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How do we compute when the coupling is strong?

¢ No small coupling expansion
¢ No Lagrangian

¢ No extra symmetries/integrability

Bootstrap is an old idea of solving theories based on
consistency.



Radical Bootstrap

“Nature is as it is because this is the only possible “&-48 &
Nature consistent with itself” N
G. Chew

(In other words, a consistent theory of quantum gravity
compatible with all known experimental data is unique)

This is too ambitious! But for Conformal Field
Theories (CFTs) it is almost true.

Conformal Bootstrap is a method to solve them based on consistency.
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Physicists Uncover Geometric ‘Theory




Why CFTs?

uv
¢ RG flow fixed points

IR

¢ critical points in condensed matter systems
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¢ non-perturbative quantum gravity in Anti-de Sitter

(AdS/CFT) [Maldacenad]




Plan

1. Basics ot Conformal Bootstrap

2. Analytic Bootstrap: Spin = Expansion Parameter

3. Applications



Basics of Conformal Bootstrap



Conformal Bootstrap

Conformal Bootstrap is based on symmetries and
consistency conditions:

¢ Conformal Symmetry

¢ Unitarity and the OPE

* Crossing Equations

As such it 1s suitable for strongly coupled theories.



Basics ot Conformal Symmetry

¢ Poincare symmetry: translations F,and rotations M,

& Scale or dilatation invariance ) oxt = A\t

¢ Special conformal transtormation K Y oxt = Q(b.aj)x“ B
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operators

Observables

The basic observables are correlation functions of local
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% Each operator is characterized by

¢ Scaling dimension A

#® Representation under rotations (spin J)

% Primary operators

K,,0Oa3(0)] =0
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could not be written
as a derivative of smth

¥ Descendants

O(z') = A2 0(x)
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Operators

Simple examples present in every CET are

% Unit operator A =0 J =0

(ightest operator
= dominates the OPE)

% Stress energy tensot 0, IT"" =0 TFL — ()

A=d J =2

(gravity dual)

% Unitarity bounds A>d—2+J



Two- and Three-point Functions

Correlation functions are invariant under symmetries.

Conformal symmetry fixes 1-, 2-, and 3-point functions.

critical exponents

<Oi (33)> = ( (measured 1n experiments)
5,
(0i(21)0j(22)) = —5x
Ty
)\’ij
<OA7; (xl)OAj (xQ)C/)Ak (5133)> — A FA; A A tA—A RN
(15) 2 (z15) g (233) 2
[Polyakov 70°]

CFT data: (A, J) Aijk

Goal: Find it!



Operator Product Expansion

Operators form an algebra (OPE)

OZ(ZB)OJ (O) — E )\wk|£13‘ Ritlj—Ak (Ok(O) -+ x“@MO;ﬂ(O) -+ )
k‘ ) .
\ expansion in powers Ered

of distance

Consider now the four-point function of identical operators:

(O(21)O () O(3)O(4)) = (éi?;g BA

U= —-">5, U= "—5"75

L13L2g L13Lag



Crossing Equations

We can apply the OPE inside the correlation function

O(ZEQ) 0(2133
O(z2 O(z3) \/
\ o /
2 / \ =2 %
O(z1) O(z4) /
O(lel) 0(334

Nonperturbative!
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Contormal Bootstrap

¢ Original Idea

[Ferrara, Gatto, Grillo 73] [Polyakov 74’]

¢ Realization in 2d
[Belavin, Polyakov, Zamolodchikov 83’]

¢ Realization in 4d (based on results of  [Dolan, Osborn 0p']
[Rattazzi, Rychkov, Tonni, Vichi 08’]

¢ Numerical Solution of the Critical 3d Ising Model

[EI-Showk, Paulos, Poland, Rychkov, Simmons-Duffin 12°-14']

¢ Analytic Bootstrap
[Fitzpatrick, Kaplan, Poland, Simmons-Duffin 12]

[Komargodski, AZ 12]



Crossing Equations O<xz>>_<o<x3>

2

(’)(xl) O(.Z’4)

A A
E:AAJQAJuU — U E:AAJQAJUU)
\conformal block

(known functions)

Conformal block =\conttibution of the primary and its descendants

(0,00,0, ...)

Conformal bootstrap = solve these equations

Functional constraints on CFTdata, Must be satisfied for
all values of the cross ratios.




Conformal Blocks (Technical Details)

Let us list few basic properties of conformal blocks:

+ Eigenfunctions of the Casimir operator
CAQA,J(“) U) — (A + J) (A +J = 1)9A,J(u7 U)

+ Smaﬂ u<<] limit / twist

gn. g (u,v) ~ u%fT,J(v), T=A—J

\ expansion in powers

+ Smau v< <1 hmlt of cross ratios

gn.j(u,v) ~ logwv



Contformal Map of the World
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Numerical Bootstrap (Contormal Oracle)

/NO
@

Ising: Scaling Dimensions ' ‘ ! YB E

Tentative
CFT data

[Talk by Slava Rychkov “14]

Input:

a) Z.symmetry
b) 1 even relevant scalar

+  ¢) 1 odd relevant scalar

0.51808 0.51810 0.51812 0.51814 0.51816 0.51818

[Kos, Poland, Simmons-Duffin, Vichi ’16]



Analytic Bootstrap



Analytic Methods

& Protected Observables

[Dolan, Osborn; Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees; Chesler, Lee, Pufu, Yacoby, ...]

¢ Integrability

[Escobedo, Gromov, Sever, Vieira; Basso, Coronado, Komatsu, Tat Lam, Vieira, Zhong; Bargheer,
Caetano, Fleury, Komatsu, ...]

¢ Jarge Central Charge

[Heemskerk, Penedones, Polchinski, Sully; Fitzpatrick, Kaplan; Alday, Bissi, Lukowski; Rastelli, Zhou, ...]

¢ Bootstrap in 2d

[Cardy; Hellerman; Hartman, Keller, Stoica; Fitzpatrick, Kaplan, Walters; Lin, Shao, Simmons-Duffin,
Wang, Yin, ...]

¢ Crossing in Mellin space
[Mack; Penedones; Gopakumar, Kaviraj, Sen, Sinha; Dey; Rastelli, Zhou; Alday, Bissi, Lukowski, ...]

¢ Jarge Global Charge

[Hellerman, Orlando, Reffert, Watanabe; Alvarez-Gaume, Loukas; Monin, Pirtskhalava, Rattazzi,
Seibold; Jafferis, Mukhametzhanov, AZ ...]

¢ S-matrix bootstrap

[Caron-Huot, Komargodski, Sever, AZ; Paulos, Penedones, Toledo, van Rees, Vieira]



Analytic Bootstrap

Study of the crossing equations in the Lorentzian regime.

¢ Analytic/Light-Cone Bootstrap

¢ Analyticity in Spin

¢ Reggoe limit, ANEC, chaos, gravity, etc



Analytic Bootstrap 101:

Minimal Solution to Crossing



Analytic Bootstrap

Consider the crossing equation 1n the light-cone limit

VL u K1

Lorentzian regime

2 9
- xisx
U:ZZ: ;2 34
L13L oy
°® 22 2
- _\ _ L14do3
v=(1-2)1-2) = 55—

L3l 9y




Analytic Bootstrap

We can use the OPE in one channel

A—J

2 ) VL u<<l

G(v,u) =1+ 0(v

Crossing equation v2G(u,v) = u=G (v, Wecomes

uA

(u, v —1+Z)\AJ9AJUU> UA(1+...)

diverges!

. lim u,v) ~ logv
Puzzle 1: lim ga, 3 (u,v) g



Generalized Free Field (GFF)

Example: Generalized Free Field

(OO00) = (O0)(OO) + permutations

GO (u,v) =14 u> + (%)A

* Spectrum contains operators outo,,...0,,0

(double-twist operators)

An,J:QA@—I—Qn—I—J

uA

% Sum over spins produces the divergence = —
v



Analytic Bootstrap

Resolution:

Every solution to crossing equations has an infinite
number of operators of every spin.



Analytic Bootstrap 201:

Large Spin Universality



Analytic Bootstrap AdS

Impact parameter b is dual to spin J. ‘@

Flat Space: b~ J DY
b
AdS (CFT): b~ logJ [C°r“°'b°'[jz~:;' ;e;:i:::zlschiappa]
scattering phase shift -~ CFT energy levels
1
6(s,b) ~ ™™ SA(T) ~ —

Jm



Large Spin Universality

This mechanism of reproducing operators on one side by
summing large spin operators on the other side is
completely universal.

(inner workings of crossing equations)

[Fitzpatrick, Kaplan, Poland, Simmons-Duffin 12]
[Komargodski, AZ 12]

Every CFT is GFF at large spin

Every CIFT admits an infinite family of operators with the
properties 1
An7j :Aol —|—A(92 —|—2n—|—J—|—O(j)

1
An J = ASEF (1 1 O(j)>

00"a,,...0,,0




Analytic Bootstrap

Let us add a first nontrivial correction to the previous
exercise

us d? A2 42
ZAAJgAqu) A 14 (d—l)QcTUQ logu + ...
\ GFEF result \

leading ‘correction
due to stress tensor

GFF
E A& s9a,7(u, v) E u™ (14 logu))\ fr(v) + ...
anomalous known collinear
dimension conformal block

By matching the two we get




Analytic Bootstrap

The method works not only for singular terms, but also for
Casimir-singular terms (act on the Casimir
equation on the crossing equations). [Alday, Bissi, Lukowski]

These correspond to terms that become singular upon
acting on them with the Casimir operator

UCL

Casimir-regular terms are

v, v logw
Equivalently, these are terms with non-zero double

discontinuity

dDisclf(v)] = f(0) — 5 (F(ve*™) = f(ve™>")



Perturbative Analytic Bootstrap/ILarge Spin Perturbation Theory
[Alday et al.]

Feynman Rules ———— Unperturbed Spectrum

Large Spin Expansion +

Feynman Diagrams ————— .
Crossing

¢ Critical O(N) models
[Alday, Bissi, Lukowski; Gopakumar, Kaviraj, Sen, Sinha; Dey, Kaviraj; Alday, AZ, Giombi, Kirilin,

Skvortsov, ...] d= 4 — ¢
C'r O o 233 4 100651 S5 I 1
- =] —€" — —€" — — - - (3 | € + -
Chroo 324 8748 3779136 2916
<TIU/TPU> ~ CT [Alday, Henriksson, van Loon]
¢ Gauge Theories A(J) ~logJ

[Alday, Bissi; Lukowski; Li, Meltzer, Poland; Korchemsky; Alday, AZ; Henriksson, Lukowski, ...]

¢ Loops in AdS

[Aharony, Alday, Bissi, Perlmutter; Alday, Bissi; Aprile, Drummond, Heslop, Paul; Ye Yuan; Alday, Caron-Huot,...]



Analytic Bootstrap 301:

Analyticity in Spin



Few QQuestions

¢ Spin 1s discrete, not continuous

cce™ ™ )\\9)9))7)7)7;)

¢ How large 1s large spin

& \What are the errors?

All these problems are solved due to analyticity in spin.

[Caron-Huot 177]



Complex J-plane and Regge Limit

Already in the 50’ it was understood that it 1s natural to think

about the complex angular momentum. [Regge]
Consider an amplitude”” " {(E) that is: [Caron-Huot 17']
basic clash

+ Admits the low-energy Taylor expansion
f(E)=> fsE’
J=0

+ Analytic away from two branch cuts at  |E| > 1

o .| f(E)
+ Bounded at infinity Ell_I>I1 7




Complex J-plane and Regge Limit

We can write a simple dispersion integral which is manifestly
analytic in spin

1 [*dE
fr = %/1 — B~ (Discf(E) + (-1)”Discf (- E))

The same idea applies to scattering amplitudes and CEFTs!

Taylor expansion g Partial wave expansion
Analyticity -~ Unitarity

Bound at infinity ~— Regge limit/Causality



Regge Limit

The relevant limit 1s the so-called Regge limit

lim A(s,t) (high energy, small angle)

s—oo, t—fixed

lim G(ze *™ %)
z—)l,i:g—ﬁxed ® ®

bounded using OPE b



Bound on the Regge Limit in CFTs

Using the OPE it 1s trivial to bound the Regge limit

G Regge(2,2) = G(ze ™, 2)

G(z,2) = (22720 an 2 2 2 %
A,J

an g = 0
b
GRegge(Ze_QWi, 2) _ 627m'A(Z2)—A@ Z CLA,Je_iW(AiJ)ZA_;EJgA;FJ
A,J
Adding Time = Adding Phases et

‘GRegge(Za Z)| < GEucl(‘Z‘v |Z|)



Bound on the Regge Limit in CFTs

The effect is dramatic in the other channel

G Regge(2,2) = G(ze ™, 2)

AxLJ ATJ

Gl—2z1—-2)~(1—2)"2 (1—-2) 2

1
(1—-2)’

G(l —ze *™, 1 —%) ~

Taming these divergences requires conspiracy in spin.



Bound on Regge Limit in CEFTs

|GRegge(Za 2)‘ < GEucl(|Z‘7 ‘ZD

+ ANEC in QFT

[Hofman, Li, Meltzer, Poland, Rejon-Barrera; Komargodski, Kulaxizi, Parnachev, AZ; Faulkner

Leigh, Parrikar, Wang; Hartman, Kundu, Tajdini]

O

/ AN (W T | W) ulu? > 0

— OO

(the argument uses Rindler positivity)
[Hartman, Kundu, Tajdini]

/ N (X, [ e > 0

+ Bound on chaos (V (1), W(0)]2) ~ et Ay < X

[Maldacena, Shenker, Stanford] B 6



Lorentzian OPE Inversion Formula

Similarly, one can write partial wave expansion

for CFTs

l 2 / COﬂfOfmal [ OUfief tfaﬁSfOfm
d *

G(z,z2) =1+ Z[i | %C(A, J)F5a(2,2)
\

conformal block plus its shadow”

+ Closing the contour leads to the OPE
cFC(AT) = A T) + (1) (A, )

1
ct(A,J):/ dzdzZu(z,2)G j4a—1.A+1-d(2, 2)dDisc|G(z, Z)]
0

[Caron-Huot 17]

A 1 - o (see also [Alday, Caron-Huot 17’]
na ytlc ln Spln. [Simmons-DUfﬁn, Sfcmford, Wlﬁen -|71




Result

In 3d Ising J=2 is already large (1% precision)!
[Simmons-Duffin; Alday, AZ]

twist 1o
oo
1.02
1.01:

1.00+

=

spin



Corollaries of the Inversion Formula

+ CFT data 1s analytic in spin for |>1

+ Analytic bootstrap with errors

+ Large N theories made simple

+ Step towards dertving the dual Einstein gravity



Conclusions
+ Numerical+Analytic Bootstrap (powertful and rigorous!)

[Simons Collaboration on the Nonperturbative Bootstrap]

+ Time 1s very useful (Lorentzian constraints)

+ Spin matters (Unitarity/Causality)
+ Large Spin Expansion/Light-Cone Crossing
+ Regge limit/ Analyticity in spin

+ ANEC, bound on chaos, Einstein gravity, etc.

Thank youl



Back up: Lorentzian OPE Inversion Formula

1
ct(A,J):/ dzdzZu(z,2)G j4d—1.A+1-d(2, Z)dDisc|G(z, Z)]
0

+ Valid for J>1 (in the planar limit J>2)

+ Equal to the square of a commutator

dDisc|G (2, 2)| = —%<[(92(—1), O3(=p)]|O1(1), Ou(p)]) = 0

A —2A - J’
leSC[G(Z,Z)] ~ Z Sin2 (ﬂ-( 9 J )) )\?Qx’J/
o’ J’

+ Only single trace operators contribute in the planar limit

A —J —2A = 2 integer + Vq.¢r



Back up: Froissart-Gribov Formula

For scattering amplitudes this is result 1s well-known

- 2
A(Svt) — Z CLJ(S)PJ(COS 9) cosfh =1+ ;
J=0

Partial waves are analytic in spin.



Back up: Einstein Gravity Dual

HPPS C()ﬂjecture: [Heemskerk, Penedones, Polchinski, Sully 09°]

Every CFT with large N and large gap in the spectrum
of higher spin (J>2) operators 1s dual to Einstein gravity.

d(d — 1)

— o' R?
L%
AdS

1
ld_lfdd+1x\/§ R
P

Recently there a was a lot of progress towards proving that.
[Camanho, Edelstein, Maldacena, A.Z.; Atkhami-Jeddi, Hartman, Kundu, Tajdini; Kulaxizi, Parnacheyv, A.Z.;

Li, Meltzer, Poland; Meltzer, Perlmutter]

What 1s the deep reason for that universality?

In d=2 there 1s Virasoro symmetry.



Back up: Large N QCD Bootstrap

[Caron-Huot, Komargoski, Sever, A.Z. 16’]
[Sever, A.Z. 17']

At large energies and imaginary scattering angles the
scattering amplitude is universal

F limit of the Veneziano amplitude

IM1bgA@j):aﬂ@+¢ﬂmﬂ&+ﬂ—wmg@0—tbgﬂ]maE2k%l§

s, t — o0
s/t fixed / rrecti re O(log E)
N El 21OgE corrections are O(log \
. i
B Gﬁa/m3/2 St K 5 1+ K ! + ...
3 s+t s+1 s +1

/

correction due to the slowdown of the string
(massive endpoints)/spectrum non-degeneracy

\ elliptic integral of the first kind

EllipticK[x]



