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Jet physics at the LHC

Many scale hierarchies! 
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This picture can be misleading: it depends on the 
observable to which aspect of QCD one is 
sensitive! 

For inclusive observables, sensitive only to a 
single high-energy scale Q, we have

6

σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µf )⟨P (p1)|Oa(x1)|P (p1)⟩ ⟨P (p2)|Ob(x2)|P (p2)⟩+O(ΛQCD/Q)

(2)
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Theory

Studying matter at the highest energies possible has transformed 
our understanding of the microscopic world. CERN’s Large 
Hadron Collider (LHC), which generates proton collisions at the 
highest energy ever produced in a laboratory (13 TeV), provides a 
controlled environment in which to search for new phenomena and 
to address fundamental questions about the nature of the interac-
tions between elementary particles. Specifically, the L+C·s main 
detectors – ATLAS, CMS, LHCb and ALICE – allow us to meas-
ure the cross-sections of elementary processes with remarkable 
precision. A great challenge for theorists is to match the experi-
mental precision with accurate theoretical predictions. This is 
necessary to establish the Higgs sector of the Standard Model of 
particle physics and to look for deviations that could signal the 
existence of new particles or forces. Pushing our current capabili-
ties further is key to the success of the LHC physics programme.

Underpinning the prediction of LHC observables at the highest 
levels of precision are perturbative computations of cross-sections. 
Perturbative calculations have been carried out since the early days 
of quantum electrodynamics (QED) in the 1940s. Here, the small-
ness of the QED coupling constant is exploited to allow the expres-
sions for physical quantities to be expanded in terms of the coupling 
constant – giving rise to a series of terms with decreasing magnitude. 
7he first e[ample of such a calculation was the one�loop 4E' cor-
rection to the magnetic moment of the electron, which was carried 
out by Schwinger in ����. It demonstrated for the first time that 4E' 
was in agreement with the experimental discovery of the anomalous 
magnetic moment of the electron, ge-2 (the latter quantity was dubbed 
“anomalous” precisely because, prior to Schwinger’s calculation, it 
did not agree with predictions from Dirac’s theory). In 1957, Som-
merfeld and Petermann computed the two-loop correction, and it 

The two-loop 
explosion
During the past two years there has been a 
burst of activity in next-to-next-to-leading 
order calculations to ensure that theory 
keeps up with the increasing precision of LHC 
measurements.

s

Next-to-next-to-leading order (NNLO) Feynman diagrams 
relevant to the LHC physics programme. (Image credit: Daniel 
Dominguez, CERN.)
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all calculations were essentially limited to “2 A 1” scattering pro-
cesses, in essence Higgs and Drell–Yan production, as well as Higgs 
production in association with a Drell–Yan pair. From a QCD point 
of view, the latter process is simply off-shell Drell–Yan production 
in which the vector boson radiates a Higgs. A few 2 A 2 calculations 
started to appear in 2012, most notably top-pair production and the 
production of a pair of vector bosons. It is only in the past two years, 
however, that we have witnessed an explosion of NNLO calcula-
tions (figure �). 7oday, all � A 2 Standard Model LHC scattering 
processes are known to NNLO, thanks to remarkable progress in 
the calculation of two-loop integrals and in the development of pro-
cedures to handle intermediate divergences. 

Compared to NLO calculations, NNLO calculations are substan-
tially more comple[. 7wo main difficulties must be faced� loop inte-
grals and divergences. 7wo�loop integrals have been calculated in 
the past by explicitly performing the multi-dimensional integration, 
in which each loop gives rise to a “D-dimensional” integration. For 
simple cases, analytical expressions can be found, but in many cases 
only numerical results can be obtained for these integrals. 7he com-
plexity increases with the number of dimensions (i.e. the number of 
loops) and with the number of Lorent]�invariant scales involved in 
the process (i.e. the number of particles involved, and in particular 
the number of massive particles). 

Recently, new approaches to these loop integrals have been sug-
gested. In particular, it has been known since the late 1990s that 
integrals can be treated as variables entering a set of differential 
equations, but solutions to those equations remained complicated 
and could be found only on a case-by-case basis. A revolution 
came about just three years ago when it was realised that the dif-

ferential equations can be organised in a simple form that makes 
finding solutions, i.e. finding e[pressions for the wanted two�loop 
integrals, a manageable problem. Practically, the set of multi-
loop integrals to be computed can be regarded as a set of vectors. 
Decomposing these vectors in a convenient set of basis vectors can 
lead to significant simplifications of the differential eTuations, and 
concrete criteria were proposed for finding an optimal basis. 7he 
very important NNLO calculations of diboson production have 
benefitted from this technology.

Currently, when only virtual massless particles are involved and 
up to a total of four external particles are considered, the two-loop 
integral problem is considered solved, or at least solvable. How-
ever, when massive particles circulate in the loop, as is the case for 
a number of LHC processes, the integrals give rise to a new class 
of functions, elliptic functions, and it is not yet understood how to 
solve the associated differential equations. Hence, for processes 
with internal masses we still face a conceptual bottleneck. Over-
coming this will be very important for Higgs studies at large trans-
verse momentum, where the top loop to which the Higgs couples 
is resolved. 7he calculation of these integrals is today an area with 
tight connections to more formal and mathematical areas, leading 
to close collaborations between the high-energy physics and the 
mathematical/formal-oriented communities. 

7he second main difficulty in NNL2 calculations is that, as 
at NLO, individual contributions  are divergent in the infrared 
region, i.e. when particles have a very small momentum or become 
collinear with respect to one another, and the structure of these 
singularities is now considerably more complex because of the 
extra particle radiated at NNLO. All singularities cancel when s

H diff., Anastasiou, Melnikov, Petriello

H diff., Anastasiou, Melnikov, Petriello

WH total, Brein, Djouadi, Harlander

H total, Ravindran, Smith, van Neerven

H total, Anastasiou, Melnikov

W/Z total, H total, Harlander, Kilgore

W diff., Melnikov, Petriello

W/Z diff., Melnikov, Petriello

W/Z diff., Catani et al.
H diff., Catani, Grazzini

VBF total, Bolzoni, Maltoni, Moch, Zaro

WH diff., Ferrera, Grazzini, Tramontano

Hj (partial), Boughezal et al.

t t  total, Czakon, Fiedler, Mitov

jj (partial), Currie, Gehrmann-De Ridder, Glover, Pires

Z-γ, Grazzini, Kallweit, Rathlev, Torre

Z-γ, W-γ, Grazzini, Kallweit, Rathlev

γ -γ, Catani et al.

–

t t  diff., Czakon, Fiedler, Mitov–
WW, Gehrmann et al.

ZZ, Cascioli et al.

ZH diff., Ferrera, Grazzini, Tramontano

Hj, Boughezal et al.

Zj, Gehrmann-De Ridder et al.
ZZ, Grazzini, Kallweit, Rathlev
Hj, Caola, Melnikov, Schulze

Zj, Boughezal et al.
WH diff, ZH diff., Campbell, Ellis, Williams

WZ, Grazzini, Kallweit, Rathlev, Wiesemann
WW, Grazzzini et al.

MCFM at NNLO, Boughezal et al.
PtZ, Gehrmann-De Ridder et al.

γ-γ, Campbell, Ellis, Li, Williams

Hj, Boughezal et al.
VBF diff., Cacciari et al.

Wj, Boughezal, Focke, Liu, Petriello

2002 2004 2006 2008 2010 2012 2014 2016

explosion of calculations in the past 18 months

Fig. 2. The completion date and main authors of various NNLO calculations, with vertical separations for display purposes. 
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took another 40 years until, in 1996, Laporta and Remiddi computed 
analytically the three-loop corrections to ge-2 and, 10 years later, 
even the four� and five�loop corrections were computed numerically 
by Kinoshita et al. The calculation of QED corrections is supple-
mented with predictions for electroweak and hadronic effects, and 
makes ge�� one of the best known Tuantities today. Since ge-2 is also 
measured with remarkable precision, it provides the best determi-
nation of the fine�structure constant with an error of about �.�� ppb. 
7his determination agrees with other determinations, which reach 
an accuracy of �.�� ppb, showcasing the remarkable success of Tuan-
tum field theory in describing material reality. 

In the case of proton–proton collisions at the LHC, the dominant 
processes involve Tuantum chromodynamics (4C'). Although in 
general the calculations are more complex than in QED due to 
the non�abelian nature of this interaction, i.e. the self�coupling of 
gluons, the fact that the QCD coupling constant is small at the high 
energies relevant to the LHC means that perturbative methods are 
possible. In practice, all of the )eynman diagrams that correspond 
to the lowest�order process are drawn by considering all possible 
ways in which a given final state can be produced. )or instance, in 
the case of 'rell²<an production at the L+C, the only lowest�order 
diagram involves an incoming Tuark and an incoming antiTuark 
from the proton beams, which annihilate to produce a =, a* or a 
W boson, which then decays into leptons. 8sing the )eynman rules, 
such pictorial descriptions can be turned into Tuantum�mechanical 
amplitudes. 7he cross�section can then be computed as the sTuare 
of the amplitude, integrated over the phase space and appropriately 
summing and averaging over Tuantum numbers. 

7his lowest�order description is very crude, however, since it 
does not account for the fact that Tuarks tend to radiate gluons. 7o 
incorporate such higher�order Tuantum corrections, ne[t�to�leading 
order (NL2) calculations that describe the radiation of one addi-
tional gluon are reTuired. 7his gluon can either be real, giving rise 
to a particle that is recorded by a detector, or virtual, corresponding 
to a Tuantum�mechanical Áuctuation that is emitted and reabsorbed. 
%oth contributions are divergent because they become infinite in the 
limit when the energy of the gluon is infinitesimally small, or when 
the gluon is e[actly collinear to one of the emitting Tuarks. When 
real and virtual corrections are combined, however, these diver-
gences cancel out. 7his is a conseTuence of the so�called .inoshita²
Lee²Nauenberg theorem, which states that low�energy (infrared) 
divergences must cancel in physical (measurable) Tuantities. 

Even if divergences cancel in the final result, a procedure to han-
dle divergences in intermediate steps of the calculations is still 
needed. +ow to do this at the level of NL2 corrections has been 
well understood for a number of years. 7he first successes of NL2 
4C' calculations came in the ����s with the comparison of 'rell²

Yan particle-production data 
recorded by CERN·s SPS and 
)ermilab·s 7evatron e[peri-
ments to leading�order and NL2 
4C' predictions, which had 
first been computed in ���� by 
Altarelli, Ellis and 0artinelli. 
The comparison revealed une-
Tuivocally that NL2 corrections 

are reTuired to describe 'rell²<an data, and marked the first great 
success of perturbative 4C' (figure �). 

7hings have changed a lot since then. 7oday, NL2 corrections 
have been calculated for a large class of processes relevant to the 
LHC programme, and several tools have been developed to even 
compute them in a fully automated way. As a result, the problem of 
NL2 4C' calculations is considered solved and comparing these 
to data has become standard in current L+C data analysis. 7hanks 
to the impressive precision now being attained by the L+C e[peri-
ments, however, we are now being taken into the comple[ realm of 
higher�order calculations. 

The NNLO explosion
7he new frontier in perturbative 4C' is the calculation of ne[t�
to�ne[t�to�leading order (NNL2) corrections. At the level of dia-
grams, the picture is once again pretty simple� at NNL2 level, it 
is not just one e[tra particle emission but two e[tra emissions that 
are accounted for. 7hese emissions can be two real partons (Tuarks 
or gluons), a real parton and a virtual one, or two virtual partons. 

7he first NNL2 computation for a collider process concerned 
“inclusiveµ 'rell²<an production, by +amberg, 9an Neerven and 
0atsuura in ����. 0otivated by the SPS and 7evatron data, and also 
by the planned L+C and SSC e[periments, this was a pioneering 
calculation that was performed analytically. 7he second NNL2 cal-
culation, in ����, was for inclusive +iggs production in gluon²gluon 
fusion by +arlander and .ilgore. Inclusive calculations refer only to 
the total cross-section for producing a Higgs boson or a Drell–Yan 
pair without any restriction on where these particles end up, which is 
not measurable because detectors do not cover the entire phase space 
such as the region close to the beam. 

7he first “e[clusiveµ NNL2 calculations, which allow kinematic 
cuts to be applied to the final state, started to appear in ���� for 
'rell²<an and +iggs production. 7hese calculations were motivated 
by the need to predict Tuantities that can be directly measured, rather 
then relying on extrapolations to describe the effects of experimental 
cuts. 7he years ����²���� saw more activity, but limited progress� 
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Studying matter at the highest energies possible has transformed 
our understanding of the microscopic world. CERN’s Large 
Hadron Collider (LHC), which generates proton collisions at the 
highest energy ever produced in a laboratory (13 TeV), provides a 
controlled environment in which to search for new phenomena and 
to address fundamental questions about the nature of the interac-
tions between elementary particles. Specifically, the L+C·s main 
detectors – ATLAS, CMS, LHCb and ALICE – allow us to meas-
ure the cross-sections of elementary processes with remarkable 
precision. A great challenge for theorists is to match the experi-
mental precision with accurate theoretical predictions. This is 
necessary to establish the Higgs sector of the Standard Model of 
particle physics and to look for deviations that could signal the 
existence of new particles or forces. Pushing our current capabili-
ties further is key to the success of the LHC physics programme.

Underpinning the prediction of LHC observables at the highest 
levels of precision are perturbative computations of cross-sections. 
Perturbative calculations have been carried out since the early days 
of quantum electrodynamics (QED) in the 1940s. Here, the small-
ness of the QED coupling constant is exploited to allow the expres-
sions for physical quantities to be expanded in terms of the coupling 
constant – giving rise to a series of terms with decreasing magnitude. 
7he first e[ample of such a calculation was the one�loop 4E' cor-
rection to the magnetic moment of the electron, which was carried 
out by Schwinger in ����. It demonstrated for the first time that 4E' 
was in agreement with the experimental discovery of the anomalous 
magnetic moment of the electron, ge-2 (the latter quantity was dubbed 
“anomalous” precisely because, prior to Schwinger’s calculation, it 
did not agree with predictions from Dirac’s theory). In 1957, Som-
merfeld and Petermann computed the two-loop correction, and it 
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all calculations were essentially limited to “2 A 1” scattering pro-
cesses, in essence Higgs and Drell–Yan production, as well as Higgs 
production in association with a Drell–Yan pair. From a QCD point 
of view, the latter process is simply off-shell Drell–Yan production 
in which the vector boson radiates a Higgs. A few 2 A 2 calculations 
started to appear in 2012, most notably top-pair production and the 
production of a pair of vector bosons. It is only in the past two years, 
however, that we have witnessed an explosion of NNLO calcula-
tions (figure �). 7oday, all � A 2 Standard Model LHC scattering 
processes are known to NNLO, thanks to remarkable progress in 
the calculation of two-loop integrals and in the development of pro-
cedures to handle intermediate divergences. 

Compared to NLO calculations, NNLO calculations are substan-
tially more comple[. 7wo main difficulties must be faced� loop inte-
grals and divergences. 7wo�loop integrals have been calculated in 
the past by explicitly performing the multi-dimensional integration, 
in which each loop gives rise to a “D-dimensional” integration. For 
simple cases, analytical expressions can be found, but in many cases 
only numerical results can be obtained for these integrals. 7he com-
plexity increases with the number of dimensions (i.e. the number of 
loops) and with the number of Lorent]�invariant scales involved in 
the process (i.e. the number of particles involved, and in particular 
the number of massive particles). 

Recently, new approaches to these loop integrals have been sug-
gested. In particular, it has been known since the late 1990s that 
integrals can be treated as variables entering a set of differential 
equations, but solutions to those equations remained complicated 
and could be found only on a case-by-case basis. A revolution 
came about just three years ago when it was realised that the dif-

ferential equations can be organised in a simple form that makes 
finding solutions, i.e. finding e[pressions for the wanted two�loop 
integrals, a manageable problem. Practically, the set of multi-
loop integrals to be computed can be regarded as a set of vectors. 
Decomposing these vectors in a convenient set of basis vectors can 
lead to significant simplifications of the differential eTuations, and 
concrete criteria were proposed for finding an optimal basis. 7he 
very important NNLO calculations of diboson production have 
benefitted from this technology.

Currently, when only virtual massless particles are involved and 
up to a total of four external particles are considered, the two-loop 
integral problem is considered solved, or at least solvable. How-
ever, when massive particles circulate in the loop, as is the case for 
a number of LHC processes, the integrals give rise to a new class 
of functions, elliptic functions, and it is not yet understood how to 
solve the associated differential equations. Hence, for processes 
with internal masses we still face a conceptual bottleneck. Over-
coming this will be very important for Higgs studies at large trans-
verse momentum, where the top loop to which the Higgs couples 
is resolved. 7he calculation of these integrals is today an area with 
tight connections to more formal and mathematical areas, leading 
to close collaborations between the high-energy physics and the 
mathematical/formal-oriented communities. 

7he second main difficulty in NNL2 calculations is that, as 
at NLO, individual contributions  are divergent in the infrared 
region, i.e. when particles have a very small momentum or become 
collinear with respect to one another, and the structure of these 
singularities is now considerably more complex because of the 
extra particle radiated at NNLO. All singularities cancel when s
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took another 40 years until, in 1996, Laporta and Remiddi computed 
analytically the three-loop corrections to ge-2 and, 10 years later, 
even the four� and five�loop corrections were computed numerically 
by Kinoshita et al. The calculation of QED corrections is supple-
mented with predictions for electroweak and hadronic effects, and 
makes ge�� one of the best known Tuantities today. Since ge-2 is also 
measured with remarkable precision, it provides the best determi-
nation of the fine�structure constant with an error of about �.�� ppb. 
7his determination agrees with other determinations, which reach 
an accuracy of �.�� ppb, showcasing the remarkable success of Tuan-
tum field theory in describing material reality. 

In the case of proton–proton collisions at the LHC, the dominant 
processes involve Tuantum chromodynamics (4C'). Although in 
general the calculations are more complex than in QED due to 
the non�abelian nature of this interaction, i.e. the self�coupling of 
gluons, the fact that the QCD coupling constant is small at the high 
energies relevant to the LHC means that perturbative methods are 
possible. In practice, all of the )eynman diagrams that correspond 
to the lowest�order process are drawn by considering all possible 
ways in which a given final state can be produced. )or instance, in 
the case of 'rell²<an production at the L+C, the only lowest�order 
diagram involves an incoming Tuark and an incoming antiTuark 
from the proton beams, which annihilate to produce a =, a* or a 
W boson, which then decays into leptons. 8sing the )eynman rules, 
such pictorial descriptions can be turned into Tuantum�mechanical 
amplitudes. 7he cross�section can then be computed as the sTuare 
of the amplitude, integrated over the phase space and appropriately 
summing and averaging over Tuantum numbers. 

7his lowest�order description is very crude, however, since it 
does not account for the fact that Tuarks tend to radiate gluons. 7o 
incorporate such higher�order Tuantum corrections, ne[t�to�leading 
order (NL2) calculations that describe the radiation of one addi-
tional gluon are reTuired. 7his gluon can either be real, giving rise 
to a particle that is recorded by a detector, or virtual, corresponding 
to a Tuantum�mechanical Áuctuation that is emitted and reabsorbed. 
%oth contributions are divergent because they become infinite in the 
limit when the energy of the gluon is infinitesimally small, or when 
the gluon is e[actly collinear to one of the emitting Tuarks. When 
real and virtual corrections are combined, however, these diver-
gences cancel out. 7his is a conseTuence of the so�called .inoshita²
Lee²Nauenberg theorem, which states that low�energy (infrared) 
divergences must cancel in physical (measurable) Tuantities. 

Even if divergences cancel in the final result, a procedure to han-
dle divergences in intermediate steps of the calculations is still 
needed. +ow to do this at the level of NL2 corrections has been 
well understood for a number of years. 7he first successes of NL2 
4C' calculations came in the ����s with the comparison of 'rell²

Yan particle-production data 
recorded by CERN·s SPS and 
)ermilab·s 7evatron e[peri-
ments to leading�order and NL2 
4C' predictions, which had 
first been computed in ���� by 
Altarelli, Ellis and 0artinelli. 
The comparison revealed une-
Tuivocally that NL2 corrections 

are reTuired to describe 'rell²<an data, and marked the first great 
success of perturbative 4C' (figure �). 

7hings have changed a lot since then. 7oday, NL2 corrections 
have been calculated for a large class of processes relevant to the 
LHC programme, and several tools have been developed to even 
compute them in a fully automated way. As a result, the problem of 
NL2 4C' calculations is considered solved and comparing these 
to data has become standard in current L+C data analysis. 7hanks 
to the impressive precision now being attained by the L+C e[peri-
ments, however, we are now being taken into the comple[ realm of 
higher�order calculations. 

The NNLO explosion
7he new frontier in perturbative 4C' is the calculation of ne[t�
to�ne[t�to�leading order (NNL2) corrections. At the level of dia-
grams, the picture is once again pretty simple� at NNL2 level, it 
is not just one e[tra particle emission but two e[tra emissions that 
are accounted for. 7hese emissions can be two real partons (Tuarks 
or gluons), a real parton and a virtual one, or two virtual partons. 

7he first NNL2 computation for a collider process concerned 
“inclusiveµ 'rell²<an production, by +amberg, 9an Neerven and 
0atsuura in ����. 0otivated by the SPS and 7evatron data, and also 
by the planned L+C and SSC e[periments, this was a pioneering 
calculation that was performed analytically. 7he second NNL2 cal-
culation, in ����, was for inclusive +iggs production in gluon²gluon 
fusion by +arlander and .ilgore. Inclusive calculations refer only to 
the total cross-section for producing a Higgs boson or a Drell–Yan 
pair without any restriction on where these particles end up, which is 
not measurable because detectors do not cover the entire phase space 
such as the region close to the beam. 

7he first “e[clusiveµ NNL2 calculations, which allow kinematic 
cuts to be applied to the final state, started to appear in ���� for 
'rell²<an and +iggs production. 7hese calculations were motivated 
by the need to predict Tuantities that can be directly measured, rather 
then relying on extrapolations to describe the effects of experimental 
cuts. 7he years ����²���� saw more activity, but limited progress� 
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Compared to NLO 
calculations, NNLO 
are substantially 
more complex.

Cam
b. M

onogr. Part. Phys. N
ucl. Phys. Cosm
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CCApr17_NNLO.indd   20 08/03/2017   15:31

WWW.

from G. Salam, LHCP 2016
Note: Many computations based on effective field 

theory (qT and N-jettiness subtractions):

NNLO (QCD) ≈ NNLO (SCET) + NLO (QCD)
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σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µf )⟨P (p1)|Oa(x1)|P (p1)⟩ ⟨P (p2)|Ob(x2)|P (p2)⟩+O(ΛQCD/Q)

(2)
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The matching coefficient Cab is independent of 
external states and insensitive to physics below 
the matching scale μ.  

Can use quark and gluon states to perform the 
matching. 

• Trivial matrix elements 

• Wilson coefficients are partonic cross section 

• Bare Wilson coefficients have divergencies. 
Renormalization induces dependence on μ. 
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If disparate hard scales are present, one 
encounters large logarithms in the matching 
coefficient.  

• Can spoil convergence of perturbation 
theory 

Solution: use a tower of effective theories. 
Integrate out the contributions at the different 
scales, one after another. 

• Resummation  by RG evolution 

Challenges  

• Need the EFT relevant for the given 
kinematics. By now, we know how to 
handle many kinematic situations. 

• Need to compute and match the results 
in different hierarchies, e.g. for Q1→Q2

11

Q2

Q1

Q0



Example: Z and H production qT ≪ MZ,H

• Cannot use fixed-order computation in peak region, but need to match onto 
fixed order at larger qT. 

• NNNLL resummation using three-loop anomalous dimensions Li, Zhu ’16; 
Vladimirov, ‘16 obtained from three-loop computations of soft-gluon matrix 
element. 

• Experimental precision for Z is fantastic! Non-perturbative effects?

12

Framework
Phenomenology

Appendix

Confront with data
Conclusions

VS Z ATLAS 8 TeV

Good agreement with data: [Becher,TL,Neubert,Wilhelm]pgr.

ATLAS hep-ex/1512.0219 Z/�⇤ 20.3 fb�1 at 8TeV.
Cuts for d�fiducial/dqT : 66 < Mll/GeV < 116,

pT ,l > 20GeV, |⌘l | < 2.4, excluding 1.37 < |⌘l | < 1.52

Suppressed tail and overshoot �exp
Z/�⇤!l+ l�

= 537.10pb by ⇠ +6%.

At this precision, potentially relevant �n and �0 log0 � ↵3
s contributions:

KqT/GeV2[10,20] ⇠ 0.9 , KqT/GeV2[20,40] ⇠ 0.95
[Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan].

All three experiments well described. No specific tuning.

Thomas Lübbert qT spectra at NNLL’+NNLO with CuTe 17

CuTe 2.0 TB, Lübbert, Neubert, Wilhelm Bizon, Monni, Re, Rottoli and Torrielli, 1705.09127
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Figure 2. Comparison between two different prescriptions for the resummation-scale-variation range, as
described in the text. The comparison is shown both at the resummation level (left) and with a matching
to NLO (right).

of the N3LL correction on the central value of the distribution is about 10 � 15% for pt < 40GeV
and it is partly driven by the O(↵2

s) coefficient functions and virtual corrections to the form factor
that are not included in the NNLL result. The inclusion of the N3LL corrections also leads to a
reduction in the scale uncertainty of the resummed prediction compared to the NNLL result.12

RadISH, 13 TeV, mH = 125 GeV
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Figure 3. Left: comparison between the resummed distributions at N3LL and NNLL; the lower panel
shows the ratio of the two distributions. Right: comparison between the matched N3LL+NLO and the
NNLL+NLO predictions for the inclusive Higgs spectrum; the lower panel shows the ratio of each distribu-
tion to its central value.

The right plot of Figure 3 shows the matching of the NNLL and N3LL predictions to NLO. We
observe that at the matched level, the N3LL corrections amount to ⇠ 10% around the peak of the
spectrum, and they get slightly larger for smaller pt values (. 10GeV). A substantial reduction of
the total scale uncertainty is observed for pt . 10GeV.

12An identical reduction in size is observed when varying Q by a factor of two around its central value.
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Relation of EFT to MC parton showers?
A crucial tool for detailed simulation / modeling of 
collider processes 

• based on soft and collinear limit of 
amplitudes 

• evolution parameter, similar to RG scale 

• resum some large logarithms 

• exclusive events, by adding successive 
emissions (branchings)  

• so far restricted to large Nc limit. No 
interference, no phases, …

13



Improved parton showers?
• A lot of progress in matching showers to fixed order: automated 

matching at NLO, some results at NNLO, some based on SCET 
(GENEVA by Alioli et al.) 

• Recent papers incorporate some higher-order effects into the 
shower Nagy, Soper ’16; Hoeche, Prestel, + Krauss '17 

But theoretical underpinnings of shower resummation are murky 

• QFT derivation? Work in this direction Bauer, Schwartz ’07; Nagy, 
Soper ’07-‘17 

• For which classes of observables does one obtain full LL or NLL?  
Resummation of subleading logs? Study using CAESAR: Hoeche, 
Reichelt, Siegert, ‘17 

I will show that for a certain class of observables we can derive parton 
shower equation from RG evolution in EFT.  

• Operator framework: clear what is needed for NLL accuracy.
14



The physics of soft gluons



Soft limit
When particles with small energy and momentum are 
emitted, the amplitudes greatly simplify: 

  

Soft emission  

• factors from the rest of the amplitude.  

• only depends on the direction pμ/E 

• sees charge, but not spin of emitting particle

k

p

∑

i

Qi
pi · ε

pi · k
= Qtot

n · ε

n · k
+ . . . (1)

pµi ≈ Ei n
µ (2)

kµ ≈ ω nµ (3)

ū(p)ε/(k,λ)
p/+ k/+m

(p + k)2 −m2
. . . (4)

≈
p · ε(k,λ)

p · k
ū(p) . . . (5)p+ k



Wilson lines
Multiple emissions can be obtained from 

  

 niμ=piμ/E  is a vector in the direction of the energetic 
particle, and Tia is its color charge. P indicates that the 
color matrices are path ordered. 

Wilson line can be obtained by considering a pointlike 
classical source moving along the line xμ = snμ 

Mn = Mn−1 × Sp (1)

dσn = CF dσn
dt

t
dz

dz

1 − z
(2)

dσn ∼ dσn−1

dθ

θ

dEg

Eg

dφ (3)

Si = P exp

[

ig

∫

∞

0

ds ni · A
a
s(sni)T

a
i

]

dσsoft
n+1 =

αs

2π

dω

ω

dΩ

2π
σn

n
∑

i,j=1

Cij
ω2 pi · pj

pi · k pj · k

dσsoft
n+1 ∝ |Mn|

2

n
∑

i,j=1

pi · pj

dP (”no emission at θ”) = 1 −
∑

dP (”emissions at θ”)

σ = H(Q2, µ)J(M2
X1

, µ)J(M2
X1

, µ) ⊗ S

p · k = E ω (1 − cos θ)

∞0 xµ = snµ



Soft emissions in process with m energetic particles 
are obtained from the matrix elements of the operator 

  

To get the amplitudes with additional soft partons, 
one takes the matrix element of the multi-Wilson-line 
operators:

Figure 1. Definition of the parameters � and � of the dijet cross section. We use the thrust axis
~n, as the jet axis.

definiton is identical to the one in the seminal paper of Sterman and Weinberg [36]. Using

the thrust vector as the jet axis leads to a simpler form of the phase-space constraints and

will enable us to use existing two-loop results for the cone-jet soft function obtained in

[27, 28].

If we consider wide-angle jets with � ⇠ 1, the e↵ective theory contains only two mo-

mentum regions

hard: ph ⇠ Q (1, 1, 1) , (2.3)

soft: ps ⇠ Q� (1, 1, 1) .

The hard mode describes the energetic particles inside the jet. Given their momentum

scaling, these particles can never be outside the jet, in contrast to the soft partons which

can be emitted inside or outside the jet. Since there are no collinear singularities for large

cone size, the cross section is single-logarithmic, i.e. the leading logarithms have the form

↵n
s ln�.

The factorization of an amplitude with m hard partons and an arbitrary number of

soft partons is of course well known. Each of the hard partons get dressed with a Wilson

line along its direction. In analogy to factorization for amplitudes with coft particles [32],

we have

S1(n1)S2(n2) . . . Sm(nm)|Mm({p})i , (2.4)

where nµ
i = pµi /Ei and {p} = {p1, p2, . . . , pm}, but while the coft case involved quark

splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})i. One way

to obtain this formula is to write down the SCET operator for processes with m jets,

which involves m di↵erent collinear fields, perform the decoupling transformation and then

take the matrix element with exactly one collinear particle in each sector, which gives the

amplitude |Mm({p})i. (On the amplitude level, there is no di↵erence between collinear

and hard on-shell particles. The di↵erence in scaling only matters in the expansion of the

phase-space constraints.) To get the amplitude with an arbitrary number of soft particles

in the final state, one takes the relevant matrix element of the Wilson-line operator (2.4).

Doing so, the cross section takes the form

– 5 –

hard scattering amplitude 
with m particles 

(vector in color space)

soft Wilson lines along the directions  
of the energetic particles / jets 

(color matrices)

To get the amplitude for the emission of l soft partons in the final state with momenta

k1, . . . , kl, one computes the matrix element

⟨k1, . . . , kl|S1(n1)S2(n2) . . . Sm(nm) |0⟩ (2.11)

of the Wilson-line operator. To obtain the contribution of an arbitrary number of soft par-

tons to the jet cross section, one first defines the squared matrix element for the emissions

from m partons as

Sm({n}, Qβ, δ) =
∫

Xs

∑
⟨0|S†

1(n1) . . . S
†
m(nm) |Xs⟩⟨Xs|S1(n1) . . . Sm(nm) |0⟩ θ(Qβ−2E out) .

(2.12)

This is the same as the coft function which arises for narrow-angle jets [38], up to the

fact that the constraint now acts on the out-of-cone energy E out of the soft radiation, as

opposed to n̄ · p out, the large component of the total momentum of the coft fields. Since

the soft function depends on the outside energy, it depends on the cone size δ. In terms of

the matrix element (2.12), the jet cross section takes the form

σ(β, δ) =
1

2Q2

∞∑

m=2

m∏

i=1

∫
dd−1pi

(2π)d−12Ei
⟨Mm({p})|Sm({n}) |Mm({p})⟩

× (2π)d δ(Q −Etot) δ
(d−1)(p⃗tot)Θ

nn̄
in

({
p
})

, (2.13)

up to terms suppressed by powers of β. The integration is over the m-dimensional phase-

space of the hard partons, which are all constrained to lie inside the two jet cones. The

function Θnn̄
in

({
p
})

ensures that the hard partons are either inside the right jet along the

direction n or the left jet along n̄. In the narrow-cone case, we will encounter constraints

which involve only one of the jets. Note that, due to the multipole expansion, the contri-

bution of soft particles must be neglected in the momentum-conservation δ-functions.

In order to write the cross section in a more transparent way, we now define hard

functions which are obtained by integrating over the energies of the hard particles subject

to the constraint that their sum is equal to the center-of-mass energy Q, while keeping

their directions nµ
i fixed,

Hm({n}, Q, δ) =
1

2Q2

∑

spins

m∏

i=1

∫
dEi E

d−3
i

(2π)d−2
|Mm({p})⟩⟨Mm({p})|

× (2π)d δ
(
Q−

m∑

i=1

Ei

)
δ(d−1)(p⃗tot)Θ

nn̄
in

({
p
})

. (2.14)

These hard functions are distribution-valued in the angles of the particles, since they

contain additional divergences which arise when particles become collinear. These real-

emission divergences get cancelled by the divergences associated with the virtual correc-

tions to amplitudes with fewer legs. In contrast, the soft function (2.12) is regular in the

angles. The function H2({n}, Q) = σ0 H(Q2)1, where H(Q2) = |CV (−Q2 − iϵ)|2 is the

– 8 –



Soft-Collinear Effective Theory (SCET)
Implements interplay between soft and collinear partons on 
the operator level into an effective field theory 

Hard 

Collinear fields 

Soft fields 

  

Factorization of cross sections and perform resummations 
of large Sudakov logarithms using effective field theory.

}  high-energy

} low-energy part

soft

jet

hard



Resummation for jet processes: 
theory of non-global logarithms

20



The standard factorization 

involving a soft function with two Wilson lines applies to 
many event shape variables 

• thrust, total broadening, C-parameter, heavy-jet 
mass, N-jettiness, … 

but fails for many others, in particular for all jet 
observables and other “nonglobal” observables

21

soft

jet

hard



Characteristic feature of these ``non-global’’ 
observables is unrestricted radiation in certain 
phase-space regions 

veto:

 Eout = βQ ≪ Q

22

unrestricted Ein ~ Q

→ large logs αsn lnn(Eout / Ein) 



Dasgupta and Salam ’02: soft gluons from emissions inside 
the jets source lead to complicated pattern of logs αsn lnm(β)


• Even leading logarithms do not simply exponentiate!


• At large Nc logs can be obtained with parton shower 
(Dasgupta and Salam ‘02) or by solving a non-linear 
integral equation Banfi, Marchesini, Smye ’02. 

• Also some finite Nc results Hatta and Ueda ’13 + 
Hagiwara, ‘15 based on Weigert ‘03

23

Non-global logarithms



Soft emissions in process with m energetic particles are 
obtained from the matrix elements of the operator 

  

Figure 1. Definition of the parameters � and � of the dijet cross section. We use the thrust axis
~n, as the jet axis.

definiton is identical to the one in the seminal paper of Sterman and Weinberg [36]. Using

the thrust vector as the jet axis leads to a simpler form of the phase-space constraints and

will enable us to use existing two-loop results for the cone-jet soft function obtained in

[27, 28].

If we consider wide-angle jets with � ⇠ 1, the e↵ective theory contains only two mo-

mentum regions

hard: ph ⇠ Q (1, 1, 1) , (2.3)

soft: ps ⇠ Q� (1, 1, 1) .

The hard mode describes the energetic particles inside the jet. Given their momentum

scaling, these particles can never be outside the jet, in contrast to the soft partons which

can be emitted inside or outside the jet. Since there are no collinear singularities for large

cone size, the cross section is single-logarithmic, i.e. the leading logarithms have the form

↵n
s ln�.

The factorization of an amplitude with m hard partons and an arbitrary number of

soft partons is of course well known. Each of the hard partons get dressed with a Wilson

line along its direction. In analogy to factorization for amplitudes with coft particles [32],

we have

S1(n1)S2(n2) . . . Sm(nm)|Mm({p})i , (2.4)

where nµ
i = pµi /Ei and {p} = {p1, p2, . . . , pm}, but while the coft case involved quark

splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})i. One way

to obtain this formula is to write down the SCET operator for processes with m jets,

which involves m di↵erent collinear fields, perform the decoupling transformation and then

take the matrix element with exactly one collinear particle in each sector, which gives the

amplitude |Mm({p})i. (On the amplitude level, there is no di↵erence between collinear

and hard on-shell particles. The di↵erence in scaling only matters in the expansion of the

phase-space constraints.) To get the amplitude with an arbitrary number of soft particles

in the final state, one takes the relevant matrix element of the Wilson-line operator (2.4).

Doing so, the cross section takes the form
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hard scattering amplitude 
with m particles 

(vector in color space) 

energetic partons must be inside

soft Wilson lines along the directions  
of the energetic particles / jets 

(color matrices) 

soft particles can be inside or outside



For a jet of several (nearly) collinear energetic particles, one 
can combine 

into a single Wilson line with the total color charge. 

For non-global observables one cannot combine the soft 
Wilson lines → complicated structure of logs! 

• For a wide-angle jet, the energetic particles are not 
collinear. 

• For a narrow-angle jets, we find that small-angle soft 
radiation plays an important role. Resolves directions of 
individual energetic partons!

but for brevity, we do not indicate this explicitly. Since they commute, Wilson lines along

common directions immediately combine into single Wilson lines, for example

S1(n)S2(n) = P exp

(
igs

∫ ∞

0
ds n · Aa

s(sn) (T
a
1 + T

a
2 )

)
. (2.6)

This property ensures that collinear particles only produce a single Wilson line carrying

the total color charge. However, since we deal with large-angle jets, the individual Wilson

lines do not combine in our example.

To derive formula (2.5) in the effective field theory we introduce a separate collinear

field for each of the energetic particles in the final state, i.e. we write down the SCET

operators for processes with m jets. This is possible since on the amplitude level there is

no difference between collinear and hard on-shell particles. The relevant purely collinear

SCET Lagrangian consists of m copies of the ordinary QCD Lagrangian. Operators in the

effective theory are conveniently expressed in terms of gauge-invariant fields χi and Aµ
i⊥,

which are related to the usual quark and gluon fields via [45]

χi(0) = W †
i (n̄i)

/ni /̄ni

4
ψi(0) , Aµ

i⊥(0) = W †
i (n̄i) [iD

µ
⊥ Wi(n̄i)] . (2.7)

The i-collinear Wilson lines in the fundamental representation are defined analogously to

the soft Wilson lines in (2.4) as

Wi(n̄i) = P exp

(
igs

∫ 0

−∞

ds n̄i ·Aa
i (sn̄i)t

a

)
. (2.8)

The argument denotes the direction of the Wilson line, which is conjugate to the direction

ni of the collinear particle. These Wilson lines ensure that these fields are invariant under

collinear gauge transformations in each sector [17, 18].

At leading order in power counting, m-jet operators in this effective theory involve

exactly one collinear field Φi ∈ {χi, χ̄i,Aµ
i⊥} from each sector i = 1, . . . ,m. Performing the

usual decoupling transformation

Φi = Si(ni)Φ
(0)
i , (2.9)

with the appropriate color representation Ti for each field, yields the Wilson-line structure

shown in (2.5). Finally, one evaluates the matrix element of the operator with one collinear

particle in each sector, using

⟨0|χ(0)
j (0) |pi⟩ = δij u(pi) ,

⟨0| Aµ,a(0)
j⊥ (0) |pi; a⟩ = δij ϵ

µ(pi) .
(2.10)

Together with theWilson coefficient of them-jet operator this gives the amplitude |Mm({p})⟩,
see [13] for details. Since the particles are on the mass shell, the higher-order corrections

to the relations (2.10) are all scaleless and vanish.

To get the amplitude for the emission of l soft partons in the final state with momenta

k1, . . . , kl, one computes the matrix element

⟨k1, . . . , kl|S1(n1)S2(n2) . . . Sm(nm) |0⟩ (2.11)
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Hard function. 
m hard partons along  

fixed directions {n1, …, nm} 

Factorization theorem

Soft function 
with m Wilson lines

integration over the m 
directions 

color trace

Figure 3. omparison of our analytic results (solid lines) for the coe�cients of the three color
structures in the two-loop coe�cient dB/d ln ⇢h for the heavy-jet mass distribtion with numerical
results (points with invisibly small error bars) obtained using the Event2 event generator [13].

Putting everything together, inverting the Laplace transformation, and using relation

(1.5) we then obtain the following result for the logarithms in the light-jet cross section

d�

d⇢`
= (4.9)

This can be compared to numerical results obtained from running fixed-order event

generators such as Event2 [13] or eerad3 [? ] at low values of the jet mass.

[Write what we conclude from this comparison...]

5 Conclusions

• Non-global observables all have similar structure, key feature are multi-Wilson-line

operators tracking hard partons.

• Briefly discuss resummation.

• Numerical trouble with event generators?

�(�) =
1X

m=2

⌦Hm({n}, Q, µ)⌦ Sm({n}, Q�, µ)
↵
, (5.1)

– 16 –

TB, Neubert, Rothen, Shao ’15 ’16, see also Caron-Huot ‘15

First all-order factorization theorem for non-global 
observable. Achieves full scale separation!



27

Figure 1. Pictorial representation of the factorization theorems for the differential cross sections
with respect to the hemisphere jet masses in the limit ML ≪ MR ≪ Q (left), and to the left-jet mass
when ML ≪ MR ∼ Q (right). Blue lines correspond to collinear partons inside the jet functions,
the red lines represent soft emissions. The green lines in the left picture correspond to the hard
part of the hemisphere soft function, while the black lines in the right picture correspond to hard
emission into the right hemisphere.

2 Factorization

The derivation of the factorization formula follows the same steps in both cases and is

similar to the one relevant for wide-angle cone-jet cross sections presented in [20]. We will

first sketch the derivations of the theorems and specify the ingredients. We then relate the

soft functions to the ones which arise in the case of the narrow-cone jet cross sections. Due

to this relation, we can use the results [20] for these and only the hard functions need to

be computed.

2.1 Hemisphere soft function

The hemisphere soft function describes radiation originating from a quark and an anti-

quark along the directions n and n̄ of the two jets. Their soft radiation is described by

Wilson lines. The one generated by the outgoing quark along the n direction is

S(n) = P exp

(
igs

∫ ∞

0
ds n · Aa(sn)ta

)
, (2.1)

and the soft function is defined as

S(ωL,ωR) =
1

Nc

∑

X

Tr⟨0|S(n̄)S†(n)|X⟩⟨X|S(n)S†(n̄)|0⟩δ(ωR − n · PR) δ(ωL − n̄ · PL) ,

(2.2)

where the trace is over color indices. We call the hemisphere which contains the thrust

vector the right hemisphere. The right-moving particles therefore have n̄ · p > n · p and

PR(L) is the total momentum in the right (left) hemisphere. Usually, the function S(ωL,ωR)

is defined in terms of the soft gluon field in SCET. However, the soft SCET Lagrangian

is equivalent to the full QCD one so for our discussion we will consider (2.2) as a matrix

element in QCD. In the asymmetric case ωL ≪ ωR the function S(ωL,ωR) develops large,

non-global logarithms (NGLs) in the ratio κ ≡ ωL/ωR ≪ 1. It is these logarithms which

we seek to resum using effective-field-theory methods.
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Figure 3. Momentum modes and associated scales for wide-angle (left) and narrow-angle (right)
jet production.

of logarithmically-enhanced contributions to all orders in perturbation theory. This re-

summation is achieved by evolving the Wilson coefficients of these operators from the high

scale µ ∼ Q down to the scale where the low-energy physics takes place. Let us first

discuss the wide-angle cross section for which the factorization theorem has been given in

(2.15). In our effective theory, the hard functions Hm are the Wilson coefficients of the

Wilson-line matrix elements Sm and we regularize both quantities in d = 4−2ϵ dimensions.

The effective field theory matrix elements contain UV divergences since the short-distance

structure of the full theory is not resolved. The corresponding 1/ϵ poles can be removed

by renormalizing the hard Wilson coefficients according to

Hm({n}, Q, δ, ϵ) =
m∑

l=2

Hl({n}, Q, δ, µ)ZH
lm({n}, Q, δ, ϵ, µ) . (2.35)

In practice, it is easiest to obtain the bare Wilson coefficients from on-shell matching

calculations, where the poles arise from IR divergences. However, these IR poles are in

one-to-one correspondence to UV divergences since the effective-theory loop-integrals in

such matching computations are scaleless, see e.g. [13] for a detailed explanation of this

point within SCET. We have discussed this correspondence after (2.15). It implies that

we can understand the UV divergences of Hm from the structure of the IR divergences

in the real and virtual diagrams which contribute to these quantities. Given that the

coefficients Hm are fixed-multiplicity QCD amplitudes squared, integrated over energy, it

is clear that the matrix ZH
lm({n}, Q, δ, ϵ, µ) cannot be diagonal: lower-multiplicity virtual

diagrams are needed to cancel the divergences of real-emission diagrams. In order to achieve

this cancellation, the renormalization matrix must have the form

Z
H({n}, Q, δ, ϵ, µ) ∼

⎛

⎜⎜⎜⎜⎜⎜⎝

1 αs α2
s α3

s . . .

0 1 αs α2
s . . .

0 0 1 αs . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, (2.36)

where we indicate the perturbative order of each element. At each higher order in per-

turbation theory, more off-diagonal contributions fill in. We have anticipated the upper
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jet production.

of logarithmically-enhanced contributions to all orders in perturbation theory. This re-

summation is achieved by evolving the Wilson coefficients of these operators from the high

scale µ ∼ Q down to the scale where the low-energy physics takes place. Let us first

discuss the wide-angle cross section for which the factorization theorem has been given in

(2.15). In our effective theory, the hard functions Hm are the Wilson coefficients of the

Wilson-line matrix elements Sm and we regularize both quantities in d = 4−2ϵ dimensions.

The effective field theory matrix elements contain UV divergences since the short-distance

structure of the full theory is not resolved. The corresponding 1/ϵ poles can be removed

by renormalizing the hard Wilson coefficients according to

Hm({n}, Q, δ, ϵ) =
m∑

l=2

Hl({n}, Q, δ, µ)ZH
lm({n}, Q, δ, ϵ, µ) . (2.35)

In practice, it is easiest to obtain the bare Wilson coefficients from on-shell matching

calculations, where the poles arise from IR divergences. However, these IR poles are in

one-to-one correspondence to UV divergences since the effective-theory loop-integrals in

such matching computations are scaleless, see e.g. [13] for a detailed explanation of this

point within SCET. We have discussed this correspondence after (2.15). It implies that

we can understand the UV divergences of Hm from the structure of the IR divergences

in the real and virtual diagrams which contribute to these quantities. Given that the

coefficients Hm are fixed-multiplicity QCD amplitudes squared, integrated over energy, it

is clear that the matrix ZH
lm({n}, Q, δ, ϵ, µ) cannot be diagonal: lower-multiplicity virtual

diagrams are needed to cancel the divergences of real-emission diagrams. In order to achieve

this cancellation, the renormalization matrix must have the form

Z
H({n}, Q, δ, ϵ, µ) ∼

⎛

⎜⎜⎜⎜⎜⎜⎝

1 αs α2
s α3

s . . .

0 1 αs α2
s . . .

0 0 1 αs . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, (2.36)

where we indicate the perturbative order of each element. At each higher order in per-

turbation theory, more off-diagonal contributions fill in. We have anticipated the upper
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Resummation by RG evolution
Wilson coefficients fulfill renormalization 
group (RG) equations 

  
1. Compute Hm at a characteristic high 

scale µh ~ Q  

2. Evolve Hm to the scale of low energy 
physics µl ~ Qβ  

Avoids large logarithms αsn lnn(β) of scale 
ratios which can spoil convergence of 
perturbation theory.

RG
 evolution

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z t

0
dt0Hn�1(t

0
)Rn�1(t

0
)e�(t0�t)Vn

(13)

�LL =

1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H
lm({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H
lm(Q,µ) (16)

2

Q

Qβ

treatment which is based on RG evolution in Soft-Collinear E↵ective Theory (SCET) [4–6]

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)
↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates
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divergence from the lower end of the energy integration, the total result for the divergent

part becomes

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

= − αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) . (5.8)

Since the color factors are contracted with the trivial tree-level soft function, we do not need

to distinguish the left and right color generators. Note that inside the cone the real and

virtual corrections have cancelled, so that the net result only gets contributions from out-

of-cone radiation and precisely cancels against the divergence of the soft function. We see

that the renormalization indeed works at the one-loop level. We have repeated the same

exercise also for the narrow-jet case, see Appendix C. In this case, we can give explicit

expressions for the angular integrals. Again, we find that the divergences cancel as they

should.

5.2 Renormalization-group evolution at leading logarithmic level

We now discuss the anomalous-dimension matrix ΓH defined in (2.40), which governs the

RG evolution of the hard (2.38) and soft functions (2.39), and verify the agreement between

the perturbative expansion of the BMS equation and our RG-based resummation method.

In order to resum the leading logarithmic terms, the anomalous-dimension matrix is needed

up to O(αs). It can be expressed as

ΓH ({n}, Q, δ, µ) =
αs

4π
Γ(1) ({n}, Q, δ, µ) +O(α2

s) , (5.9)

where

Γ(1) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (5.10)

It follows from the discussion in the previous section that, in the soft approximation, the

corresponding matrix elements are given by

Vm = Γ(1)
m,m = −2

∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k

ij

[
Θnn̄

in (k) +Θnn̄
out(k)

]
,

Rm = Γ
(1)
m,m+1 = 4

∑

(ij)

Ti,L · Tj,RWm+1
ij Θnn̄

in (nm+1) . (5.11)

The anomalous dimensions Vm and Rm depend on the directions {n} = {n1, . . . , nm} and

colors of the hard partons, and the indices i, j in the sum run from 1 to m. The quantities

Rm also depend on the additional direction nm+1 of the real emission. The integration over

this direction is performed after the multiplication with the soft function. At first sight,
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d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =
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0
dt0Hn�1(t

0
)Rn�1(t

0
)e�(t0�t)Vn
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Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H
lm({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H
lm(Q,µ) (16)

Hm(t) = Hm(t1)e
(t�t1)Vn

+

Z t

t1

dt0Hm�1(t
0
)Rm�1e

(t�t0)Vn
(17)
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d lnµ
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mX
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lm(Q,µ) (16)

H2(µ = Q) = �0 (17)

Hm(µ = Q) = 0 for m > 2 (18)

Sm(µ = �Q) = 1 (19)

Hm(t) = Hm(t1)e
(t�t1)Vn

+

Z t

t1

dt0Hm�1(t
0
)Rm�1e

(t�t0)Vn
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1-loop anomalous dimension

• Dipoles → dipole shower 

• Trivial color structure at large Nc : 

30

must find that
∑

l≥m

Z
H
ml({n}, Q, δ, ϵ, µ) ⊗̂S l({n}, Qβ, δ, ϵ) = Sm({n}, Qβ, δ, µ) = finite . (5.2)

Due to the structure of the matrix, only the diagonal terms zm,m, and the terms zm,m+1

above the diagonal can contribute to the renormalization of Sm at the one-loop-level.

Explicitly, the finiteness condition at one-loop order reads

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

+ Sm({n}, Qβ, δ, ϵ) = finite , (5.3)

where we have used Sm = 1+ O(αs), so that the Z-factors multiply the identity matrix.

In the second term we integrate over the angle of the additional emission.

One can easily obtain the divergent part of the one-loop soft functions, since it is given

by a sum of exchanges between two legs. A sample Feynman diagram is shown in Figure 10.

We get

Sm({n}, Qβ, δ, ϵ) = 1+
αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) , (5.4)

where we have introduced the dipole radiator

W k
ij =

ni · nj

ni · nk nj · nk
. (5.5)

The function Θnn̄
out(nk) = 1 − Θnn̄

in (nk) ensures that the gluon is outside the two jet cones

around the n and n̄ directions. Note that the angular integral does not suffer from collinear

divergences, since the vectors ni and nj lie inside the jet cones, while the direction nk

associated with the soft emission points outside the cone. (The soft radiation can also be

emitted inside the cone, but as mentioned earlier this contribution is scaleless, since it does

not have an upper limit on the energy of the emission.)

In (5.3), the quantity zm,m represents the divergences of the virtual corrections to

the amplitude with m legs, while zm,m+1 gives the divergences from an additional real

emission. Let us now consider the real and virtual corrections together, since all collinear

divergences drop out and only a single soft divergence remains. The leading divergence can

be obtained by using the soft approximation for the emitted (real or virtual) gluon. In the

soft approximation, the real-emission contribution factorizes as

g2s
∑

(ij)

∫
dd−1k

2Ek(2π)d−1

1

E2
k

W k
ij Ti,L · Tj,RΘ

nn̄
in (k)Hm({n}, Q− Ek) . (5.6)

In this approximation, one can write the virtual correction in the same form as the real-

emission contribution, because the principal-value part of the propagator of the emission

does not contribute. The virtual correction then reads

−g2s
∑

(ij)

∫
dd−1k

2Ek(2π)d−1

1

E2
k

W k
ij
1

2
(Ti,L·Tj,L+Ti,R·Tj,R)Hm({n}, Q−Ek)

[
Θnn̄

in (k) +Θnn̄
out(k)

]
.

(5.7)

– 39 –

Ti · Tj → −
Nc

2
δj,i±1 . (26)

product of two eikonal factors
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∑
a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)
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0
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(2)
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Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑
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∫
dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑
(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑
(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Ti,L : acts on 
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Glauber phase, see later!



Implementation of leading-log resummation

• Use Madgraph5 tree-level generator 

• event file with directions and large-Nc color connections 
of hard partons 

• provides lowest multiplicity hard function for given 
process 

• Run our shower on each event to generate additional 
partons 

• obtain reduction of cross section in the presence of of 
veto on radiation, write result back into event file  

• Analyze events, according to cuts on hard partons, obtain 
resummed cross section for non-global observable as a 
function of hard cuts and veto scale
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Example: isolation cone in γ production

• Experiments use isolation cone to separate photon from hard 
scattering from photons due to hadron decays. 

• ATLAS imposes                    on hadronic energy in cone.  
• Large logs of                      but suppressed by the angular size    

R = 0.4 of the isolation cone. 
• Scaling:
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R⇥ ↵n

s lnn ✏� lnn�1 R

✏� = ET
� /E

T
iso

see Hatta et al. 1710.06722 

ET
iso

⇡ 5GeV

Campbell, Ellis,  Williams ‘16 

EW: TB, Garcia i Tormo ’13 

TB, Bell, Lorentzen, Marti, Schwartz ’12-‘14

5

troweak e↵ects. It is clear from the figure that the central
values for the two predictions are similar. However the
scale uncertainty in the NNLO calculation is smaller, by
around a factor of three, than the equivalent uncertainty
obtained using PeTeR.
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Figure 5: Upper: the e↵ect of including electroweak cor-
rections in addition to the NNLO predictions provided by
MCFM. Lower: a comparison of the NNLO+EW prediction
of MCFM with the N3LL+EW prediction of PeTeR [8].

CONCLUSIONS

We have presented a calculation of direct photon
production at NNLO accuracy obtained using the N -
jettiness slicing approach. We compared our prediction
to ATLAS 8 TeV data for p�

T > 65 GeV and |⌘� | < 0.6.
We found that by combining the NNLO QCD calcula-
tion with EW e↵ects our calculation describes the data
very well. Our results represent a significant improve-
ment compared to previous theoretical predictions. The
future study of this process, over a wider phase space and
at larger center of mass energies, presents an exciting op-
portunity for precision QCD at colliders. In particular,
the calculation of ratios of photon momenta for di↵er-
ent rapidity regions has interesting potential. The ratios
have the advantage of cancelling the leading dependence
on ↵em and simultaneously the experimental luminosity
uncertainty. Theoretical predictions for these ratios at
NNLO could be used to constrain pdfs, provided that re-
maining theoretical uncertainties, such as those related
to isolation, are fully understood. We leave such a de-
tailed phenomenological study to a future publication.
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ing from decays of boosted hadrons. In the following, we will discuss photon production,

but similar cuts are also used to isolate leptons, for example in SUSY searches. Impos-

ing the isolation requirement induces logarithms ↵n
s ln

n ✏� , with ”✏� = Eiso/E� , into the

perturbative computation and in the following we want to study their resummation.

Already at the parton level, there are two mechanisms to produce a photon. In ad-

dition to the direct emission, one can produce an energetic quark which then fragments

into a photon accompanied by a collinear quark. This second mechanism involves the

fragmentation function, a non-perturbative object which needs to be extracted from data.

In general, the two partonic contributions are not individually well-defined. At NLO, the

direct production su↵ers from a divergence when a quark becomes collinear to the pho-

ton and this divergence is absorbed into the fragmentation function. The isolation cone

suppresses fragmentation since it limits the amount of radiation which accompanies the

photon. Indeed, Frixione has shown that one can modify the isolation criterion to elimi-

nate fragmentation altogether [52]. For any angle � < �0, where �0 is the isolation cone

angle, he imposes that the energy inside the cone of half-opening angle � is smaller than

Eiso(�) = ✏�E�

✓
1� cos �

1� cos �0

◆n

, (4.8)

with n > 0. Together with radiation collinear to the photon, this smooth-cone isolation

eliminates the fragmentation contribution, which is centered at � = 0. This simplifies

the theoretical computations and it is appealing because it eliminates the poorly known

fragmentation function. At this time all NNLO computations of photon production [53–55]

rely on the Frixione cone for isolation, while the result with a fixed cone is only known at

NLO in the form of the JetPhox code [56]. Due to the granularity of the calorimeter,

a smooth criterion such as (4.8) cannot be directly implemented in experiments which

therefore use fixed-cone isolation. To compare with experimental data, the NNLO results

tune the parameters ✏� and n such that the NLO predictions using (4.8) are numerically

similar to fixed-cone computations including fragmentation. Below, we will derive such a

parameter relation based on the analysis of soft radiation.
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Effect of γ isolation at LHC

• Value of evolution parameter for ATLAS isolation t ≈ 0.05 
• NLO: ~5% reduction, NNLO ~10%, resummed ~ 12% 
• NGL dominates over global contribution: naive 

exponentiation (dashed) not appropriate!
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Figure 9. Ratio of the pp ! � +X cross section with isolation to the inclusive one. Left: Ratio
as a function of t, (or equivalently ✏�) for E�

T > 500GeV. Right: Ratio for the ATLAS isolation
criterion (4.14) as a function of E�

T . In both plots we show the resummed result as well as its NLO
expansion obtained using the approximation (4.12).

terms are not always reliable. In the present example this incomplete resummation leads

worse predictions than no resummation at all.

Finally, let us analyze photon isolation in hadronic collisions. Of course, in this case

the same caveats apply that we discussed for gaps between jets: a full factorization formula

for hadronic collisions is not yet available and we will resum the logarithms assuming that

all leading logarithms are captured by evolving the hard function from the scale µh ⇡ E�
T

down to the soft scale µs ⇡ Eiso
T . In the gaps-between-jets case, we have argued that a

natural scale choice for the PDFs is the low scale µf ⇡ µs. However, such a scale is not

appropriate for isolation cones. The reason is that the isolation cones are typically small

and it is obvious that the scale choice µf ⇡ Eiso
T is nonsensical in the limit where the cone

size goes to zero since there is no longer any phase-space for the low scale emissions. Since

most if the emissions are associated with the hard scale we therefore set µf = µh. This

scale-setting guess work is of course not entirely satisfactory: an all-order factorization

theorem for the cross section would unambiguously answer which scale is appropriate.

The small angular size R of the veto region suppresses higher-order corrections and the

overall e↵ect of the isolation cone is therefore moderate. At the same time, the typical scale

ratios ✏� that arise in experimental measurements can be quite large. We have discussed

in the introduction that the global logarithms scale as ↵n
s R

n lnn(✏�), while the non-global

ones scale as ↵n
s R lnn�1(R) lnn(✏�), since they involve only a single gluon in the veto region.

For small R, the non-global logarithms completely dominate the cross section. In order to

verify this, we could extract large logarthims up to two-loop from our parton shower code.

Explicitly, as is shown in [2], the first two loop MC time expansion coe�cients take the

form as

S(1) =� 4Nc

Z

⌦
3outW3

12,

– 18 –
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smaller ETiso →  



Glauber Gluons & Superleading Logs
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Glauber phase

Imaginary part, from a region where gluon is soft 
and  

Glauber region 
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M

σ =
∑

a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑

a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)⟨P (p1)|Oa(x1)|P (p1)⟩ ⟨P (p2)|Ob(x2)|P (p2)⟩+O(ΛQCD/Q)

(2)

⟨qa′(x′p)|Oa(x)|qa′(x′ p)⟩ = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑

(ij)

∫

dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑

(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑

(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Hm ∝ |Mm⟩⟨Mm| (4)

=
αs(µ)

4π
CF

(

−
2

ε2
−

3

ε
+ . . .

)(

−M2

µ2

)−ε

(5)

=
αs(µ)

4π
CF

(

−
2

ε2
−

2

ε

[

ln
M2

µ2
+ iπ

]

−
3

ε
+ . . .

)

(6)

σ =
∑

a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑

a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)⟨P (p1)|Oa(x1)|P (p1)⟩ ⟨P (p2)|Ob(x2)|P (p2)⟩+O(ΛQCD/Q)

(2)

⟨qa′(x′p)|Oa(x)|qa′(x′ p)⟩ = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑

(ij)

∫

dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑

(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑

(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Hm ∝ |Mm⟩⟨Mm| (4)

=
αs(µ)

4π
CF

(

−
2

ε2
−

3

ε
+ . . .

)(

−M2

µ2

)−ε

(5)

=
αs(µ)

4π
CF

(

−
2

ε2
−

2

ε

[

ln
M2

µ2
+ iπ

]

−
3

ε
+ . . .

)

(6)

0 = (p1 + k)2 ≈ 2p1 · k (7)

0 = (p2 − k)2 ≈ −2p2 · k (8)

p1

p2

k

kµ ⇡ kµ?

s+c divs.



Glauber Phase in Vm

Amplitudes conserve color charge  

• If all particles outgoing Πij=1 and the sum 
vanishes. No Glauber phases in e+e− ! 

• But sum is non-zero for T1 + T2 → T3 + … + Tm 
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σ =
∑

a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑

a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)⟨P (p1)|Oa(x1)|P (p1)⟩ ⟨P (p2)|Ob(x2)|P (p2)⟩+O(ΛQCD/Q)

(2)

⟨qa′(x′p)|Oa(x)|qa′(x′ p)⟩ = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑

(ij)

∫

dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑

(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑

(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Im [Vm] =− 2π
∑

(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (4)

Hm ∝ |Mm⟩⟨Mm| (5)

=
αs(µ)

4π
CF

(

−
2

ε2
−

3

ε
+ . . .

)(

−M2

µ2

)−ε

(6)

=
αs(µ)

4π
CF

(

−
2

ε2
−

2

ε

[

ln
M2

µ2
+ iπ

]

−
3

ε
+ . . .

)

(7)

0 = (p1 + k)2 ≈ 2p1 · k (8)

0 = (p2 − k)2 ≈ −2p2 · k (9)

Πij=1 if (ij) both incoming or outgoing

Πij=0 otherwise

contain both amplitudes |Mm({p})⟩ and their conjugate. The color matrices Ti,L act on

the amplitude while Tj,R multiplies the conjugate, for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2 Hm + Hm T3 · T4 . (1.4)

The color matrices in the virtual part act on the color indices of the m partons of the

amplitude and Ti · Tj =
∑

a T
a
i · T a

j . This is the usual color-space notation. While we

do not indicate this notationally, the color matrices in the real emission matrix Rm are

different. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,RHm = T
a
i Hm T

a
j . (1.5)

and the index a is the color of the emitted gluon. Note that there is no sum over the color

a. The color sum will only be taken at the end after multiplying with the soft function. We

nevertheless like to keep the scalar product notation Ti,L ·Tj,R since it allows us to suppress

the color index, which is one of the advantages of the color-space formalism. However, when

applying the matrix Rm one needs to keep in mind that one changes into new color space

and that subsequent applications of color matrices can act on the new color index.

Note that the terms in the second line of (2.6) are purely imaginary. An imaginary

part is present whenever i and j are both incoming or both outgoing partons and the

prefactor is Πij = 1 in these cases and zero otherwise. The presence of this phase-factor

can be understood by analyzing the UV divergences of the soft loop integral
∫

ddk
1

k2 + i0

ni · nj

(ni · k + η + i0)(−ni · k + η + i0)
, (1.6)

where η regularizes the collinear and soft singularities. This integral gets two contributions.

Cutting the gluon propagator, one obtains a phase-space integral whose divergence gives

rise to the angular integral in the first line of Vm, while cutting the two eikonal propagators

yields the imaginary part in the second line. This imaginary part is called the Glauber or

Coulomb phase, since it arises from a region of phase-space where kµ ≈ kµ
⊥
.

The imaginary part can be simplified using color conservation
∑

i Ti = 0. For con-

creteness, consider the process 1 + 2 → 3 + · · ·+m. We then have

∑

(ij)

Ti · Tj Πij = 2T1 · T2 +
m
∑

i=3

Ti · (−T1 − T2 − Ti) (1.7)

= 2T1 · T2 + (T1 + T2) · (T1 + T2)−
m
∑

i=3

C2
i (1.8)

= 4T1 · T2 + C2
1 + C2

2 −
m
∑

i=3

C2
i (1.9)

The constant imaginary part arises both from the generators Ti,L acting on the amplitude

and the generators Ti,R acting on the conjugate amplitude. These terms cancel in the

anomalous dimension. In case where one or both incoming particles are color-neutral the
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Super-leading logarithms
Forshaw, Kyrieleis, Seymour ’06 have analyzed the 
effect of Glauber phases in non-global observables 
directly in QCD 

• Non-zero contributions starting at 3 loops 

• Collinear logarithms starting at 4 loops (in 
observables, which are single-log in e+e−) 

We have verified the gap-between-jets results of 
Keates and Seymour ’09 up to 5 loops by iterating 
our anomalous dimension and evaluating the color 
structures order-by-order using ColorMath (Sjodahl 
’12)
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Effective theory of Glauber gluons
The Glauber effects discussed so far are part of 
the hard anomalous dimension 

RG evolution must match up with low-energy 
theory: SCET + Glauber gluons 

• formulating the EFT proved difficult…
38
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Technical challenges

• Glauber gluons are offshell  
• kT ≫ E , like Coulomb gluons, must be included as 

potential, not dynamical field in Leff 

• Glauber region is not well defined without additional 
rapidity regulator (on top of dim.reg.) 
• separation among soft, collinear and Glauber 

gluons scheme dependent
39
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Figure 1. Tree level gluon exchange for q-q̄ forward scattering. In a) we show the full QCD graph with a

gluon exchange between a quark carrying n-collinear momenta pn2,3 and an antiquark carrying n̄-collinear

momenta pn̄1,4. In b) we show the two notations we will use for this leading power forward scattering in

the E↵ective Theory.

for leading power forward scattering as well as factorization violation in hard scattering, and

are discussed in more detail in Secs. 3 and 5. If Glauber exchange contributions do not spoil

factorization, a formalism to treat Glauber exchange can still provide a useful perturbative tool

to facilitate the summation of large logs that appear from the forward limit, ln(s/t) or ln(x),

where x is an appropriate Bjorken-type variable. In situations where factorization is violated a

formalism to treat Glauber exchange can be a useful tool for both calculating and characterizing

the nature of the violations.

The purpose of this paper is to set up a systematic e↵ective theory with which to study the

near forward scattering region of QCD and factorization violation in hard scattering processes

in a single framework. We will work within the framework of SCET. We construct a complete

leading power Lagrangian for Glauber exchange and show that it fits seamlessly with the current

tools used to study hard, collinear, soft, and ultrasoft factorization in hard scattering processes,

without inducing double counting. By working in the framework of an e↵ective field theory, one is

able to systematically keep track of terms in the power expansion, exploit symmetries, and derive

when certain approximations (like the eikonal approximation) are valid and when they break

down. Our EFT will also employ a MS style renormalization for rapidity divergences, making

it simple to derive rapidity renormalization group equations. Through matching calculations we

can also directly derive and prove results by calculations in full QCD in the appropriate limit.

The formalism presented here gives a starting point for using a field theoretic method to study

the physics of the near forward region, even beyond leading power. It also provides a direct

method of calculating (possible) factorization violating contributions, and potentially could yield

field theoretic methods for handling underlying event contributions in hadronic collisions.

Before proceeding, we briefly comment on the connections of our work to earlier literature.

First we note that in the CSS formalism [21, 31] that Glauber contributions are discussed in

detail, but are treated as a momentum region and hence are not fully separated from soft and

collinear gluon dynamics. This has advantages for certain steps of a factorization proof, but makes

it more di�cult to associate unique contributions with Glauber exchange, and also to see how

– 4 –
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Glauber exchanges

• Exploratory studies by several groups (Liu et al., Idilbi 
et al, Bauer et al., Donoghue et al., Fleming, …). 

• Last year Rothstein and Stewart published an EFT 
framework for Glauber exchanges [JHEP 1608 (2016) 
025 (204pp!)]
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Construction: �� 1 large Q

will do calculations with back-to-back collinear particles for simplicity

Integrate out
Need 3-types of Glauber momenta:

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

, (28)

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

,

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

,

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

ifCA4A1gµ1µ4
? n · p1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the

fwd. scattering
n-n̄

n n

ssfwd. scattering
n-s

fwd. scattering
n̄-s n n

ss

pµ � Q(�2,�2,�)

pµ � Q(�2,�,�)

pµ � Q(�, �2,�)

(n · k, n̄ · k, k?)



Applications
Rothstein and Stewart ’16 mainly focussed on the 
construction of Leff, but the framework has many possible 
application 

• Forward scattering, Reggeization (for quarks: Moult, 
Solon, Stewart, Vita ‘17), BFKL, … 

• Collinear factorization violation Schwartz, Yan, Zhu ’17 
• PDF factorization of hadron collider cross sections?  

• Collins Soper and Sterman ‘85 have proven this 
for Drell-Yan; a proof for the general case is still 
missing. 

• Non-global logs at hadron collider; super-leading logs
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Conclusions
• A lot of progress to extend Soft-Collinear Effective Theory to more 

observables. Better understanding of soft physics was key 
• multi-Wilson line operators for non-global observables 
• Glauber gluons for hadronic collisions, forward scattering, … 
• (Finite Nc) + Glauber + nonglobal = superleading logs 

• For non-global observables, we obtain a parton shower from 
effective field theory 
• first-principles derivation of shower, based on RG evolution  
• not restricted to leading logarithms or large Nc 

• not a general purpose shower, but helpful to understand how to 
extend showers to higher accuracy 

• flexible implementation of LL shower using LHE event files 
• used to study photon isolation, gaps between jets



Diagrammatic Factorization
The simple structure of soft and collinear 
emissions forms the basis of the classic 
factorization proofs, which were obtained by 
analyzing Feynman diagrams. 

Advantages of the the SCET approach: 

Simpler to exploit gauge invariance on the 
Lagrangian level 

Operator definitions for the soft and collinear 
contributions 

Resummation with renormalization group 

Can include power corrections

J.C. Collins, D.E. Soper / Back-to-back lets 

/ .  
I 

421 

I 
_ J  

Fig. 7.2. Dominant integration region for e+e annihilation for small wr. In both fig. 7.1 and this figure, 
the soft gluon subgraphs may be disconnected. 

We begin by considering the slightly simpler process a + b ~ A + B + X, where a 
and b are quarks with momenta k~, and k~ respectively. Let k~, be collinear (as 
defined in subsect. 4.2) in the v~ direction and let k~ be collinear in the v~ 
direction. Then the dominant integration regions are as shown in fig. 7.3. 

Consider a graph G for this process. A subgraph T of G will be called a tulip 
if G can be decomposed into subgraphs as indicated in fig. 7.3 with T being the 
central (possibly disconnected) S subgraph connecting the "jet" subgraphs J a  and 
Jn. The jet subgraphs must be connected and be one particle irreducible in their 
gluon legs. 

A garden is a nested set of tulips. 
In analogy with subsect. 5.5, we define a regularized version GR of G by 

G R  = G + ~. ( - 1 ) N S ( T 1 ) S ( T 2 )  • • • S ( T n ) G .  (7.2) 
inequivalent 

gardens 

Here the operator S ( T )  makes the soft approximation on the attachments to the 
jets J A  and JB of the gluons leaving tulip T. The soft approximation for attachments 

Collins, Soper, Sterman 80’s ...

Collins and Soper ‘81
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contain both amplitudes |Mm({p})⟩ and their conjugate. The color matrices Ti,L act on

the amplitude while Tj,R multiplies the conjugate, for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2 Hm + Hm T3 · T4 . (1.4)

The color matrices in the virtual part act on the color indices of the m partons of the

amplitude and Ti · Tj =
∑

a T
a
i · T a

j . This is the usual color-space notation. While we

do not indicate this notationally, the color matrices in the real emission matrix Rm are

different. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,RHm = T
a
i Hm T

a
j . (1.5)

and the index a is the color of the emitted gluon. Note that there is no sum over the color

a. The color sum will only be taken at the end after multiplying with the soft function. We

nevertheless like to keep the scalar product notation Ti,L ·Tj,R since it allows us to suppress

the color index, which is one of the advantages of the color-space formalism. However, when

applying the matrix Rm one needs to keep in mind that one changes into new color space

and that subsequent applications of color matrices can act on the new color index.

Note that the terms in the second line of (2.6) are purely imaginary. An imaginary

part is present whenever i and j are both incoming or both outgoing partons and the

prefactor is Πij = 1 in these cases and zero otherwise. The presence of this phase-factor

can be understood by analyzing the UV divergences of the soft loop integral
∫

ddk
1

k2 + i0

ni · nj

(ni · k + η + i0)(−ni · k + η + i0)
, (1.6)

where η regularizes the collinear and soft singularities. This integral gets two contributions.

Cutting the gluon propagator, one obtains a phase-space integral whose divergence gives

rise to the angular integral in the first line of Vm, while cutting the two eikonal propagators

yields the imaginary part in the second line. This imaginary part is called the Glauber or

Coulomb phase, since it arises from a region of phase-space where kµ ≈ kµ
⊥
.

The imaginary part can be simplified using color conservation
∑

i Ti = 0. For con-

creteness, consider the process 1 + 2 → 3 + · · ·+m. We then have

∑

(ij)

Ti · Tj Πij = 2T1 · T2 +
m
∑

i=3

Ti · (−T1 − T2 − Ti) (1.7)

= 2T1 · T2 + (T1 + T2) · (T1 + T2)−
m
∑

i=3

C2
i (1.8)

= 4T1 · T2 + C2
1 + C2

2 −
m
∑

i=3

C2
i (1.9)

The constant imaginary part arises both from the generators Ti,L acting on the amplitude

and the generators Ti,R acting on the conjugate amplitude. These terms cancel in the

anomalous dimension. In case where one or both incoming particles are color-neutral the
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Im[ Vm ] for T1 + T2 → T3 + … + Tm 

constants cancel in 

Contents

1 One-loop anomalous dimension 1

2 Collinear singularities 3

3 Collinear safety in the absence of phase-factors 5

4 Contributions of the imaginary parts to the cross section 6

4.1 Comparison with the literature 9

1 One-loop anomalous dimension

The one-loop anomalous dimension matrix has the form

Γ(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (1.1)

The anomalous one-loop dimensions are given by

Vm =2
∑

(ij)

∫

dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

[

Θnn̄
in (k) +Θnn̄

out(k)
]

− 2 iπ
∑

(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij, (1.2)

Rm =− 4
∑

(ij)

Ti,L · Tj,RWm+1
ij Θin(nm+1) .

[Switched sign of our anomalous dimension! Note that for two particles T1 ·T2 =

−CF ≈ −Nc/2, so there is a minus sign between the large Nc expressions and

the color-space results.] Before discussing this anomalous dimension in detail, let us

explain how it acts on the functions Hm. The hard functions

Hm({n}, Q, δ) =
1

2Q2

∑

spins

m
∏

i=1

∫

dEi E
d−3
i

(2π)d−2
|Mm({p})⟩⟨Mm({p})|

× (2π)d δ
(

Q−
m
∑

i=1

Ei

)

δ(d−1)(p⃗tot)Θin
({

p
})

. (1.3)
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Fig. 2. Solid line (red): exactNc = 3 solution to (21). The band indicates the standard error. Dashed line
(blue): Nc = 3, mean–field solution to (58). Dotted line (green): solution to the BMS equation (16) from
[22]. Dash–dotted line (yellow): result with only the Sudakov term.

with the solution of the large–Nc BMS equation (16) (dotted green line) previously obtained in
[22], 9 and also with the solution of the ‘mean field approximation’ to (21) (dashed blue line)

∂τ ⟨Pαβ⟩τ =−2CF

∫ dΩγ

4π
Mαβ(γ)Θout(γ)⟨Pαβ⟩τ

+Nc

∫ dΩγ

4π
Mαβ(γ)Θin(γ)

(

⟨Pαγ⟩τ ⟨Pγβ⟩τ − ⟨Pαβ⟩τ
)

, (58)

which differs from the BMS equation only by the coefficient of the Sudakov term Nc = 3 ↔
2CF = 8/3. The latter serves as an indicator of the quality of the mean field approximation
⟨PP ⟩ → ⟨P ⟩⟨P ⟩. For the sake of reference, we also plot the solution obtained by keeping only
the Sudakov term (first term on the right–hand–side) in (58) (dash–dotted yellow line).

9 Note that the definition of τ in [22] differs from (17) by a factor of Nc.
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Fig. 2. Solid line (red): exactNc = 3 solution to (21). The band indicates the standard error. Dashed line
(blue): Nc = 3, mean–field solution to (58). Dotted line (green): solution to the BMS equation (16) from
[22]. Dash–dotted line (yellow): result with only the Sudakov term.

with the solution of the large–Nc BMS equation (16) (dotted green line) previously obtained in
[22], 9 and also with the solution of the ‘mean field approximation’ to (21) (dashed blue line)

∂τ ⟨Pαβ⟩τ =−2CF

∫ dΩγ

4π
Mαβ(γ)Θout(γ)⟨Pαβ⟩τ

+Nc

∫ dΩγ

4π
Mαβ(γ)Θin(γ)

(

⟨Pαγ⟩τ ⟨Pγβ⟩τ − ⟨Pαβ⟩τ
)

, (58)

which differs from the BMS equation only by the coefficient of the Sudakov term Nc = 3 ↔
2CF = 8/3. The latter serves as an indicator of the quality of the mean field approximation
⟨PP ⟩ → ⟨P ⟩⟨P ⟩. For the sake of reference, we also plot the solution obtained by keeping only
the Sudakov term (first term on the right–hand–side) in (58) (dash–dotted yellow line).

9 Note that the definition of τ in [22] differs from (17) by a factor of Nc.
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Gaps between jets, comparison to ATLAS ‘14

� � � � � � ����

���

���

���

���

���

� � � � � � �
���

���

���

���

���

���

Figure 5. The red bands show the LL resummation result for rapidity distribution of gap fraction
with 90 GeV < pT < 120 GeV (left) and 210 GeV < pT < 240 GeV(right), compared to ATLAS

data (blue).

Figure 6. The red bands show the LL resummation result for gap fraction of jet transverse
momentum pT (left) and veto scale Q0 (right), compared to ATLAS data (blue). In the right plot
we also show the Pythia results for gap fraction. Green histogram represents Pythia results without
any hadronization e↵ects, and red one is computed with AMBT1 tune parameters

PDF sets with ↵s(mZ) = 0.130 and use one-loop running e↵ects for ↵s. To vary the factori-

sation scale µf , we first use MadGraph5_aMC@NLO framework to generate the tree-level

events for the dijet process with µf = pT , and then reweight the events with a factor

RPDF(x1, x2, µf , pT ) =
fa(x1, µf )fb(x2, µf )

fa(x1, pT )fb(x2, pT )
. (4.7)

Choosing a lower value of µf would enhance the gap fraction and bring our results closer

to the ATLAS measurements. However, the appropriate value is µf ⇡ µh since the hard

anomalous dimension has two parts, a soft contribution related to non-global logarithms

and a collinear part inducing the usual Altarelli-Parisi evolution. In our shower, we only

evolve with the soft part of the anomalous dimension and to avoid the necessity for addi-

tional collinear evolution we need to evaluate the PDFs at a high scale.
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Collinear factorization

When partons become collinear, the amplitude factorizes into a 
lower-point amplitude times a splitting amplitude      .  

• Leading contribution to the squared amplitude does not 
involve interference with the other particles! 

• Can be violated by Glauber phases for process with 
collinear in- and outgoing particles.  Catani, de Florian, Rodrigo 
’11;  Forshaw, Seymour, Siodmok ’12; Schwartz, Yan, Zhu ‘17

✓
Mn = Mn−1 × P (1)Mn = Mn−1 × P (1)=Mn = Mn−1 × Sp (1)

P ∼ (2)

Mn = Mn−1 × Sp (1)

P ∼ (2)
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Have derived similar factorization formulas for many classic non-
global observables 
• cone-jets, also for small cone angle δ (collinear logs); isolation-

cone cross sections for photon production 
• event shapes: light-jet mass, hemisphere soft function, narrow 

broadening (soft recoil, rapidity logs) 
Crucial element is always multi-Wilson-line operators sourced by 
hard partons in certain phase-space regions. 
• have tested that we reproduce the full logarithmic structure at 

NNLO by computing ingredients up to αs2 

• compare against full NNLO (using Event2 by Seymour) as well as 
analytical results (hemisphere soft function by Kelley, Schwartz, 
Schabinger and Zhu ’11; Hornig, Lee, Stewart, Walsh and Zuberi 
’11)
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• Renormalization of hard Wilson coefficients 

• Same Z-factor must render Sm  finite! 
• Associated anomalous dimension ΓH

50

Figure 3. omparison of our analytic results (solid lines) for the coe�cients of the three color
structures in the two-loop coe�cient dB/d ln ⇢h for the heavy-jet mass distribtion with numerical
results (points with invisibly small error bars) obtained using the Event2 event generator [13].

Putting everything together, inverting the Laplace transformation, and using relation

(1.5) we then obtain the following result for the logarithms in the light-jet cross section

d�

d⇢`
= (4.9)

This can be compared to numerical results obtained from running fixed-order event

generators such as Event2 [13] or eerad3 [? ] at low values of the jet mass.

[Write what we conclude from this comparison...]

5 Conclusions

• Non-global observables all have similar structure, key feature are multi-Wilson-line

operators tracking hard partons.

• Briefly discuss resummation.

• Numerical trouble with event generators?

�(�) =
1X

m=2

⌦Hm({n}, Q, µ)⌦ Sm({n}, Q�, µ)
↵
, (5.1)
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High-E physics 
Wilson coefficients

Low-E physics 
EFT Operator

of logarithmically-enhanced contributions to all orders in perturbation theory. This re-

summation is achieved by evolving the Wilson coefficients of these operators from the high

scale µ ∼ Q down to the scale where the low-energy physics takes place. Let us first

discuss the wide-angle cross section for which the factorization theorem has been given in

(2.15). In our effective theory, the hard functions Hm are the Wilson coefficients of the

Wilson-line matrix elements Sm and we regularize both quantities in d = 4−2ϵ dimensions.

The effective field theory matrix elements contain UV divergences since the short-distance

structure of the full theory is not resolved. The corresponding 1/ϵ poles can be removed

by renormalizing the hard Wilson coefficients according to

Hm({n}, Q, δ, ϵ) =
m∑

l=2

Hl({n}, Q, δ, µ)ZH
lm({n}, Q, δ, ϵ, µ) . (2.35)

In practice, it is easiest to obtain the bare Wilson coefficients from on-shell matching

calculations, where the poles arise from IR divergences. However, these IR poles are in

one-to-one correspondence to UV divergences since the effective-theory loop-integrals in

such matching computations are scaleless, see e.g. [13] for a detailed explanation of this

point within SCET. We have discussed this correspondence after (2.15). It implies that

we can understand the UV divergences of Hm from the structure of the IR divergences

in the real and virtual diagrams which contribute to these quantities. Given that the

coefficients Hm are fixed-multiplicity QCD amplitudes squared, integrated over energy, it

is clear that the matrix ZH
lm({n}, Q, δ, ϵ, µ) cannot be diagonal: lower-multiplicity virtual

diagrams are needed to cancel the divergences of real-emission diagrams. In order to achieve

this cancellation, the renormalization matrix must have the form

Z
H({n}, Q, δ, ϵ, µ) ∼

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 αs α2
s α3

s . . .

0 1 αs α2
s . . .

0 0 1 αs . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.36)

where we indicate the perturbative order of each element. At each higher order in per-

turbation theory, more off-diagonal contributions fill in. We have anticipated the upper

diagonal structure of the matrix in (2.35) by restricting the sum to l ≤ m. Note that

ZH
lm({n}, Q, δ, ϵ, µ) has logarithmic Q dependence, because the fixed-multiplicity ampli-

tudes involve both soft and collinear divergences. This dependence is a familiar feature of

Sudakov-type processes.

By consistency, the matrix ZH must render the soft functions finite, i.e. we must find

that the functions

S l({n}, Qβ, δ, µ) =
∞∑

m=l

Z
H
lm({n}, Q, δ, ϵ, µ) ⊗̂Sm({n}, Qβ, δ, ϵ) (2.37)

are finite for ϵ → 0. The structure of this result is at first sight quite surprising, since

Wilson-line matrix elements can usually be renormalized multiplicatively. However, in the
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present case additional UV divergences in the real-emission diagrams arise because the

soft radiation is not constrained inside the jet. It is precisely those types of divergences

which lead to NGLs. Furthermore, the upper triangular form of ZH
lm implies that higher-

multiplicity soft functions are needed to absorb the divergences of matrix elements with

fewer Wilson lines. The symbol ⊗̂ indicates that in (2.37) one has to integrate over the

(m − l) additional directions of the unresolved partons on which the bare function Sm

depends.

The scale dependence of the renormalized hard and soft functions is governed by the

RG equations

d

d lnµ
Hm({n}, Q, δ, µ) = −

m∑

l=2

Hl({n}, Q, δ, µ)ΓH
lm({n}, Q, δ, µ) , (2.38)

d

d lnµ
S l({n}, Qβ, δ, µ) =

∞∑

m=l

ΓH
lm({n}, Q, δ, µ) ⊗̂Sm({n}, Qβ, δ, µ) , (2.39)

which ensure that the cross section (2.15) is scale independent. The anomalous-dimension

matrix is obtained from the standard relation

d

d lnµ
Z

H
km({n}, Q, δ, ϵ, µ) =

m∑

l=k

Z
H
kl ({n}, Q, δ, ϵ, µ) ⊗̂ΓH

lm ({n}, Q, δ, µ) , (2.40)

and it has linear dependence on ln(Q/µ) as is familiar from Sudakov-type problems. How-

ever, the wide-angle cross section we consider only contain only a single large logarithm at

each order. The Sudakov double logarithms must cancel in the sum over multiplicities in

(2.15). A related observation is that the RG equation (2.39) for the soft functions is only

consistent if the Q-dependence of the anomalous dimension drops out after the integrals

over the unresolved partons have been performed, since the expression on the left-hand

side only involves the soft scale Qβ. This implies a set of highly nontrivial consistency

relations among the entries of the anomalous-dimension matrix. At one-loop order this

will be studied in Section 5.

Solving the RG equations (2.38) and (2.39) one can resum all large logarithms in

the wide-angle jet cross section (2.15). At the soft scale µs ≈ Qβ the soft functions do

not involve large logarithms, and hence they can be calculated in a perturbative series in

powers of αs(µs). Likewise, at the hard scale µh ≈ Q the hard functions do not involve

large logarithms, and hence they can be calculated in a perturbative series in powers of

αs(µh). The large logarithms of the scale ratio µh/µs are resummed by evolving the soft

functions up to the hard scale (or vice versa),

Sl({n}, Qβ, δ, µh) =
∑

m≥l

U
S
lm({n}, δ, µs, µh) ⊗̂Sm({n}, Qβ, δ, µs) , (2.41)

with an evolution matrix of the form

U
S({n}, δ, µs, µh) = P exp

[ ∫ µh

µs

dµ

µ
ΓH({n}, δ, µ)

]
. (2.42)
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Quite nontrivial that the low-energy matrix 
element factorizes into a product 

  

One should be worried about long-distance 
interactions mediated by soft gluons

51

σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µ)⟨P (p1)|Oa(x1)|P (p1)⟩ ⟨P (p2)|Ob(x2)|P (p2)⟩+O(ΛQCD/Q)

(2)

⟨qa′(x′p)|Oa(x)|qa′(x′ p)⟩ = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Glauber (aka Coulomb) gluon 

standard soft gluon

pµ ⇡ pµ?

P

P



Factorization proof?
• It is relatively easy to show that standard soft gluon 

contributions cancel. Collins, Soper, Sterman ’85. SCET: 
Bauer, Fleming, Pirjol, Rothstein and Stewart ’02 

• Glauber contribution is more delicate 

• CSS showed that it is absent for inclusive Drell-Yan 
process. 

• Examples where Glauber gluons do contribute in 
perturbation theory: super-leading logs, collinear 
factorization breaking, forward scattering… 

• SCET formulation with Glauber gluons available since 
last year Rothstein, Stewart ’16, 204pp (!)
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Consider one-gluon matrix element of Wilson line 

Wilson line and eikonal interaction

eikonal interaction

need small imaginary  
part n·k ≣ n·k + iε

∑

i

Qi
pi · ε

pi · k
= Qtot

n · ε

n · k
+ . . . (1)

pµi ≈ Ei n
µ (2)

kµ ≈ ω nµ (3)

σ(δ,β) =

∣∣∣∣∣
+

∣∣∣∣∣
+

∣∣∣∣∣
+

∣∣∣∣∣

= σ0

{
1 +

αs(µ)

3π

[
−16 ln δ lnβ − 12 ln δ + 10−

4π2

3
+O(δ,β)

]}

σtot =

∣∣∣∣∣
+

∣∣∣∣∣
+

∣∣∣∣∣
+

∣∣∣∣∣

= σ0

{
1 +

αs(µ)

π
+O(α2

s)

}

σvirtual = σ0
2αs

4π

(
µ2

Q2

)ϵ (
−

4

ϵ2
−

6

ϵ
− 16 +

7π2

3

)
(4)

e+e− → qq̄ (5)

e+e− → qq̄g (6)

⟨k,λ, b|Si |0⟩ = igs T
a

∫
∞

0
ds ⟨k,λ, b|ni · A

a(sni)|0⟩+O(g2s ) (7)

= igs T
a

∫
∞

0
ds eisni·k⟨k,λ, b|ni ·A

a
µ(0)|0⟩ (8)

= igs T
bni · ε(k,λ)

eisni·k

ini · k

∣∣∣∣∣

∞

0

(9)

= −gsT
bni · ε(k,λ)

ni · k
= −gsT

b pi · ε(k,λ)

pi · k
(10)

Jm(µl) = Jm(µh)Ukm(µh, µl) with

U(µh, µl) = P exp

[∫ αs(µh)

αs(µl)
dα

ΓJ (α)

β(α)

]

(11)

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(12)

〈
J2(Qδ)⊗ Ũ2(Qδτ)

〉
= (13)


