Turning the screws on the Standard Model: theory predictions for the anomalous magnetic moment of the muon

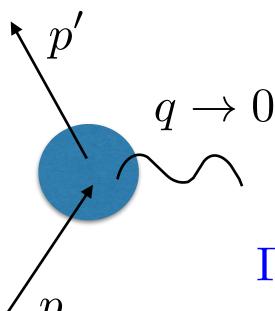
Durham
December 2017

Christine Davies
University of Glasgow
HPQCD collaboration

Outline

- 1) Introduction : what is the anomalous magnetic moment (a_{μ}) of the muon?
- 2) How is it determined (so accurately) in experiment?
- 3) Theory calculations in the Standard Model: QED/EW calculations
- 4) Pinning down QCD effects, using experimental data and using Lattice QCD calculations.
- 5) Conclusions and prospects

 e, μ, τ have electric charge and spin



Interaction with an external em field has a magnetic component:

$$-ie\overline{u}(p')\Gamma^{\mu}(p,p')u(p)A_{\mu}(q)$$

$$\Gamma^{\mu}(p, p') = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2)$$

Electric field interaction (charge consvn): $F_1(0) = 1$

Magnetic field intn, equiv. to scattering from potential:

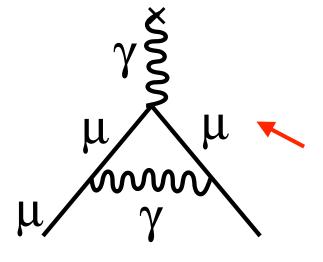
$$V(x) = -\langle \vec{\mu} \rangle \cdot \vec{B}(x)$$

$$\vec{\mu} = \frac{e}{m} [F_1(0) + F_2(0)] \frac{\vec{\sigma}}{2} \equiv g \left(\frac{e}{2m}\right) \vec{S}$$

Peskin + Schroeder

$$g = 2 + 2F_2(0)$$

Anomalous magnetic moment



$$a_{e,\mu,\tau} = \frac{g-2}{2} = F_2(0)$$

LO contribn is lepton mass independent

Schwinger 1948

$$\frac{\alpha}{2\pi} = 0.00116\dots$$

New physics could appear in loops

$$\delta a_\ell^{
m new\,physics} \propto \frac{m_\ell^2}{m_X^2}$$
 1 TeV?

flavour, CP-conserving chirality flipping

Motivates study of μ rather than e $\approx 10^{-8} \approx 10^{-1}$

CURRENT STATUS

$$a_{\mu}^{\rm expt} = 11659209.1(6.3) \times 10^{-10} a_{\mu}^{\rm SM} = 11659182.2(4.3) \times 10^{-10}$$

tantalising discrepancy! details to follow ...

$$a_e^{\text{expt}} = 11596521.807(3) \times 10^{-10}$$

 $a_e^{\text{SM}} = 11596521.816(8) \times 10^{-10}$

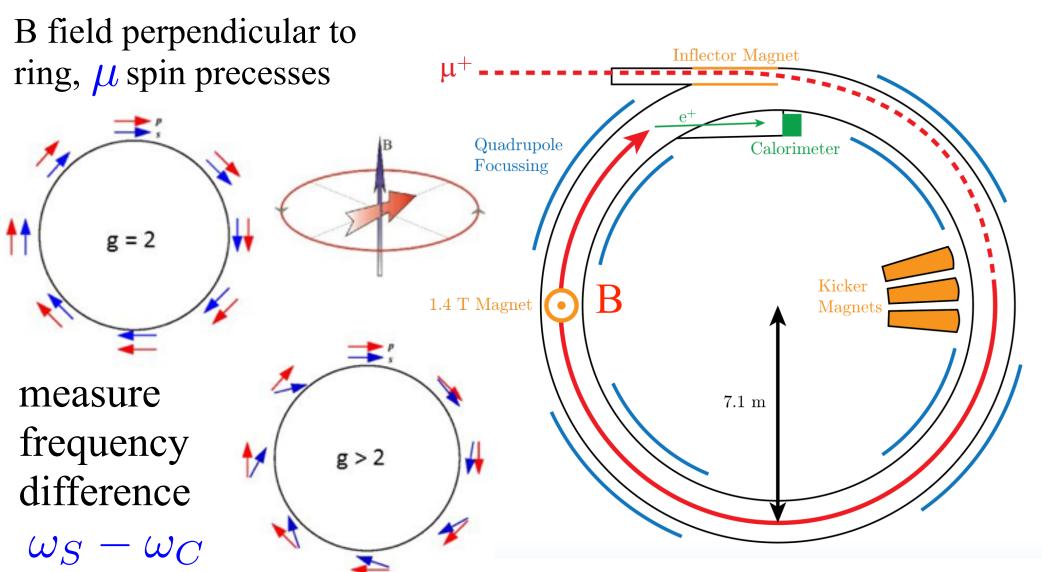
higher accuracy small-scale experiments possible (Penning trap) but discrepancies will be tiny ...

very hard since decays in 0.3picoseconds $\delta a_{\tau} = 5 \times 10^{-2} \text{ (LEP) } e^{+}e^{-} \rightarrow e^{+}e^{-}\tau^{+}\tau^{-}$

Accurate experimental results + theory calculations needed

$$p \to \overset{\text{spin 0}}{\pi^+} \to \nu_{\mu} + \mu^+$$

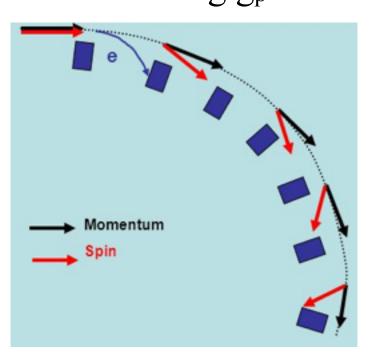
both helicity -1 in π rest frame so get polarised μ beam pulse



$$\vec{\omega}_{a} = \vec{\omega}_{S} - \vec{\omega}_{C} = -\frac{Qe}{m} \left[a_{\mu} \vec{B} + \left(a_{\mu} - \left(\frac{m}{p} \right)^{2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \dots$$

$$Q = \pm 1, \ \mu^{\pm}$$
from

need uniform stable B, measure to sub-ppm with NMR probes calibrated using gp



directly gives a_{μ}

electric field term vanishes at 'magic momentum'

$$p = 3.094 \, \text{GeV/c}$$

measure spin direction from e produced in weak decay

$$\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$$

possible

EDM

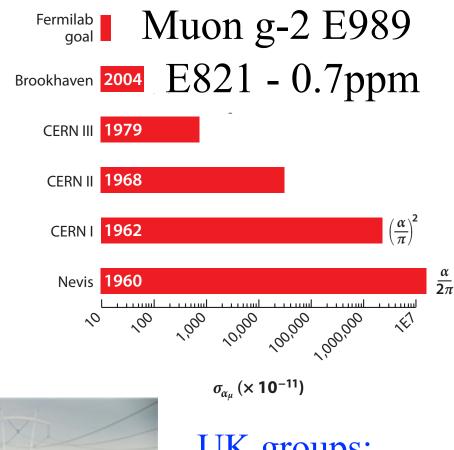
 $\propto \vec{\beta} \times \vec{B}$

direction of highest energy e correlated with μ spin so N_e oscillates at $\omega_S - \omega_C$

Status of experiment

2013: E821 ring moved to Fermilab

becomes E989

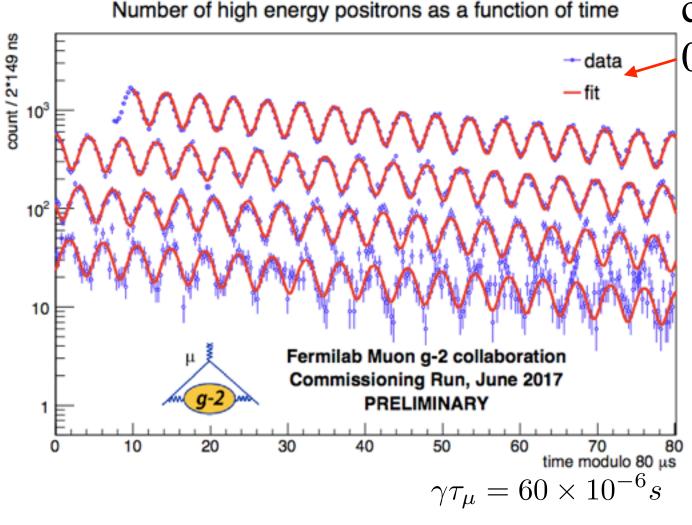


UK groups: Cockcroft, Lancaster, Liverpool, UCL

Aim: Much higher statistics with cleaner injection to ring, more uniform B field + temp. control : 0.15ppm i.e $\delta a_{\mu} = 2 \times 10^{-10}$

Muon g-2 now running at Fermilab, optimising beam

Aim: run summer 2018 for 1-3 x E821, first results 2019



commissioning run:

0.001% of final stats

$$N_e(t) = N_0 e^{-t/\gamma t_{\mu}} \times \left[1 + A\cos(\omega_a t + \phi)\right]$$

J-PARC future plan: slow μ in 1m ring - no need for 'magic momentum'

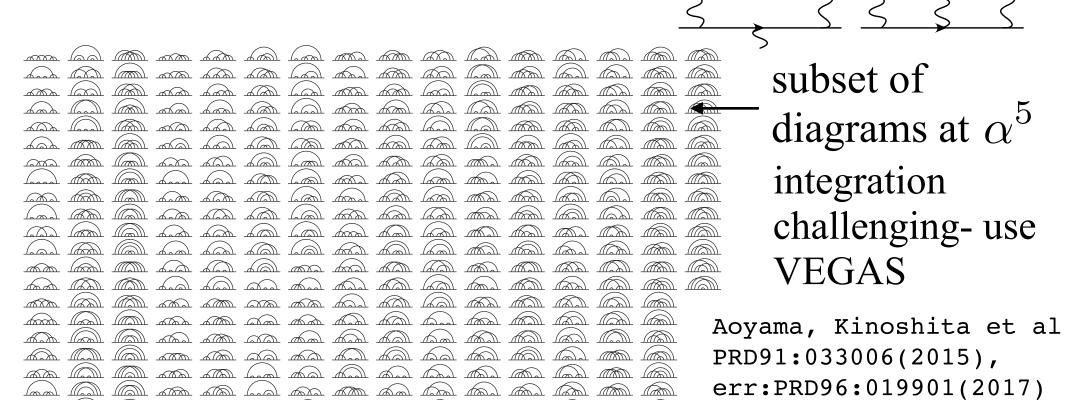
Accurate experimental results + theory calculations needed

QED corrections dominate - calculate in Perturbation theory

 $\frac{\alpha}{\pi}$ $0.5\frac{\alpha}{\pi}$

higher orders depend on ratios of lepton masses:

For α use α_e or Rb



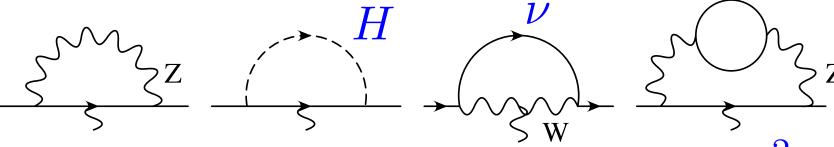
$$a_{\mu}^{\rm QED} = \frac{\alpha}{2\pi} + 0.765\,857\,425(17) \left(\frac{\alpha}{\pi}\right)^2 + 24.050\,509\,96(32) \left(\frac{\alpha}{\pi}\right)^3 \\ + 130.879\,6(6\,3) \left(\frac{\alpha}{\pi}\right)^4 + 753.3(1.0) \left(\frac{\alpha}{\pi}\right)^5 + \cdots \\ \text{Hoecker} \\ + \text{Marciano} \\ \text{RPP 2017}$$

$$a_{\mu}^{\rm QED} = 0.00116 + 0.000000413 \dots + 0.0000000301 \\ + 0.00000000381 + 0.0000000000509 + \dots \\ \text{using Rb } \alpha$$

$$= 11,658,471.895(8) \times 10^{-10}$$

uncertainty from error in α but missing α^6 (light-by-light) also this size

Electroweak contributions from Z, W, H



 $a_{\mu}^{\rm EW}$ is small - suppressed by powers of

$$a_{\mu}^{\text{EW}(1)} = \frac{G_F m_{\mu}^2}{\sqrt{2} 8\pi^2} \left[\frac{5}{3} + \frac{1}{3} (1 - 4s_W^2)^2 \right]$$

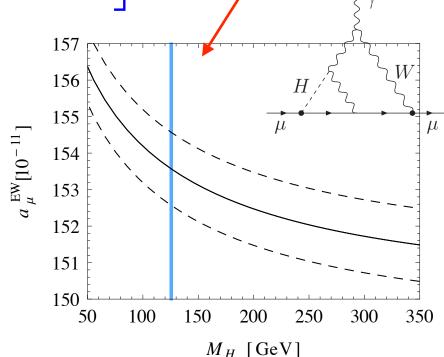
$$= 19.480(1) \times 10^{-10}$$

$$a_{\mu}^{\text{EW}(2)} = -4.12(10) \times 10^{-10}$$

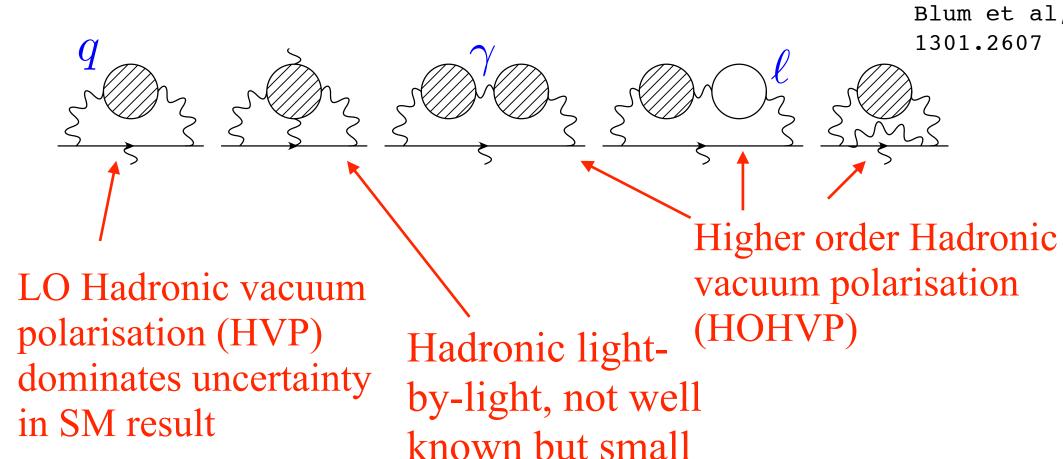
$$a_{\mu}^{\text{EW}} = 15.36(10) \times 10^{-10}$$

Gnendiger et al, 1306.5546

H piece tiny at 1-loop; 2-loops



QCD contributions to a_{μ} start at α^2 , nonpert. in QCD



Since QED, EW known accurately, subtract from expt and compare QCD calculations to remainder

$$a_{\mu}^{E821} = 11659209.1(6.3) \times 10^{-10}$$

 $a_{\mu}^{QED} = 11658471.895(8) \times 10^{-10}$ $a_{\mu}^{EW} = 15.36(10) \times 10^{-10}$

Hadronic (and other) contributions = EXPT - QED - EW

$$a_{\mu}^{E821} - a_{\mu}^{QED} - a_{\mu}^{EW} = 721.9(6.3) \times 10^{-10}$$

$$= a_{\mu}^{HVP} + a_{\mu}^{HOHVP} + a_{\mu}^{HLBL} + a_{\mu}^{new \ physics}$$

Focus on lowest order hadronic vacuum polarisation (HVP), so take:

$$a_{\mu}^{HLbL} = 10.5(2.6) \times 10^{-10}$$
 will return to this
$$a_{\mu}^{HOHVP} = -8.85(9) \times 10^{-10}$$
 NLO+NNLO Kurz et al, 1403.6400
$$a_{\mu}^{HVP,no\,new\,physics} = 720.2(6.8) \times 10^{-10}$$

Note: much larger than a_{μ}^{EW}

How to calculate $a_{\mu}^{\rm HVP}$ - Two approaches:

$$V_{\mu} = \sum_f Q_f ar{f}$$

1)
$$\sigma(e^+e^- \to \text{hadrons}) + \text{dispersion relations.} s \over 4\pi\alpha\sigma_{\text{tot}}(e^+e^-)$$

2) lattice QCD

1)
$$\sigma(e^+e^- \to \text{hadrons})$$

$$a_{\mu}^{HVP} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} ds \sigma_{had}^0(s) K(s)$$

$$e^+e^- \to \gamma^* \to hadrons$$

$$e^+e^- \to \gamma^* \to hadrons$$

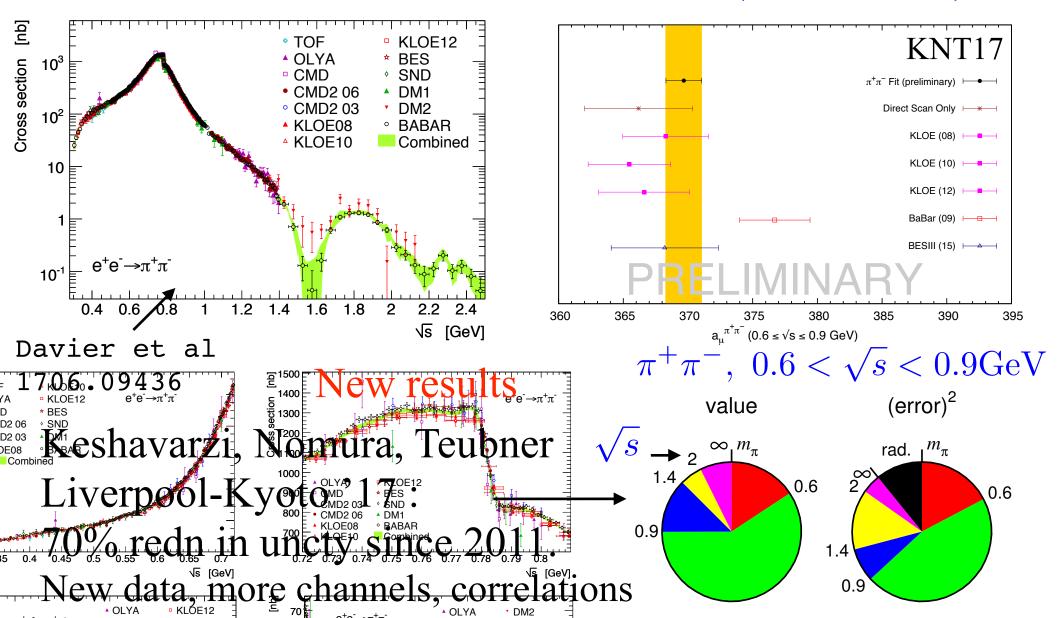
K(s) kernel emphasises low s - integral dominated by $\rho, \pi^+\pi^-$. Use pert. QCD at high s.

 σ^0 is 'bare', with running α effects removed. $R_{e^+e^-} = \frac{\sigma}{\sigma_{pt}}$

Final state em radiation IS included - γ inside hadron bubble

Need to combine multiple sets of experimental data from many hadronic channels (+ inclusive) inc. correlations

New data sets from KLOE, BESIII, SND(Novosibirsk) ..



KNT17
$$a_{\mu}^{\rm HVP} = 692.2(2.5) \times 10^{-10}$$

Davier et $a_{\mu}^{\rm HVP} = 693.1(3.4) \times 10^{-10}$
 $a_{\mu}^{\rm HVP} = 688.8(3.4) \times 10^{-10}$
Jegerlehner $a_{\mu}^{\rm HVP} = 688.8(3.4) \times 10^{-10}$
 1705.00263

agree well - 0.4% uncty 3.5σ from no new physics.

2) Lattice QCD

$$a_{\mu}^{HVP,i} = \frac{\alpha}{\pi} \int_{0}^{\infty} dq^{2} f(q^{2}) (4\pi\alpha e_{i}^{2}) \hat{\Pi}_{i}(q^{2})$$

Renormalised vacuum polarisation function $\hat{\Pi}(q^2) = \Pi(q^2) - \Pi(0)$ vanishes at $q^2=0$

This is (fourier transform of) vector meson correlators

Lattice QCD - perform QCD Feynman PI by averaging correlators on lattice gluon fields that include the effect of sea quarks. NOW: realistic sea quarks, multiple values of lattice spacing $\sigma(e^+e^- \to \text{hadrons via } c\overline{c})$ Test $c\bar{c}$ correlator time-moments n = 10vs. expt pQCD (GeV - agree to 1.5% n = 8 \sqrt{s} (GeV) $(n^{\text{th}} \text{ moment})^{1/(n-2)}$ 8.0 8.0 Lattice QCD: n = 6 $a_{\mu}^{\mathrm{HVP},c}$ $14.4(4) \times 10^{-10}$ n = 4 $a_{\mu}^{\mathrm{HVP},b}$ 0.2 0.0 0.4 0.2 0.3 0.1 **3**0.5

 $(am_c)^2$

HPQCD, 1208.2855, 1403.1778

'connected's quark contribution to a_{μ}

Chakraborty et al, HPQCD 1403.1778

HISQ quarks on configs with u, d, s and c sea. Local J_v - nonpert. Z_v . multiple a (fixed by w_0), m_1 (inc. phys.), volumes.

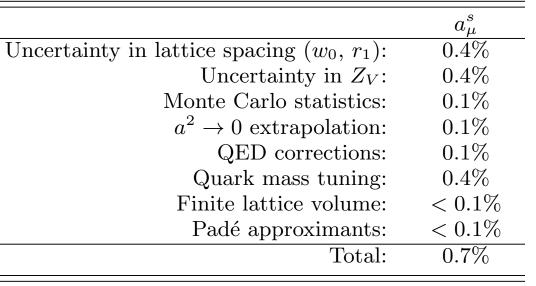
$$a_{\mu}^{HVP,s} = 53.4(4) \times 10^{-10}$$

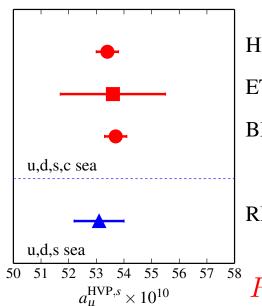
allowing for missing QED

Tune s from η_s

70.0	HPQCD
54.5	
54.0	
33. 5	
53.0	- 1
$_{52.5} $	
12.0	0.005 0.010 0.015 0.02
	$a^2 (\mathrm{fm}^2)$

55.0 $\mathbf{=}$





HPQCD 1403.1778

0.025

ETMC 1411.0705

BMW 1711.04980

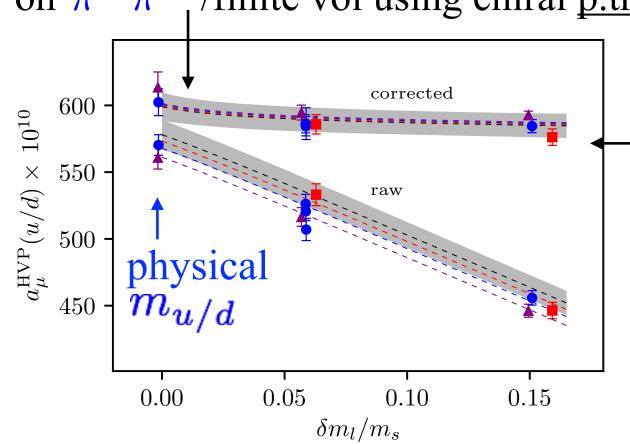
RBC/UKQCD 1606.01767

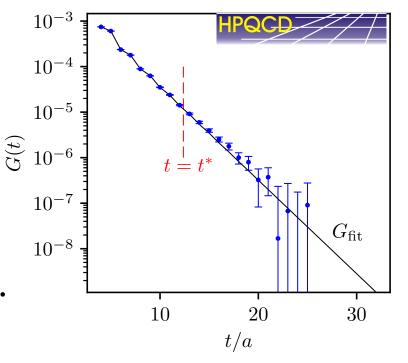
$$R_{e^+e^-} < \approx 55 \times 10^{-10}$$

UP/DOWN contribution, largest and most difficult

- signal/noise worse and results sensitive to u/d mass $m_u = m_d = m_l$

HPQCD (1601.03071): 64,000 correlators per point, use fit to data at large t. Correct for lattice effect on $\pi^+\pi^-$ /finite vol using chiral p.th.

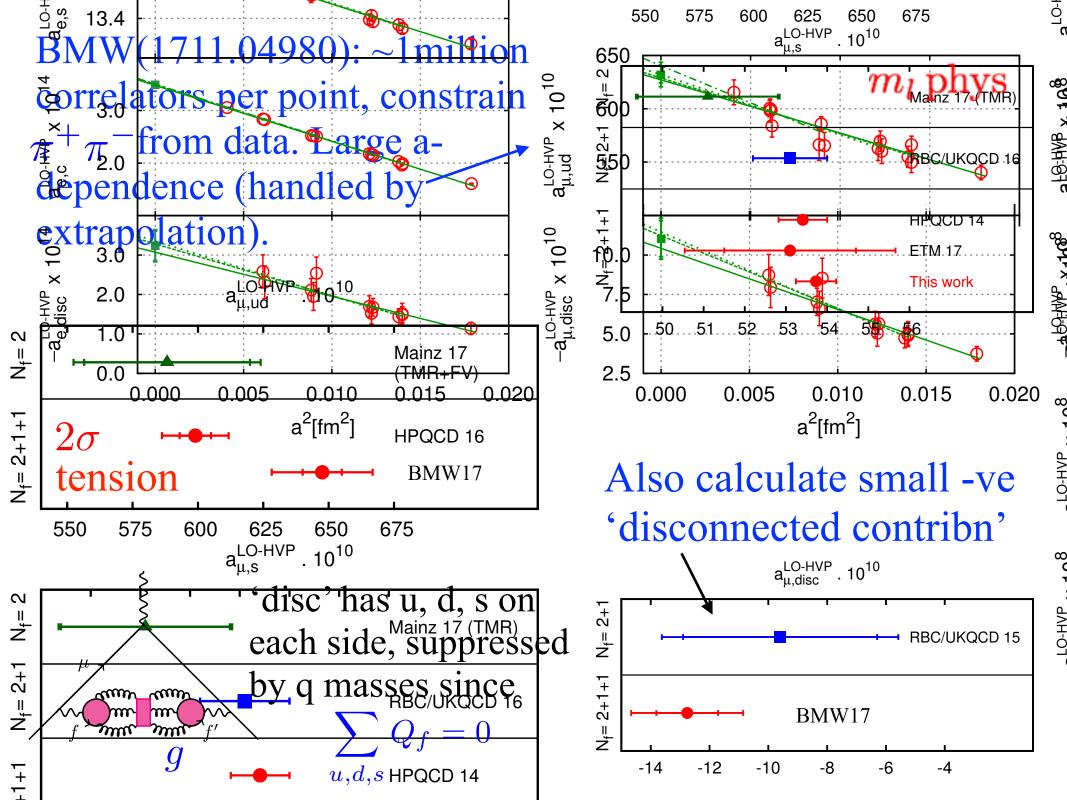




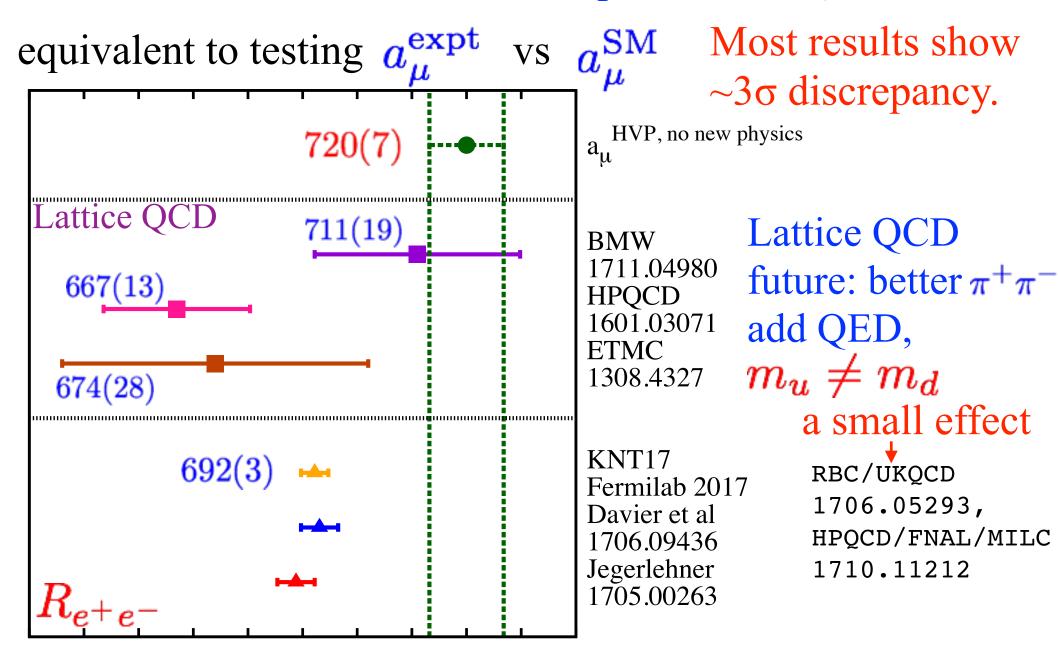
Rescale \prod_{j} by $(m_{\rho}^{latt}/m_{\rho}^{expt})^{2j}$

very little dependence on m_l, a², volume simple to fit.

Errors from missing QED, $m_u \neq m_d$



Total LO HVP contribution - compare lattice QCD and e⁺e⁻



640 650 660 670 680 690 700 710 720 730 740 $a_{II}^{HVP} \times 10^{10}$

Elephant in the room? hadronic light-by-light contribution

Not simply related to experiment, values obtained use large N_c, chiral pert. th. etc.

'Glasgow Consensus' 2009:

$$a_{\mu}^{HLbL} = 10.5(2.6) \times 10^{-10}$$

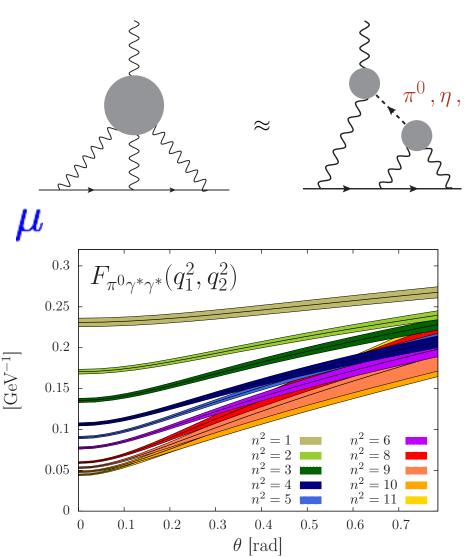
dominated by π^0 exchange: there also OPE constraints 10% possible? with improved

dispersive approaches (with imp. expt for e.g. $\pi^0 \to \gamma^* \gamma^*$

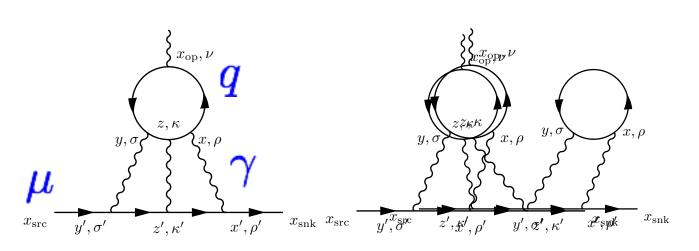
Nyffeler, 1602.03398 Colangelo et al, 1702.07347

Lattice QCD calcs of $\mathcal{F}_{\pi^0\gamma^*\gamma^*}$ can test these approaches

Mainz, 1607.08174,1712.00421



Direct computation of a_{μ}^{HLbL} in lattice QCD



RBC 1610.04603

Note: gluons NOT shown

'connected'

leading 'disconnected'

Calculate 4 quark propagators and combine with factors from muon and photom propagators; sum over points. Massless photon means that finite volume is an issue.

First result: a1 lattice spacing physical m_1

Stat.

connected: 11.6; disc.: -6.3

stat.

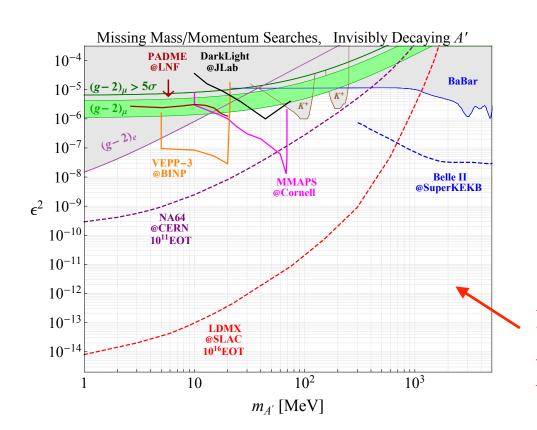
errors

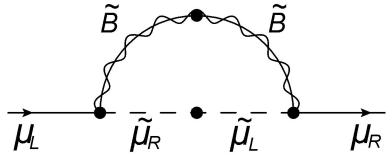
only

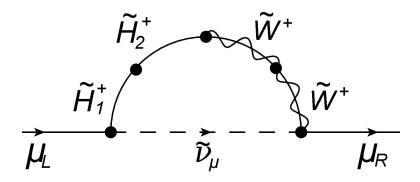
improving finite-volume systematics: $\begin{cases} x_{\text{op}}, \nu & \text{Mainz, } 174 \text{-} 1.02466; \text{ RBC } 1705.01067 \end{cases}$

Beyond the Standard Model explanations for the discrepancy in a_{μ} ?

SUSY still a viable explanation
- more constrained now by LHC
searches since need relatively light
smuon and more fine-tuning.







e.g. Belyaev et al,
MSSM with Pati-Salam at GUT
scale 1605.02072

simple 'dark photon' mixing with ordinary photon now disfavoured

dark-sectors WG - 1608.08632

Conclusion

- $\begin{array}{l} \bullet \quad a_{\mu}^{E821} = 11659209.1(6.3)\times 10^{-10} \\ a_{\mu}^{\rm SM} = 11659182.2(4.3)\times 10^{-10} \\ {\rm disagreement} \quad a_{\mu}^{\rm expt} a_{\mu}^{\rm SM} = 27(8)\times 10^{-10} \end{array}$
- SM uncertainty dominated by HVP. Methods using $R_{e^+e^-}$ have improved to 0.4%; lattice QCD results now at 2-3% aim is <1% with QED and isospin-breaking included.
- HLbL determination will also improve first direct lattice QCD results now available. It seems clearly small.
- Muon g-2 @FNAL will report its first new exptl result in 2019 final aim is to reduce uncty by factor of 4. If central value remains, this will be 5σ evidence for BSM