SM EFT Contributions to Z Decay at One Loop

William Shepherd HEFT Workshop, Durham

May 24, 2017

Unterstützt von / Supported by

Based on 1611.09879 with Christine Hartmann and Michael Trott

Alexander von Humboldt Stiftung/Foundation

Why Loops?

- Electroweak observables have been measured with amazing precision
 - Theory calculations have to match this precision to get full value out of the data

Observable	Experimental Value	Ref.	SM Theoretical Value	Ref.
$\hat{m}_Z[\text{GeV}]$	91.1875 ± 0.0021	[38]	-	-
$\hat{m}_W[\text{GeV}]$	80.385 ± 0.015	[39]	80.365 ± 0.004	[40]
σ_h^0 [nb]	41.540 ± 0.037	[38]	41.488 ± 0.006	[41]
$\Gamma_Z[\text{GeV}]$	2.4952 ± 0.0023	[38]	2.4942 ± 0.0005	[41]
R^0_ℓ	20.767 ± 0.025	[38]	20.751 ± 0.005	[41]
R_b^0	0.21629 ± 0.00066	[38]	0.21580 ± 0.00015	[41]
R_c^0	0.1721 ± 0.0030	[38]	0.17223 ± 0.00005	[41]
A_{FB}^{ℓ}	0.0171 ± 0.0010	[38]	0.01616 ± 0.00008	[42]
A^c_{FB}	0.0707 ± 0.0035	[38]	0.0735 ± 0.0002	[42]
A^b_{FB}	0.0992 ± 0.0016	[38]	0.1029 ± 0.0003	[42]

William Shepherd, JGU Mainz

Why Loops?

• What is the theory error on a tree-level prediction for EFT effects?

– Standard loop factor is
$$\frac{1}{16\pi^2} \sim 1\%$$

$$-\frac{v^2}{\Lambda^2} \sim 1\%$$
 as well

- Numerical coefficients not known a priori
- SMEFT renormalization known, RG improvement will capture logs
 - For LHC-scale physics logs aren't so large
 - Pure-finite effects can be of comparable size

Warsaw Basis

$1:X^3$ $2:H^6$		H^6	$3: H^4 D^2$			$5:\psi^2H^3+{\rm h.c.}$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H ($(H^{\dagger}H)^3$	$Q_{H\square}$	$(H^{\dagger}H$	$(H^{\dagger}H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu}H)$	$\left(H^{\dagger}D_{\mu}H\right)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$						Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							
	$4: X^{2}H^{2}$	6	$\delta:\psi^2 XH$	+ h.c.		7	$\psi^2 H^2 H^2$	D
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e$	$(r_r)\tau^I H W_{\rho}$	Ι	$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu}$	$(e_r)HB_{\mu\nu}$,	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{l}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T$	$(A_r)\widetilde{H}G$	$^{A}_{\mu u}$	Q_{He}	$(H^{\dagger}i\overleftarrow{L}$	$(\bar{e}_p \gamma^\mu e_r)$
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u$	$(u_r) \tau^I \widetilde{H} W$	7Ι μν	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftarrow{L}$	$(\bar{q}_p \gamma^\mu q_r)$
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu})$	$(u_r)\widetilde{H} B_\mu$	ν	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D})$	${}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T$	$r^A d_r) H G$	$A_{\mu\nu}$	Q_{Hu}	$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d$	$(l_r)\tau^I H W$	τ I μν	Q_{Hd}	$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{d}_p\gamma^{\mu}d_r)$
$Q_{H\widetilde{W}B}$	$H^\dagger \tau^I H \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu}$	$(d_r)H B_{\mu\nu}$	ν	Q_{Hud} + h.c.	$i(\widetilde{H}^{\dagger}D)$	$(\bar{u}_p \gamma^\mu d_r)$

Warsaw Basis: 4-fermion

$8:(\bar{L}L)(\bar{L}L)$	8:	$(\bar{L}L)$	$(\bar{L}L)$
--------------------------	----	--------------	--------------

$8:(\bar{R}R)(\bar{R}R)$

 $8:(\bar{L}L)(\bar{R}R)$

Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$
-1	

8. (<i>IIII</i>)(<i>IIII</i>)				
Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$			
Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$			
Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$			
Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$			
Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$			
$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$			
$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$			

Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$

$8: (\bar{L}R)(\bar{R}L) + h.c.$		$8: (\bar{L}R)(\bar{L}R) + h.c.$		
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r)\epsilon_{jk}(\bar{q}_s^k d_t)$	
		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$	
		$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$	
		$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	

Operator Normalization

- We're interested in physics at the weak scale
 Flavor, CPV, and other probes provide strong limits
- We therefore impose MFV, CP relations in the EFT – U(3)⁵, with dominant breaking by SM Yukawas
- Operators which violate flavor symmetry must be normalized by appropriate coupling
- Convenient to normalize operators with field strengths by gauge coupling as well
 - Retains familiar gauge relations from SM
 - Consistent with tree-vs-loop distinction in UV a la Artz, Einhorn, Wudka hep-ph/9405214

Large y_t , λ limit

- These two couplings are known to be sizeable
 Only QCD coupling compares
- Calculations are simpler in vanishing gauge coupling limit
 - Gauge fixing in the presence of D=6 operators leads to additional subtleties
 - Gauge independence assured here
- A good first step toward a full NLO treatment of the problem

Tree-level Effects

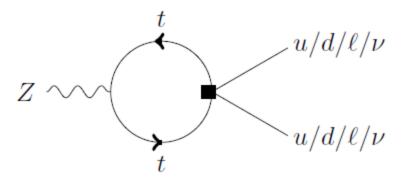
• At tree level SM parameters are modified, e.g.

$$\begin{split} \delta M_Z^2 &\equiv \frac{1}{2\sqrt{2}} \frac{\hat{m}_Z^2}{\hat{G}_F} C_{HD} + \frac{2^{1/4}\sqrt{\pi}\sqrt{\hat{\alpha}}\,\hat{m}_Z}{\hat{G}_F^{3/2}} C_{HWB}, \\ \delta M_W^2 &= -\hat{m}_W^2 \left(\frac{\delta s_{\hat{\theta}}^2}{s_{\hat{\theta}}^2} + \frac{c_{\hat{\theta}}}{s_{\hat{\theta}}\sqrt{2}\hat{G}_F} C_{HWB} + \sqrt{2}\delta G_F \right), \\ \delta G_F &= \frac{1}{\sqrt{2}\,\hat{G}_F} \left(\sqrt{2}\,C_{Hl}^{(3)} - \frac{C_{ll}}{\sqrt{2}} \right), \\ \delta s_{\theta}^2 &= -\frac{s_{\hat{\theta}}\,c_{\hat{\theta}}}{2\sqrt{2}\,\hat{G}_F(1-2s_{\hat{\theta}}^2)} \left[s_{\hat{\theta}}\,c_{\hat{\theta}}\,(C_{HD} + 4\,C_{Hl}^{(3)} - 2\,C_{ll}) + 2\,C_{HWB} \right], \end{split}$$

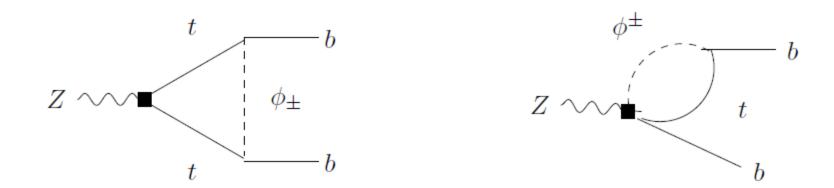
• Direct EFT effects also appear in processes at higher energies or with higher multiplicity

Contributing Operators

• 4-fermion operators:

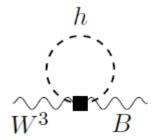


• Scalar-fermionic current operators:

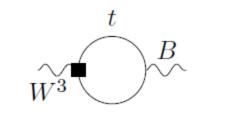


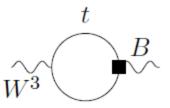
Contributing Operators

• Gauge-Higgs operators:



• Dipole operators:





Amplitude: Divergences

Many 4-fermion operators contribute

 Fairly simple form throughout:

$$\begin{split} i\,\Delta\mathcal{A}_{\epsilon}^{C8} &= -C_{\epsilon}\,N_{C}\,\bar{U}_{L}^{p}\,\not\epsilon_{Z}\,U_{L}^{p}\,\left[-C_{qu}^{(1)}_{qu} + C_{qq}^{(1)}_{qq} + C_{qq}^{(1)}_{qq} + C_{qq}^{(3)}_{qq} + C_{qq}^{(3)}_{qq}\right],\\ &\quad -C_{\epsilon}\,N_{C}\,\bar{U}_{R}^{p}\,\not\epsilon_{Z}\,U_{R}^{p}\,\left[C_{qu}^{(1)} - C_{uu}_{33pp} - C_{uu}_{pp33}\right],\\ &\quad +C_{\epsilon}\,\bar{D}_{L}^{r}\,\not\epsilon_{Z}\,D_{L}^{r}\,\left[N_{C}\left(C_{qu}^{(1)} - C_{qq}^{(1)} - C_{qq}^{(1)}_{qq} + C_{qq}^{(3)}_{qq} + C_{qq}^{(3)}_{qq}\right) - 4\,C_{qq}^{(3)}_{qq}\,\delta_{rb}\right],\\ &\quad -C_{\epsilon}\,N_{C}\,\bar{D}_{R}^{r}\,\not\epsilon_{Z}\,D_{R}^{r}\,\left[-C_{qd}^{(1)}_{qd} + C_{ud}^{(1)}_{ud}\right] - C_{\epsilon}\,N_{C}\,\bar{\nu}_{L}^{t}\,\not\epsilon_{Z}\,\nu_{L}^{t}\,\left[C_{lq}^{(1)} + C_{lq}^{(3)}_{lq} - C_{lu}_{tt33}\right],\\ &\quad -C_{\epsilon}\,N_{C}\,\bar{\ell}_{L}^{s}\,\not\epsilon_{Z}\,\ell_{L}^{s}\,\left[C_{lq}^{(1)} - C_{lu}_{ss33} - C_{lq}^{(3)}_{lq}\right] - C_{\epsilon}\,N_{C}\,\bar{\ell}_{R}^{s}\,\not\epsilon_{Z}\,\ell_{R}^{s}\,\left[C_{qe} - C_{eu}_{ss33}\right]. \end{split}$$

$$C_{\epsilon} = \frac{y_t^2 C_Z}{16 \pi^2 \epsilon}. \qquad C_Z = i \sqrt{\bar{g}_1^2 + \bar{g}_2^2} \, \bar{v}_T^2 / 2$$

Amplitude: Divergences

• These poles are all cancelled by the counterterms induced for Higgs-fermionic ops

 $i Z_{C7} \,\delta \mathcal{A}^{C7} \to i \,\delta \mathcal{A}^{C7} - i \,\Delta \mathcal{A}^{C8}_{\epsilon}.$

$$i \,\delta \mathcal{A}^{C7} = C_Z \,\bar{U}_L^p \,\phi_Z \,U_L^p \,\left[C_{Hq}^{(1)} - C_{Hq}^{(3)} \right] + C_Z \,\bar{U}_R^p \,\phi_Z \,U_R^p \,\left[C_{Hu} \right]_{pp} \right], \qquad ($$

$$+ C_Z \,\bar{D}_L^r \,\phi_Z \,D_L^r \,\left[C_{Hq}^{(1)} + C_{Hq}^{(3)} \right] + C_Z \,\bar{D}_R^r \,\phi_Z \,D_R^r \,\left[C_{Hd} \right]_{rr} ,$$

$$+ C_Z \,\bar{\ell}_L^s \,\phi_Z \,\ell_L^s \,\left[C_{H\ell}^{(1)} + C_{H\ell}^{(3)} \right] + C_Z \,\bar{\ell}_R^s \,\phi_Z \,\ell_R^s \,\left[C_{He} \right]_{ss} + C_Z \,\bar{\nu}_L^t \,\phi_Z \,\nu_L^t \,\left[C_{H\ell}^{(1)} - C_{H\ell}^{(3)} \right]$$

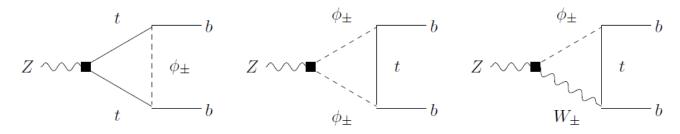
Higgs-Fermionic Divergences

- These only contribute to b-quark final states in our limit
 - Straightforward diagram contributions
 - Contributions from SM vev renormalization
 - B-quark wave function renormalization
- All poles resulting from this cancelled by selfrenormalization of these operators

$$\left\langle \epsilon_Z^{\alpha} | \bar{b}_L \gamma_{\alpha} b_L | \bar{b}_L b_L \right\rangle Z_b \left(\sqrt{Z_v} + \frac{\Delta v}{\bar{v}_T} \right)_{div}^2 = -\frac{C_{\epsilon}}{C_Z} i \, \delta \mathcal{A}^{C7} + \frac{C_{\epsilon}}{2} \, \bar{b}_L \, \epsilon_Z b_L \left[7 \, C_{Hq}^{(3)} - C_{Hq}^{(1)} + C_{Hu}_{bb} \right]$$

Gauge Operator Divergences

• Direct divergences from correction to $\sin \theta_W$:



 Cancelled by b-quark wavefunction shift introduced to tree-level EFT effect

Input Parameters

- Any calculation depends on the inputs used to set the theory parameters
- We use a canonical set of inputs for the SM $-\alpha_{EM}, G_F, M_Z, M_t, M_h$
- EFT gives corrections to the extraction of each
- We treat the Wilson coefficients in MS at the NP scale as EFT input parameters to be measured and/or constrained

α_{EM} Corrections

- Matching contributions at low scales where α is measured are proportional to lepton masses
- Running cannot be neglected for α
- Two EFT effects here
 - Shift in Weinberg angle from HWB operator

- Different running from HB, HW operators

$$\delta \alpha = -\sqrt{2} \frac{4\pi \,\tilde{\alpha}}{\hat{G}_F} C_{HWB}^{(r)},$$

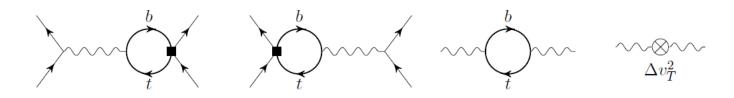
$$\Delta \alpha = -\sqrt{2} \frac{4\pi \,\tilde{\alpha}}{\hat{G}_F} C_{HWB}^{(r)} \left(\Delta V^2 + \frac{\Delta G_F}{\hat{G}_F} \right) + \frac{\tilde{\alpha}}{\pi} \,\hat{m}_h^2 \left(C_{HB}^{(r)} + C_{HW}^{(r)} \right) \log \left[\frac{\hat{m}_Z^2}{p^2} \right],$$

$$\simeq -\sqrt{2} \frac{4\pi \,\tilde{\alpha}}{\hat{G}_F} C_{HWB}^{(r)} \left(\Delta V^2 + \frac{\Delta G_F}{\hat{G}_F} \right) + 0.03 \,\hat{m}_h^2 \left(C_{HB}^{(r)} + C_{HW}^{(r)} \right).$$
William Shepherd, JGU Mainz

1/26/2017

G_F Corrections

- G_F is extracted from the muon lifetime – Dominated by $\mu \rightarrow e\nu\nu$
- Corrected by 4-fermion ops and W mass shifts



• Lagrangian parameter extracted as

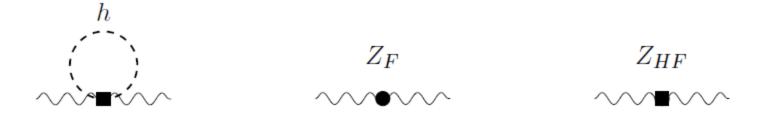
$$-\frac{4\mathcal{G}_F}{\sqrt{2}} = -\frac{2}{\bar{v}_T^2} \left(1 - \frac{\Delta V^2}{\bar{v}_T^2} - \frac{\Delta m_W^2}{\bar{m}_W^2} \right) - 4\,\hat{G}_F\,\delta G_F - \Delta\psi^4$$
$$\Delta G_F = -\hat{G}_F\,\Delta V^2\,(1 - 2\,\sqrt{2}\,\delta G_F) - \frac{\Delta m_W^2}{\sqrt{2}\,\hat{m}_W^2} + \frac{\Delta\psi^4}{4\,\hat{G}_F} - \frac{\Delta m_W^2}{\sqrt{2}\,\hat{m}_W^2}\frac{\delta m_W^2}{\hat{m}_W^2}$$

1/26/2017

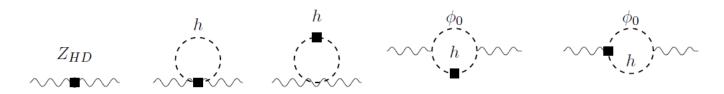
William Shepherd, JGU Mainz

 M_Z Corrections

 Gauge-Higgs operators correct the Z mass through the graphs



• The Higgs-derivative operator contributes too



M_Z Corrections

- VEV and Weinberg angle get involved as well
- In terms of Lagrangian parameters

 $\Delta M_Z^2 = \left[\Delta V^2 + \frac{\Delta \bar{v}_T^4}{2} \, C_{HD}^{(r)} \right] \, \frac{(\bar{g}_1^2 + \bar{g}_2^2)}{4} + \frac{\bar{g}_1^2 \, \bar{g}_2^2}{2} \, \bar{v}_T^2 \, \left[\left(\Delta \bar{v}_Z^2 + \Delta V^2 \right) C_{HWB}^{(r)} + \Delta_{HWB}^{y_t} \right] \, dv_Z^{(r)} + \frac{\Delta \bar{v}_T^4}{2} \, C_{HWB}^{(r)} + \frac{\Delta \bar{v}_T^4}{2} \, V_Z^{(r)} + \frac{\Delta \bar{v}$

• With as many input parameters as possible $\frac{\Delta m_Z^2}{\hat{m}_Z^2} = \sqrt{2} \Delta \bar{v}_Z^2 \,\hat{G}_F \left[1 - \sqrt{2} \,\delta G_F - \frac{\delta m_Z^2}{\hat{m}_Z^2} \right] + C_{HD}^{(r)} \left(\frac{4}{2^{1/4}} \frac{\Delta v}{\sqrt{\hat{G}_F}} + \frac{\hat{m}_h^2}{32 \pi^2} - 3 \,\hat{m}_h^2 \,\Delta_1 \right) \\
+ 8 \pi \tilde{\alpha} \left[(\Delta \bar{v}_Z^2 + \Delta V^2) \, C_{HWB}^{(r)} + \Delta_{HWB}^{yt} \right]. \\
\Delta V^2 = \frac{2^{3/4} \,\Delta v}{\sqrt{\hat{G}_F}} \, (1 + \delta G_F) - \hat{m}_h^2 \,\Delta_1, \qquad \bar{g}_2^2 = \frac{4 \pi \,\hat{\alpha}}{s_{\hat{\mu}}^2} \left[1 + \frac{\delta s_{\theta}}{s_{\hat{\theta}}} + 4 \,\hat{m}_W^2 \, C_{HWB} \right].$

M_t, M_h Corrections

- These don't enter the process at tree-level — Only tree-level EFT effects needed
- Equivalent to correcting couplings y_t , λ

$$-\bar{\lambda} = \lambda + 15v^2C_H$$

$$-\overline{y_t} = y_t + 3v^2 C_{tH}$$

- Retains the SM relations for masses as functions of couplings at this order
 - As these masses are input parameters, these corrections ultimately cancel

- These calculations include closed fermion loops with projectors and 4 gamma matrices Long known to depend on treatment of γ^5
- In renormalizable theories these scheme dependences are understood and benign
- We investigated the contributions of these effects in the EFT context and found similar results

 Scheme-dependent traces appear for 4fermion operator contributions

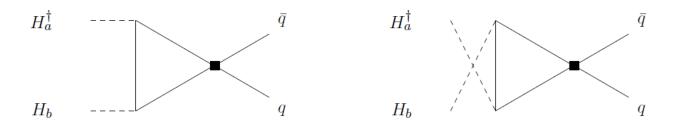
- Difference only in finite terms

- In NDA scheme, these graphs give no nonlogarithmic finite terms
- In t'Hooft-Veltmann scheme one finds

$$i\mathcal{A}^{HV-NDR} = -\frac{i\,\delta_{pr}}{16\,\pi^2} \left(C^{(1)}_{\substack{qq\\33pr}} + C^{(1)}_{\substack{qq\\pr33}} \right) m_z \, v \, y_t^2 \, \bar{u}_p \, \tilde{\gamma}_\alpha \, P_L \, u_r$$

- Scheme dependences like this can only appear in an internal calculation
 - Physical input to physical observable must be unaffected, or we have a problem
- Here we need to think more carefully about what our input is for the Wilson Coefficient
- Most sensible definition would be based on measuring the scattering predicted at treelevel

• If we adopt a definition of that form, we have to include finite contributions to the scattering



 These graphs generate a Higgs-fermionic current interaction from the 4-fermion interaction we started with

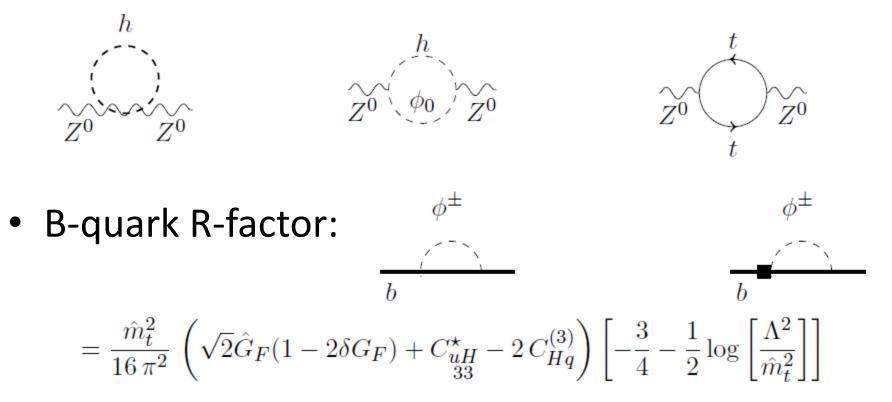
• Difference between the matching terms in the two schemes:

$$C_{Hq}^{(1)} = C_{Hq}^{(1)} + \frac{1}{48\pi^2} \left(C_{qq}^{(1)} + C_{qq}^{(1)} \\ prst + C_{stpr}^{(1)} \right) \left(2[Y_u^{\dagger}Y_u]^{st} + [Y_uY_u^{\dagger}]^{st} \right)$$

- Inserting this matching term to tree-level contribution of operator exactly cancels looplevel scheme dependence
- Particularly interesting: SU(2) violating graph is necessary to properly cancel the scheme dependence

Finite Field Normalizations

• Z boson R-factor arises from the graphs:



Sample Results

$$\begin{split} \Delta\Gamma_{Z \to Had} &= 2\,\Delta\Gamma_{Z\bar{u}u} + 2\,\Delta\Gamma_{Z\bar{d}d} + \Delta\Gamma_{Z\bar{b}b}, \\ &= \frac{\sqrt{2}\,\hat{G}_F\hat{m}_Z^3}{6\,\pi} \left[4\,(g_R^u + \delta g_R^u)\,\Delta g_R^u + 4\,(g_L^u + \delta g_L^u)\,\Delta g_L^u + 4\,(g_R^d + \delta g_R^d)\,\Delta g_R^d \right] \\ &+ \frac{\sqrt{2}\,\hat{G}_F\hat{m}_Z^3}{6\,\pi} \left[4\,(g_L^d + \delta g_L^d)\,\Delta g_L^d + 2\,(g_R^b + \delta g_R^b)\,\Delta g_R^b + 2\,(g_L^b + \delta g_L^b)\,\Delta g_L^b \right] \end{split}$$

1/26/2017

William Shepherd, JGU Mainz

Phenomenology

- Counting is all that's needed for the most important point
- Tree amplitude depends on:
 - 1 Higgs-gauge WC
 - 1 Higgs-derivative WC
 - 7 Higgs-fermion WCs
 - 1 four-fermion WC
- NLO corrections have introduced additional dependence on:
 - 2 Higgs-gauge WCs
 - 1 Yukawa-correcting WC
 - 2 Dipole WCs
 - 11 four-fermion WCs
- At this level of precision, we can measure only 5 Z pole observables $(A_{FB}$ goes beyond NWA)

Phenomenology

- Recall that at tree level there were flat directions in Z pole observables

 Lifted by TGC measurements
- With this increase in relevant parameters, all of EWPD not enough to constrain the EFT
- The lesson: loop corrections cannot be constrained by EWPD alone, thus EWPD bounds (at tree level) can never be more precise than a loop factor on WCs

Numerics

The δ correction to $\bar{\Gamma}_{Z\to\bar{d}\,d}$ (where $d=\{d,s,b\})$ is given by

$$\frac{\delta\bar{\Gamma}_{Z\to\bar{d}d}}{10^{-2}} = -0.939 C_{Hd} - 1.58 C_{HD} - 6.31 C_{H\ell}^{(3)} + 5.10 \left(C_{Hq}^{(1)} + C_{Hq}^{(3)}\right) - 0.510 C_{HWB} + 3.15 C_{\ell\ell}.$$
(7.21)

The $\delta \Delta$ correction to $\overline{\Gamma}_{Z \to \overline{d} d}$ (where $d = \{d, s\}$) has the contributions

$$\frac{\delta\Delta\bar{\Gamma}_{Z\to\bar{d}d}}{10^{-3}} = \left[\left(0.071\,\Delta\bar{v}_T + 0.201 \right) C_{Hd} - \left(0.115\,\Delta\bar{v}_T + 0.144 \right) C_{HD}, - \left(1.45\,\Delta\bar{v}_T + 1.08 \right) C_{H\ell}^{(3)} \right. \\ \left. + \left(0.316\,\Delta\bar{v}_T - 0.206 \right) \left(C_{Hq}^{(1)} + C_{Hq}^{(3)} \right) - \left(0.024\,\Delta\bar{v}_T + 0.064 \right) C_{HWB} + 4.23\,\Delta\bar{v}_T, \\ \left. + \left(0.727\,\Delta\bar{v}_T + 0.541 \right) C_{\ell\ell} + 0.593\,C_{\ell q}^{(3)} + 0.072\left(C_{HB} + C_{HW} \right) \right],$$
(7.22)

and the $\delta \Delta$ corrections to $\overline{\Gamma}_{Z \to \overline{d} d}$ (where $d = \{d, s\}$) also has the logarithmic terms

$$\frac{\delta\Delta\Gamma_{Z\to\bar{d}d}}{10^{-3}} = \left[0.342 \, C_{Hd} - 0.266 \, C_{HD} - 0.995 \, C_{H\ell}^{(3)} - 0.225 \left(C_{Hq}^{(1)} + C_{Hq}^{(3)} \right) - 0.110 \, C_{HWB}, \\
+ 1.09 \, C_{\ell\ell} - 1.19 \, C_{\ell q}^{(3)} + 0.176 \left(C_{qd}^{(1)} - C_{ud}^{(1)} \right) + 1.92 \left(C_{qq}^{(3)} - C_{qq}^{(1)} \right) + 0.958 \, C_{qu}^{(1)}, \\
- 0.091 \, C_{uW} - 0.055 \, C_{uB} \right] \log \left[\frac{\Lambda^2}{\hat{m}_t^2} \right] + \left[(2.43 \times 10^{-5} \, C_{HD} + 0.015 \, C_{Hd}, \\
+ 0.103 \, C_{Hl}^{(3)} - 0.083 \left(C_{hq}^{(1)} + C_{hq}^{(3)} \right) - 0.005 \, C_{HWB} - 0.052 \, C_{\ell\ell} \right] \log \left[\frac{\Lambda^2}{\hat{m}_h^2} \right] (7.23)$$

Numerics

The δ correction to \bar{R}^b_ℓ is given by

$$\frac{\delta R_b^0}{10^{-2}} = -0.192 C_{Hd} + 0.039 C_{HD} + 0.158 C_{H\ell}^{(3)} + 2.13 C_{Hq}^{(1)} - 0.055 C_{Hq}^{(3)}, -0.494 C_{Hu} + 0.043 C_{HWB} - 0.079 C_{\ell\ell}.$$
(7.35)

Similarly, the $\delta\,\Delta$ correction to \bar{R}^0_b has the contributions

$$\begin{aligned} \frac{\delta\Delta R_b^0}{10^{-3}} &= \left[\left(0.036\,\Delta\bar{v}_T + 0.083 \right) C_{Hd} + \left(0.011\,\Delta\bar{v}_T + 0.013 \right) C_{HD} + \left(0.084\,\Delta\bar{v}_T - 0.014 \right) C_{H\ell}^{(3)} \right. \\ &\quad \left. - \left(0.085\,\Delta\bar{v}_T + 0.152 \right) C_{Hq}^{(1)} - \left(0.016\,\Delta\bar{v}_T + 0.019 \right) C_{Hq}^{(3)} + \left(0.099\,\Delta\bar{v}_T + 0.208 \right) C_{Hu} \right. \\ &\quad \left. - \left(0.042\,\Delta\bar{v}_T - 0.007 \right) C_{\ell\ell} + \left(0.013\,\Delta\bar{v}_T + 0.009 \right) C_{HWB} - 0.015\,C_{\ell q}^{(3)} \right. \\ &\quad \left. + 0.597\,C_{qq}^{(3)} + 0.047\,C_{uH} - 0.006\,(C_{HB} + C_{HW}) - 0.106\,\Delta v \right], \end{aligned}$$
(7.36) and the $\delta \Delta$ correction to R_b^0 also has the logarithmic terms

$$\begin{split} \frac{\delta\Delta R_b^0}{10^{-3}} &= \left[0.129 \, C_{Hd} + 0.025 \, C_{HD} + 0.067 \, C_{H\ell}^{(3)} - 0.559 \, C_{Hq}^{(1)} + 0.383 \, C_{Hq}^{(3)} + 0.240 \, C_{Hu}, \right. \\ &+ 0.023 \, C_{HWB} - 0.049 \, C_{\ell\ell} + 0.030 \, C_{\ell q}^{(3)} + 0.036 \left(C_{qd}^{(1)} - C_{ud}^{(1)} \right) - 0.618 \, C_{qq}^{(3)}, \\ &- 0.803 \, C_{qq}^{(1)} + 0.494 \, C_{qu}^{(1)} - 0.002 \, C_{uB} + 0.032 \, C_{uH} - 0.004 \, C_{uW} - 0.186 \, C_{uu} \right] \log \left[\frac{\Lambda^2}{\hat{m}_t^2} \right] \\ &+ \left[-8.94 \times 10^{-7} \, C_{HD} + \left(0.313 \, C_{Hd} - 3.49 \, C_{Hq}^{(1)} + 0.090 \, C_{Hq}^{(3)} - 0.258 \, C_{H\ell}^{(3)}, \right. \\ &+ 0.808 \, C_{Hu} + 0.129 \, C_{\ell\ell} - 0.020 \, C_{HWB} \right) 10^{-2} \right] \log \left[\frac{\Lambda^2}{\hat{m}_h^2} \right]. \end{split}$$

Conclusions

- We have excellent data available, and must have enough respect for that to understand our new physics predictions at comparable precision
- In the case of LEP data, especially at the Z pole, this requires NLO accuracy
- In the most model-independent formulation of heavy new physics, the NLO predictions are under-constrained by low energy data
 - Setting shifts in EW observables to zero for the purposes of further searches does not give model-independent results
- A truly global analysis will be needed to properly constrain the EFT without UV assumptions
- Thank goodness we have the LHC with its forthcoming unprecedented data set to constrain new physics at higher energies!

Thank You!