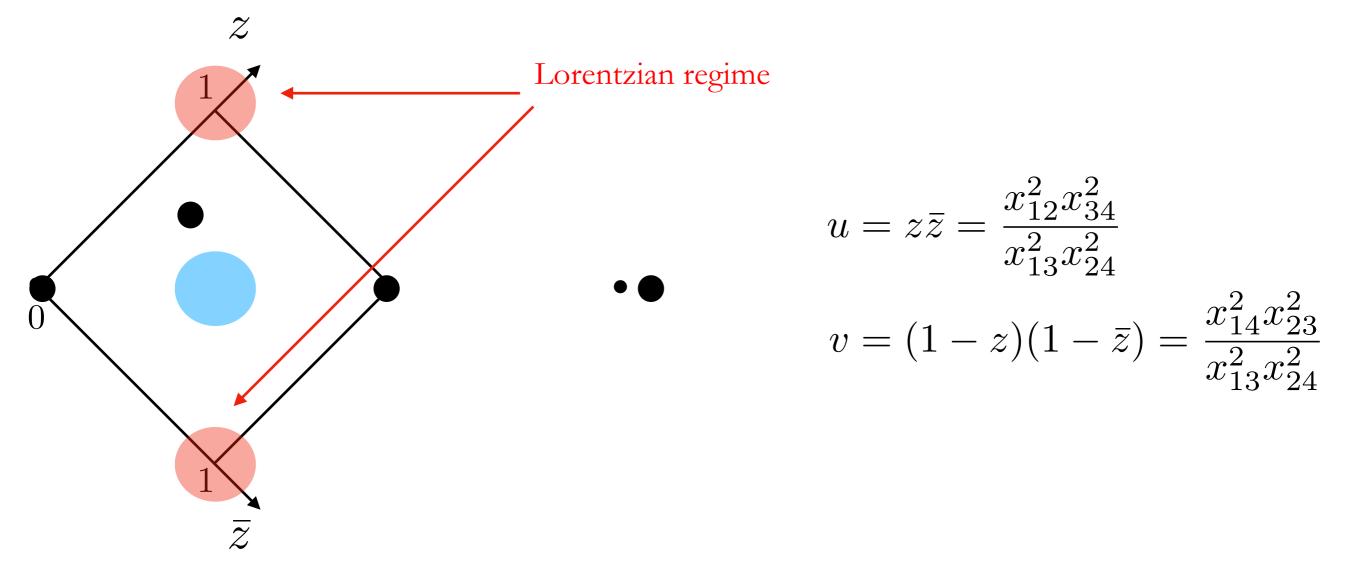
• Regge limit, ANEC, chaos, gravity, etc

Analytic Bootstrap 101:

Minimal Solution to Crossing

Consider the crossing equation in the light-cone limit

 $v \ll u \ll 1$



We can use the OPE in one channel

$$\mathcal{G}(v,u) = 1 + O(v^{\frac{\Delta - J}{2}}) \qquad \qquad v \ll u \ll 1$$

Crossing equation
$$v^{\Delta}\mathcal{G}(u,v) = u^{\Delta}\mathcal{G}(v,u)$$
 ecomes

$$\mathcal{G}(u,v) = 1 + \sum_{\Delta,\mathbf{J}} \lambda_{\Delta,\mathbf{J}}^2 g_{\Delta,\mathbf{J}}(u,v) = \frac{u^{\Delta}}{v^{\Delta}} (1+\ldots)$$
diverges!

Puzzle 1: $\lim_{v \ll 1} g_{\Delta, \mathbf{J}}(u, v) \sim \log v$

Generalized Free Field (GFF)

Example: Generalized Free Field

 $\langle \mathcal{OOOO} \rangle = \langle \mathcal{OO} \rangle \langle \mathcal{OO} \rangle + \text{permutations}$

$$\mathcal{G}^{(0)}(u,v) = 1 + u^{\Delta} + \left(\frac{u}{v}\right)^{\Delta}$$

***** Spectrum contains operators $\mathcal{O}\square^n \partial_{\mu_1} ... \partial_{\mu_J} \mathcal{O}$

(double-twist operators)

 $\frac{u^{\Delta}}{v^{\Delta}}$

$$\Delta_{n,J} = 2\Delta_{\mathcal{O}} + 2n + J$$

***** Sum over spins produces the divergence

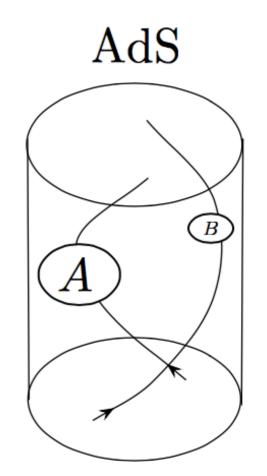
Resolution:

Every solution to crossing equations has an infinite number of operators of every spin.

Analytic Bootstrap 201: Large Spin Universality

Impact parameter **b** is dual to spin **J**.

Flat Space: $b \sim J$



AdS (CFT): $b \sim \log J$

[Cornalba, Costa, Penedones, Schiappa] [Alday, Maldacena]

scattering phase shift

 $\delta(s,b) \sim e^{-mb}$

b

CFT energy levels

$$\delta\Delta(J) \sim \frac{1}{J^m}$$

Large Spin Universality

This mechanism of reproducing operators on one side by summing large spin operators on the other side is completely universal.

(inner workings of crossing equations)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin 12'] [Komargodski, AZ 12']

Every CFT is GFF at large spin

Every CFT admits an infinite family of operators with the properties $\Lambda = -\Lambda_{\infty} + \Lambda_{\infty} + 2n + J + O(\frac{1}{2})$

Let us add a first nontrivial correction to the previous exercise

$$\sum_{\Delta,J} \lambda_{\Delta,J}^2 g_{\Delta,J}(u,v) = \frac{u^{\Delta}}{v^{\Delta}} \left(1 + \frac{d^2}{(d-1)^2} \frac{\Delta^2}{c_T} v^{\frac{d-2}{2}} \log u + \dots \right)$$

$$\underset{GFF result}{\text{leading 'correction due to stress tensor}}$$

$$\sum_{\Delta,J} \lambda_{\Delta,J}^2 g_{\Delta,J}(u,v) \simeq \sum_J u^{\Delta} (1 + \frac{\gamma_J}{2} \log u) \lambda_J^{GFF} f_J(v) + \dots$$

$$\underset{\text{anomalous dimension}}{\text{monomalous conformal block}}$$
By matching the two we get
$$\gamma_J = -\frac{d^2}{2(d-1)^2} \frac{\Delta^2}{c_T} \frac{\Gamma(\Delta)^2 \Gamma(d+2)}{\left(\Gamma(\frac{d+2}{2})\Gamma(\Delta - \frac{d-2}{2})\right)^2} \frac{1}{J^{d-2}}$$

The method works not only for singular terms, but also for Casimir-singular terms (act on the Casimir equation on the crossing equations). [Alday, Bissi, Lukowski]

These correspond to terms that become singular upon acting on them with the Casimir operator

v^a

Casimir-regular terms are

 $v^n, v^n \log v$

Equivalently, these are terms with non-zero double discontinuity

dDisc[
$$f(v)$$
] = $f(v) - \frac{1}{2} \left(f(ve^{2\pi i}) - f(ve^{-2\pi i}) \right)$

Perturbative Analytic Bootstrap/Large Spin Perturbation Theory [Alday et al.]

Feynman Rules

Feynman Diagrams

Unperturbed Spectrum

Large Spin Expansion + Crossing

• Critical O(N) models [Alday, Bissi, Lukowski; Gopakumar, Kaviraj, Sen, Sinha; Dey, Kaviraj; Alday, AZ, Giombi, Kirilin, Skvortsov, ...] $d = 4 - \epsilon$

 $\frac{C_T}{C_{\rm free}} = 1 - \frac{5}{324}\epsilon^2 - \frac{233}{8748}\epsilon^3 - \left(\frac{100651}{3779136} - \frac{55}{2916}\zeta_3\right)\epsilon^4 + \cdots$ $\langle T_{\mu\nu}T_{\rho\sigma}\rangle \sim C_T$ [Alday, Henriksson, van Loon]

• Gauge Theories $\Delta(J) \sim \log J$

[Alday, Bissi; Lukowski; Li, Meltzer, Poland; Korchemsky; Alday, AZ; Henriksson, Lukowski, ...]

Loops in AdS

[Aharony, Alday, Bissi, Perlmutter; Alday, Bissi; Aprile, Drummond, Heslop, Paul; Ye Yuan; Alday, Caron-Huot,...]

Analytic Bootstrap 301: Analyticity in Spin

Few Questions

• Spin is discrete, not continuous

How large is "```large spin'``"""?

• What are the errors?

All these problems are solved due to **analyticity in spin**. [Caron-Huot 17']

Complex J-plane and Regge Limit

Already in the 50's it was understood that it is natural to think about the complex angular momentum. [Regge]

Consider an ``amplitude''''`` f(E) that is:

Admits the low-energy Taylor expansion

$$f(E) = \sum_{J=0}^{\infty} f_J E^J$$

- Analytic away from two branch cuts at
- Bounded at infinity

$$\lim_{E \to \infty} \left| \frac{f(E)}{E} \right| \le c$$

|E| > 1

[Caron-Huot 17']

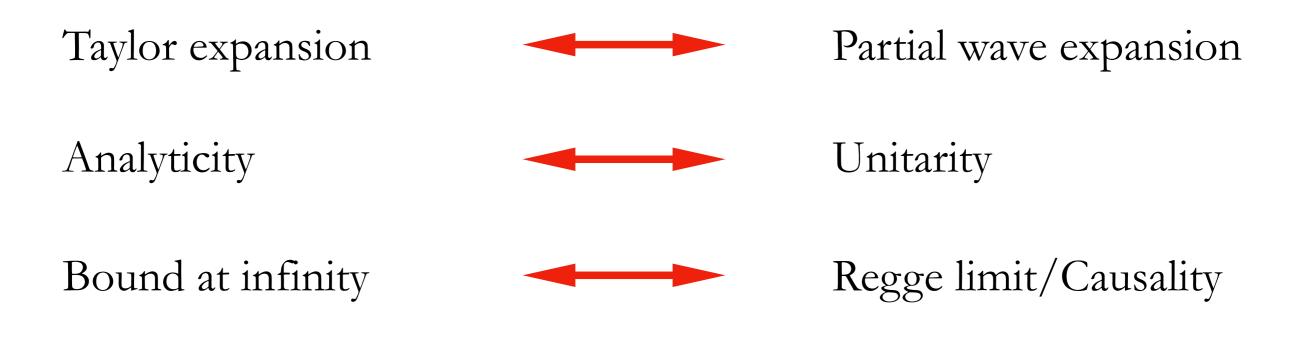
basic clash

Complex J-plane and Regge Limit

We can write a simple dispersion integral which is manifestly **analytic in spin**

$$f_J = \frac{1}{2\pi} \int_1^\infty \frac{dE}{E} E^{-J} \left(\text{Disc}f(E) + (-1)^J \text{Disc}f(-E) \right)$$

The same idea applies to scattering amplitudes and CFTs!



Regge Limit

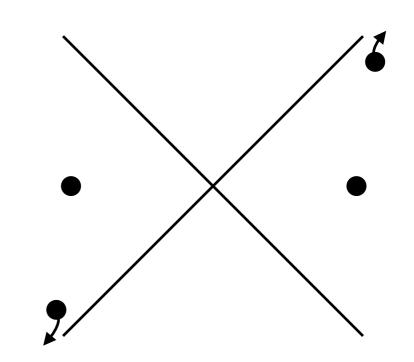
The relevant limit is the so-called Regge limit

$$\lim_{s \to \infty, t - \text{fixed}} A(s, t)$$

(high energy, small angle)

$$\lim_{z \to 1, \frac{1-z}{1-\bar{z}} - \text{fixed}} G(ze^{-2\pi i}, \bar{z})$$

bounded using OPE



Bound on the Regge Limit in CFTs
Using the OPE it is trivial to bound the Regge limit
$$G_{Regge}(z, \bar{z}) = G(ze^{-2\pi i}, \bar{z})$$

 $G(z, \bar{z}) = (z\bar{z})^{-\Delta_{\mathcal{O}}} \sum_{\Delta,J} a_{\Delta,J} z^{\frac{\Delta \pm J}{2}} \bar{z}^{\frac{\Delta \mp J}{2}} a_{\Delta,J} \ge 0$

$$G_{Regge}(ze^{-2\pi i}, \bar{z}) = e^{2\pi i\Delta}(z\bar{z})^{-\Delta_{\mathcal{O}}} \sum_{\Delta,J} a_{\Delta,J} e^{-i\pi(\Delta \pm J)} z^{\frac{\Delta \pm J}{2}} \bar{z}^{\frac{\Delta \mp J}{2}}$$

Adding Time = Adding Phases e^{-iHt}

 $|G_{Regge}(z,\bar{z})| \le G_{Eucl}(|z|,|\bar{z}|)$

Bound on the Regge Limit in CFTs

The effect is dramatic in the other channel

$$G_{Regge}(z,\bar{z}) = G(ze^{-2\pi i},\bar{z})$$

$$G(1-z,1-\bar{z}) \sim (1-z)^{\frac{\Delta \pm J}{2}}(1-\bar{z})^{\frac{\Delta \mp J}{2}}$$

$$G(1-ze^{-2\pi i},1-\bar{z}) \sim \frac{1}{(1-z)^{J}}$$

Taming these divergences requires conspiracy in spin.

Bound on Regge Limit in CFTs $|G_{Regge}(z, \bar{z})| \leq G_{Eucl}(|z|, |\bar{z}|)$

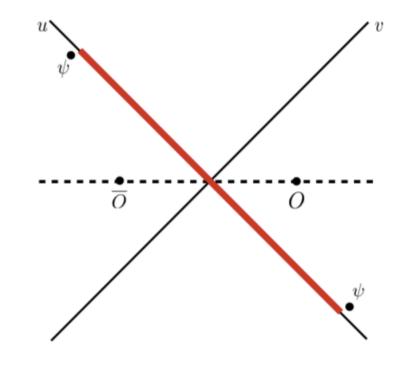
ANEC in QFT

[Hofman, Li, Meltzer, Poland, Rejon-Barrera; Komargodski, Kulaxizi, Parnachev, AZ; Faulkner Leigh, Parrikar, Wang; Hartman, Kundu, Tajdini]

$$\int_{-\infty}^{\infty} d\lambda \, \langle \Psi | T_{\mu\nu} | \Psi \rangle u^{\mu} u^{\nu} \ge 0$$

(the argument uses Rindler positivity) [Hartman, Kundu, Tajdini]

$$\int_{-\infty}^{\infty} d\lambda \, \langle \Psi | X_{\mu_1 \mu_2 \dots \mu_s} | \Psi \rangle u^{\mu_1} u^{\mu_2} \dots u^{\mu_s} \ge 0$$



+ Bound on chaos

[Maldacena, Shenker, Stanford]

$$\langle [V(t), W(0)]^2 \rangle \sim e^{\lambda_L t} \qquad \lambda_L \leq \frac{2\pi}{\beta}$$

Lorentzian OPE Inversion Formula

Similarly, one can write partial wave expansion for CFTs

$$G(z,\bar{z}) = 1 + \sum_{J=0}^{\infty} \int_{\frac{d}{2}-i\infty}^{\frac{d}{2}+i\infty} \frac{d\Delta}{2\pi i} c(\Delta,J) F_{J,\Delta}(z,\bar{z})$$

conformal block plus its shadow"

+ Closing the contour leads to the OPE

$$c^{FG}(\Delta, J) = c^{t}(\Delta, J) + (-1)^{J} c^{u}(\Delta, J)$$

$$c^{t}(\Delta, J) = \int_{0}^{1} dz d\bar{z} \mu(z, \bar{z}) G_{J+d-1,\Delta+1-d}(z, \bar{z}) d\text{Disc}[G(z, \bar{z})]$$
[Caron-Huot 17']

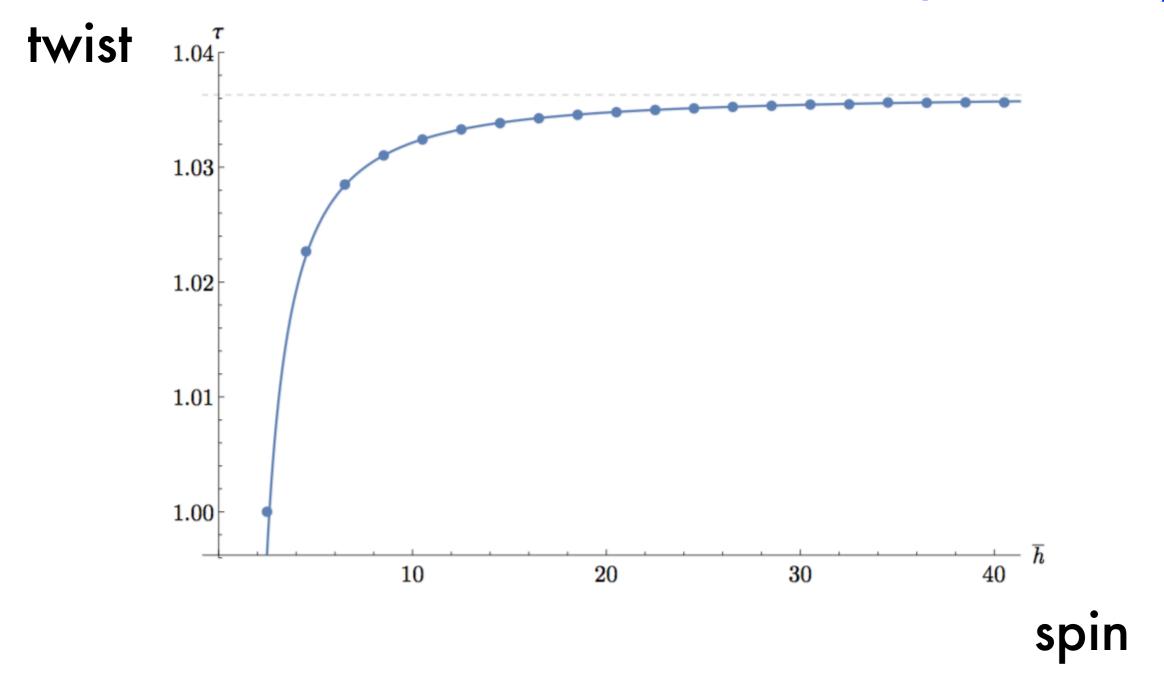
Analytic in spin!

(see also [Alday, Caron-Huot 17'] [Simmons-Duffin, Stanford, Witten 17'])

Result

In 3d Ising J=2 is already large (1% precision)!

[[]Simmons-Duffin; Alday, AZ]



Corollaries of the Inversion Formula

+ CFT data is analytic in spin for J>1

Analytic bootstrap with errors

+ Large N theories made simple

+ Step towards deriving the dual Einstein gravity

Conclusions

- Numerical+Analytic Bootstrap (powerful and rigorous!)
 [Simons Collaboration on the Nonperturbative Bootstrap]
- + Time is very useful (Lorentzian constraints)
- + Spin matters (Unitarity/Causality)
- + Large Spin Expansion/Light-Cone Crossing
- Regge limit/Analyticity in spin
- + ANEC, bound on chaos, Einstein gravity, etc.

Thank you!

Back up: Lorentzian OPE Inversion Formula

$$c^{t}(\Delta, J) = \int_{0}^{1} dz d\bar{z} \mu(z, \bar{z}) G_{J+d-1, \Delta+1-d}(z, \bar{z}) d\text{Disc}[G(z, \bar{z})]$$

- Valid for J>1 (in the planar limit J>2)
- + Equal to the square of a commutator

$$d\text{Disc}[G(z,\bar{z})] = -\frac{1}{2} \langle [\mathcal{O}_2(-1), \mathcal{O}_3(-\rho)] [\mathcal{O}_1(1), \mathcal{O}_4(\rho)] \rangle \ge 0$$

$$\mathrm{dDisc}[G(z,\bar{z})] \sim \sum_{\mathcal{O}',J'} \sin^2 \left(\frac{\pi(\Delta' - 2\Delta - J')}{2} \right) \lambda_{\mathcal{O}',J'}^2 \left| \frac{1 - \sqrt{\rho}}{1 + \sqrt{\rho}} \right|^{\Delta' + J'} \left| \frac{1 - \sqrt{\bar{\rho}}}{1 + \sqrt{\bar{\rho}}} \right|^{\Delta' - J'}$$

+ Only single trace operators contribute in the planar limit

$$\Delta' - J' - 2\Delta = 2$$
 integer $+ \gamma_{d.tr.}$

Back up: Froissart-Gribov Formula

For scattering amplitudes this is result is well-known

$$A(s,t) = \sum_{J=0}^{\infty} a_J(s) P_J(\cos \theta) \qquad \qquad \cos \theta = 1 + \frac{2t}{s}$$

$$a_J^{FG}(s) = a_J^t(s) + (-1)^J a_J^u(s)$$

 $a_J^t(s) = \int_1^\infty d(\cosh \eta) (\sinh \eta)^{d-4} Q_J(\cosh \eta) \operatorname{Disc}_t A(s, t(\eta))$

Partial waves are analytic in spin.

Back up: Einstein Gravity Dual

HPPS Conjecture:

[Heemskerk, Penedones, Polchinski, Sully 09']

Every CFT with large N and large gap in the spectrum of higher spin (J>2) operators is dual to Einstein gravity.

$$-\frac{1}{l_P^{d-1}} \int d^{d+1}x \sqrt{g} \left(R + \frac{d(d-1)}{L_{AdS}^{d-1}} + \alpha' R^2 + \dots \right)$$

Recently there a was a lot of progress towards proving that. [Camanho, Edelstein, Maldacena, A.Z.; Afkhami-Jeddi, Hartman, Kundu, Tajdini; Kulaxizi, Parnachev, A.Z.; Li, Meltzer, Poland; Meltzer, Perlmutter]

What is the deep reason for that universality? In d=2 there is Virasoro symmetry.

Back up: Large N QCD Bootstrap

[Caron-Huot, Komargoski, Sever, A.Z. 16']

[Sever, A.Z. 17']

At large energies and imaginary scattering angles the scattering amplitude is universal

 $\lim_{\substack{s,t\to\infty\\s/t \text{ fixed}}} \log A(s,t) = \alpha' \left[(s+t) \log(s+t) - s \log(s) - t \log(t) \right] \sim E^2 \log E$

$$\sim E^{1/2} \log E$$

$$-\frac{16\sqrt{\pi}}{3} \alpha' m^{3/2} \left(\frac{st}{s+t}\right)^{\frac{1}{4}} \left[K\left(\frac{s}{s+t}\right) + K\left(\frac{t}{s+t}\right) \right] + \dots$$
elliptic integral of the first kind

limit of the Veneziano amplitude

correction due to the slowdown of the string (massive endpoints)/spectrum non-degeneracy

 elliptic integral of the first kind EllipticK[x]