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• The operator profile when integrating out the heavy states. 

• A dynamical source of generating the mass to the UV states 

Yun Jiang (NBI) On the non-minimal SMEFT 

①One	operator	“at	a	,me”	

②Data	fits	to	subsets	of	operators,	a	reasonable	way	of	selec,ng	the	operators?	

③	Are	some	operators	always	simultaneously	present?

A sample: one operator vs. global fit 

Conclusions

The tree level matching in the IR limit of the SMEFT
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HIGGS DISCOVERY AT LHC

Yun Jiang (NBI) On the non-minimal SMEFT 



3
The	discovery	of	Higgs	boson	has	put	the	final	piece	of	the	Standard	Model	in	place.	

HIGGS DISCOVERY AT LHC

Yun Jiang (NBI) On the non-minimal SMEFT 



NEW PHYSICS BEYOND THE SM
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The	possible	solu,ons	are	
Ø  Supersymmetry	
Ø  Extra	dimensions	

	

q  EWSB	pattern	

•  Is there only one type of Higgs boson?  

q  Hierarchy	problem	

•  What prevents quantities at the 
electroweak scale, such as the Higgs 
boson mass, from getting quantum 
corrections on the order of the Planck 
scale?  

q  Neutrinos	

•  Is mass hierarchy normal or inverted?  
•  Is the CP violating phase 0? 

Ê  Dark	matter	
 •  What is the identity of DM? 
•  Is it a particle?  
•  Is it the lightest supersymmetric 

particle (LSP)?  
•  Do the phenomena attributed to 

DM point not to some form of 
matter? 

Ê  Baryon	asymmetry	
 

Ê  Inflation	of	early	Universe	
 

•  Why is there far more matter 
than antimatter in the observable 
universe?	

The SM works beautifully, no compelling hints for 
deviations.  However, …
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The SM works beautifully, no compelling hints for 
deviations.  However, …
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If NP scale ~4πv

In the SMEFT approach, UV 
physics in the ~TeV scale 
consistent with the null 
results of lower energy tests.

Yun Jiang (NBI) On the non-minimal SMEFT 

HIGGS NATURALNESS
NOTHING DISCOVERED AT THE LHC

beyond the LHC run 2 reachNew Physics? 



SMEFT (STANDARD MODEL EFFECTIVE FIELD THEORY)  
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Glashow 1961, Weinberg 1967 (Salam 1967)

Weinberg 1979, Zee, Wilczek 1979

Leung, Love, Rao 1984, Buchmuller Wyler 1986, 
Grzadkowski, Iskrzynski, Misiak,Rosiek 2010 

Weinberg 1979, Abbott Wise 1980

Lehman 1410.4193, Henning et al. 1512.03433

Lehman,Martin 1510.00372, Henning et al. 1512.03433

The Lagrangian expansion theory technology is essentially a solved problem

M.Trott, Edinburgh- Nov 25th, 2015

Built of H doublet + higher D ops 
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What is the SMEFT?

M.Trott, NBI, 15th September 2016

The SM is supplemented with a series of higher dimensional operators:

New	physics	effect	
18	(19)	parameters	

Y. Jiang, M. Trott / Physics Letters B 770 (2017) 108–116 109

there is no particular reason in general for tree level matchings, as 
opposed to non-perturbative matchings, to be the largest contribu-
tion to the Wilson coefficients. Such extra matching contributions 
are difficult to characterize (other than by using the full SMEFT 
formalism) and only reinforce our main point on the non-minimal 
character of the SMEFT, so we do not focus on these contributions.

The number of operators induced in matching is operator ba-
sis dependent. However, the conditions uncovered on the UV field 
content to reduce the operator profile (i.e. the number of inde-
pendent SU(3) × SU(2) × U(1) operators) are still meaningful. The 
conditions can be framed in terms of symmetries and several sim-
ple observations on new physics spectra and dynamics that can 
generate a scale !, as we show. Practically speaking, most global 
analyses are being constructed using the well defined Warsaw ba-
sis [2], so we focus on this basis when examining the one operator 
question. We use the notation Q i to denote an operator defined 
in the Warsaw basis in this work, and refer the reader to Ref. [2]
for the explicit operator definitions. Note also that we refer to one 
operator with the understanding that, consistent with our assump-
tions of G symmetry, flavor indices are not used to distinguish 
operators.

The structure of this paper is as follows. Following a brief 
comment on the dimension-5 operator and Fermi theory in Sec-
tion 2, we provide in Section 3.1 a comprehensive discussion on 
the SMEFT matching at tree level onto L6 when a massive spin-1
state present in a UV physics sector is integrated out. We focus 
this discussion on the “one operator induced at tree level” ques-
tion consistent with the assumed (approximate) G symmetry. We 
demonstrate why such a simple UV sector cannot be a complete 
scenario if a mechanism to generate the heavy state’s mass is 
demanded. We then discuss the spin-1/2 case, drawing a similar 
conclusions in Section 3.2. In Section 3.3 we examine the case of 
integrating out a scalar field focused on the “one operator” ques-
tion. We show how the scalar case is more subtle, but still argues 
for more operators when UV complete scenarios are demanded. 
Section 4 contains our conclusions.

2. Two exceptional EFT cases

When considering the one operator question, we note that a 
few historical accidents in EFTs can be misleading. First of all, L5
and Ld with d ≥ 6 are distinct when considering this question. Due 
to the charges of the SM field content, only one operator (with 
flavor indices) can be constructed in L5. The operator that results 
[17,18],

L5 = ci j

2

(
Lc

L,i H̃⋆
)(

H̃† LL, j

)
+ h.c. (2)

is the well known example where one operator at a particular 
mass dimension does result when integrating out UV physics.4 The 
interplay of global U(1)L number violation and the constraints of 
the SM field’s representations leading to one operator in L5 is an 
exception that is not repeated at higher orders in the SMEFT oper-
ator expansion [6–10].

Historically, Fermi theory has frequently been used as a pro-
totypical EFT to build intuition. This can be unfortunate, as Fermi 
theory is atypical and has a number of non-trivial accidental fea-
tures that are not generic. In Fermi theory, the four-fermion oper-
ator

Q ℓℓ =
(
LL γ µLL

) (
LL γµLL

)
, (3)

4 Here and below our notation with a c superscript indicates a charge conjugate 
representation of a SM field.

Table 1
Vector representations [21,22] consistent with our assumptions. The first three rows 
are the same field sub-classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix T A (for both color and flavor 8’s) is 
present but suppressed in the coupling to some fermion bi-linears. σI is the Pauli 
matrix. The table largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8 and 
3 ⊗ 3 = 6 ⊕ 3̄.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γ µ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄ L γ µ Q L

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄ Lσ I γ µ Q L

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ µ uR

V(1,8)
VII 1,8 1 −1 (3̄,3,1) (1,1) d̄R γ µ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄ L γ µ Q L

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄ Lσ I γ µ Q L

V(3̄,6)
X 3̄,6 2 −1/6 (1,3,3) (1,1) d̄R γ µ Q c

L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ µ Q c

L

is generated when the W boson is integrated out. This effective 
operator is used in the process µ− → e− + ν̄e + νµ to infer the 
Fermi constant, G F . The UV sector in the case of Fermi theory is 
the SM which does induce a series of other operators at tree level, 
in addition to the operator Q ℓℓ . These four-fermion operators are 
due to the Higgs field and the Z boson. However, the highly sup-
pressed Yukawa couplings of the SM Higgs to light fermions leads 
to an exceptional situation numerically in terms of the operator 
profiles. The small Yukawa couplings are not formally the conse-
quence of a fine tuning, as they are protected by the full chiral 
symmetry of the SM. More discussion on the accidents in Fermi 
theory, and how it is commonly misunderstood, can be found in 
Ref. [19].

Arguably, there is some theoretical evidence based on the struc-
ture and particle content of the SM in the direction of embedding 
this model into SU(5) or SU(10), see for example the arguments 
in Ref. [20]. This could be interpreted as a hint to an underlying 
theory, similar to the chiral structure of the SM being a low en-
ergy hint of its UV structure. However, the problems of TeV scale 
grand unified theories are very well known. In this work we make 
a more phenomenologically motivated choice and assume approx-
imate G symmetry (and CP symmetry).

3. G symmetric tree level matchings

3.1. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in the 
manner assumed are given by Table 1 [21–23]. The requirement 
of linear couplings of mass dimension less than four, together 
with Lorentz symmetry and invariance under the full SM gauge 
group constrains the possible quantum numbers of UV field con-
tent. Fields with other representations that give SMEFT matchings 
respecting G are possible, if these conditions are relaxed. Our no-
tation is that Q c , Lc are the right handed conjugate doublet fields 
of the SM fermions. The global flavor symmetry in the quark and 
lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton bi-linears, 
to quark-lepton bi-linears or have an interaction with the SM Higgs 
field. We list the corresponding fields in Table 2 and Table 3. 
Cases VXII, VXIII have fields that carry a global lepton number and 

• Only	one	operator	is	constructed	at	dim-5.		

• This	is	an	excep9on	due	to	the	charges	of	the	SM	fields	

• This	is	not	repeated	at	higher	orders	in	the	SMEFT	operator	expansion.

Yun Jiang (NBI) On the non-minimal SMEFT 
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What is the SMEFT?

M.Trott, NBI, 15th September 2016

The SM is supplemented with a series of higher dimensional operators:

A complete set of independent operator defined in the “Warsaw basis”, JHEP 10(2010)085 

Yun Jiang (NBI) On the non-minimal SMEFT 



Example:  Higgs-only operators

“Independent” Effective Operator
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Warsaw basis

J
H
E
P
1
0
(
2
0
1
0
)
0
8
5

X3 ϕ6 ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

Q eG
fABCG̃Aν

µ GBρ
ν GCµ

ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν W Kµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QfW
εIJKW̃ Iν

µ W Jρ
ν W Kµ

ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

Q
ϕ eG

ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕfW

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ Iγµqr)

Q
ϕ eB

ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

Q
ϕfWB

ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Q(1)
lq → Q(1)prst

lq

B

B L

X3 X2ϕ2 ϕ6 ϕ4D2

X̃µν

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R) ψ2ϕ2D2

Qϕud

Q−
(+)

Q†

“SILH”
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P
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As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with

�LSILH =
c̄H
2v2

@µ
⇣
H†H

⌘
@µ

⇣
H†H

⌘
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
� c̄

6

�

v2

⇣
H†H

⌘
3

+
⇣⇣ c̄u

v2
yuH

†Hq̄LH
cuR+

c̄d
v2

ydH
†Hq̄LHdR+

c̄l
v2

ylH
†HL̄LHlR

⌘
+h.c.

⌘

+
ic̄W g

2m2

W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄B g0

2m2

W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2

W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HB g0

m2

W

(DµH)†(D⌫H)Bµ⌫

+
c̄� g0

2

m2

W

H†HBµ⌫B
µ⌫ +

c̄g g2S
m2

W

H†HGa
µ⌫G

aµ⌫ ,

(2.2)

�LF1 =
ic̄Hq

v2
(q̄L�

µqL)
�
H† !D µH

�
+

ic̄0Hq

v2
�
q̄L�

µ�iqL
� �

H†�i !D µH
�

+
ic̄Hu

v2
(ūR�

µuR)
�
H† !D µH

�
+

ic̄Hd

v2
�
d̄R�

µdR
� �

H† !D µH
�

+

✓
ic̄Hud

v2
(ūR�

µdR)
�
Hc † !D µH

�
+ h.c.

◆

+
ic̄HL

v2
�
L̄L�

µLL
� �

H† !D µH
�
+

ic̄0HL

v2
�
L̄L�

µ�iLL
� �

H†�i !D µH
�

+
ic̄Hl

v2
�
l̄R�

µlR
� �

H† !D µH
�
,

(2.3)

1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.
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(ūR�

µdR)
�
Hc † !D µH

�
+ h.c.

◆

+
ic̄HL

v2
�
L̄L�

µLL
� �

H† !D µH
�
+

ic̄0HL

v2
�
L̄L�

µ�iLL
� �

H†�i !D µH
�

+
ic̄Hl

v2
�
l̄R�

µlR
� �

H† !D µH
�
,

(2.3)

1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.

– 3 –

J
H
E
P
0
7
(
2
0
1
3
)
0
3
5

As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with

�LSILH =
c̄H
2v2

@µ
⇣
H†H

⌘
@µ

⇣
H†H

⌘
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
� c̄

6

�

v2

⇣
H†H

⌘
3

+
⇣⇣ c̄u

v2
yuH

†Hq̄LH
cuR+

c̄d
v2

ydH
†Hq̄LHdR+

c̄l
v2

ylH
†HL̄LHlR

⌘
+h.c.

⌘

+
ic̄W g

2m2

W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄B g0

2m2

W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2

W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HB g0

m2

W

(DµH)†(D⌫H)Bµ⌫

+
c̄� g0

2

m2

W

H†HBµ⌫B
µ⌫ +

c̄g g2S
m2

W

H†HGa
µ⌫G

aµ⌫ ,

(2.2)

�LF1 =
ic̄Hq

v2
(q̄L�

µqL)
�
H† !D µH

�
+

ic̄0Hq

v2
�
q̄L�

µ�iqL
� �

H†�i !D µH
�

+
ic̄Hu

v2
(ūR�

µuR)
�
H† !D µH

�
+

ic̄Hd

v2
�
d̄R�

µdR
� �

H† !D µH
�

+

✓
ic̄Hud

v2
(ūR�

µdR)
�
Hc † !D µH

�
+ h.c.

◆

+
ic̄HL

v2
�
L̄L�

µLL
� �

H† !D µH
�
+

ic̄0HL

v2
�
L̄L�

µ�iLL
� �

H†�i !D µH
�

+
ic̄Hl

v2
�
l̄R�

µlR
� �

H† !D µH
�
,

(2.3)

1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.
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Example:  Higgs-only operators

“Independent” Effective Operator

9

Warsaw basis

J
H
E
P
1
0
(
2
0
1
0
)
0
8
5

X3 ϕ6 ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

Q eG
fABCG̃Aν

µ GBρ
ν GCµ

ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν W Kµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QfW
εIJKW̃ Iν

µ W Jρ
ν W Kµ

ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

Q
ϕ eG

ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕfW

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ Iγµqr)

Q
ϕ eB

ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

Q
ϕfWB

ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Q(1)
lq → Q(1)prst

lq

B

B L

X3 X2ϕ2 ϕ6 ϕ4D2

X̃µν

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R) ψ2ϕ2D2

Qϕud

Q−
(+)

Q†

“SILH”

J
H
E
P
0
7
(
2
0
1
3
)
0
3
5

As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with

�LSILH =
c̄H
2v2

@µ
⇣
H†H

⌘
@µ

⇣
H†H

⌘
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
� c̄

6

�

v2

⇣
H†H

⌘
3

+
⇣⇣ c̄u

v2
yuH

†Hq̄LH
cuR+

c̄d
v2

ydH
†Hq̄LHdR+

c̄l
v2

ylH
†HL̄LHlR

⌘
+h.c.

⌘

+
ic̄W g

2m2

W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄B g0

2m2

W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2

W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HB g0

m2

W

(DµH)†(D⌫H)Bµ⌫

+
c̄� g0

2

m2

W

H†HBµ⌫B
µ⌫ +

c̄g g2S
m2

W

H†HGa
µ⌫G

aµ⌫ ,

(2.2)

�LF1 =
ic̄Hq

v2
(q̄L�

µqL)
�
H† !D µH

�
+

ic̄0Hq

v2
�
q̄L�

µ�iqL
� �

H†�i !D µH
�

+
ic̄Hu

v2
(ūR�

µuR)
�
H† !D µH

�
+

ic̄Hd

v2
�
d̄R�

µdR
� �

H† !D µH
�

+

✓
ic̄Hud

v2
(ūR�

µdR)
�
Hc † !D µH

�
+ h.c.

◆

+
ic̄HL

v2
�
L̄L�

µLL
� �

H† !D µH
�
+

ic̄0HL

v2
�
L̄L�

µ�iLL
� �

H†�i !D µH
�

+
ic̄Hl

v2
�
l̄R�

µlR
� �

H† !D µH
�
,

(2.3)

1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.
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As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with

�LSILH =
c̄H
2v2

@µ
⇣
H†H

⌘
@µ

⇣
H†H

⌘
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
� c̄

6

�

v2

⇣
H†H

⌘
3

+
⇣⇣ c̄u

v2
yuH

†Hq̄LH
cuR+

c̄d
v2

ydH
†Hq̄LHdR+

c̄l
v2

ylH
†HL̄LHlR

⌘
+h.c.

⌘

+
ic̄W g

2m2

W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄B g0

2m2

W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2

W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HB g0

m2

W

(DµH)†(D⌫H)Bµ⌫

+
c̄� g0

2

m2

W

H†HBµ⌫B
µ⌫ +

c̄g g2S
m2

W

H†HGa
µ⌫G

aµ⌫ ,

(2.2)

�LF1 =
ic̄Hq

v2
(q̄L�

µqL)
�
H† !D µH

�
+

ic̄0Hq

v2
�
q̄L�

µ�iqL
� �

H†�i !D µH
�

+
ic̄Hu

v2
(ūR�

µuR)
�
H† !D µH

�
+

ic̄Hd

v2
�
d̄R�

µdR
� �

H† !D µH
�

+

✓
ic̄Hud

v2
(ūR�

µdR)
�
Hc † !D µH

�
+ h.c.

◆

+
ic̄HL

v2
�
L̄L�

µLL
� �

H† !D µH
�
+

ic̄0HL

v2
�
L̄L�

µ�iLL
� �

H†�i !D µH
�

+
ic̄Hl

v2
�
l̄R�

µlR
� �

H† !D µH
�
,

(2.3)

1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.

– 3 –

J
H
E
P
0
7
(
2
0
1
3
)
0
3
5

As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with

�LSILH =
c̄H
2v2

@µ
⇣
H†H

⌘
@µ

⇣
H†H

⌘
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
� c̄

6

�

v2

⇣
H†H

⌘
3

+
⇣⇣ c̄u

v2
yuH

†Hq̄LH
cuR+

c̄d
v2

ydH
†Hq̄LHdR+

c̄l
v2

ylH
†HL̄LHlR

⌘
+h.c.

⌘

+
ic̄W g

2m2

W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄B g0

2m2

W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2

W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HB g0

m2

W

(DµH)†(D⌫H)Bµ⌫

+
c̄� g0

2

m2

W

H†HBµ⌫B
µ⌫ +

c̄g g2S
m2

W

H†HGa
µ⌫G

aµ⌫ ,

(2.2)

�LF1 =
ic̄Hq

v2
(q̄L�

µqL)
�
H† !D µH

�
+

ic̄0Hq

v2
�
q̄L�

µ�iqL
� �

H†�i !D µH
�

+
ic̄Hu

v2
(ūR�

µuR)
�
H† !D µH

�
+

ic̄Hd

v2
�
d̄R�

µdR
� �

H† !D µH
�

+

✓
ic̄Hud

v2
(ūR�

µdR)
�
Hc † !D µH

�
+ h.c.

◆

+
ic̄HL

v2
�
L̄L�

µLL
� �

H† !D µH
�
+

ic̄0HL

v2
�
L̄L�

µ�iLL
� �

H†�i !D µH
�

+
ic̄Hl

v2
�
l̄R�

µlR
� �

H† !D µH
�
,

(2.3)

1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.
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Example:  Higgs-only operators

“Independent” Effective Operator

9

Warsaw basis

J
H
E
P
1
0
(
2
0
1
0
)
0
8
5

X3 ϕ6 ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

Q eG
fABCG̃Aν

µ GBρ
ν GCµ

ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν W Kµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QfW
εIJKW̃ Iν

µ W Jρ
ν W Kµ

ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

Q
ϕ eG

ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕfW

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ Iγµqr)

Q
ϕ eB

ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

Q
ϕfWB

ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Q(1)
lq → Q(1)prst

lq

B

B L

X3 X2ϕ2 ϕ6 ϕ4D2

X̃µν

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R) ψ2ϕ2D2

Qϕud

Q−
(+)

Q†

“SILH”

J
H
E
P
0
7
(
2
0
1
3
)
0
3
5

As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with

�LSILH =
c̄H
2v2

@µ
⇣
H†H

⌘
@µ

⇣
H†H

⌘
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
� c̄

6

�

v2

⇣
H†H

⌘
3

+
⇣⇣ c̄u

v2
yuH

†Hq̄LH
cuR+

c̄d
v2

ydH
†Hq̄LHdR+

c̄l
v2

ylH
†HL̄LHlR

⌘
+h.c.

⌘

+
ic̄W g

2m2

W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄B g0

2m2

W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2

W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HB g0

m2

W

(DµH)†(D⌫H)Bµ⌫

+
c̄� g0

2

m2

W

H†HBµ⌫B
µ⌫ +

c̄g g2S
m2

W

H†HGa
µ⌫G

aµ⌫ ,

(2.2)

�LF1 =
ic̄Hq

v2
(q̄L�

µqL)
�
H† !D µH

�
+

ic̄0Hq

v2
�
q̄L�

µ�iqL
� �

H†�i !D µH
�

+
ic̄Hu

v2
(ūR�

µuR)
�
H† !D µH

�
+

ic̄Hd

v2
�
d̄R�

µdR
� �

H† !D µH
�

+

✓
ic̄Hud

v2
(ūR�

µdR)
�
Hc † !D µH

�
+ h.c.

◆

+
ic̄HL

v2
�
L̄L�

µLL
� �

H† !D µH
�
+

ic̄0HL

v2
�
L̄L�

µ�iLL
� �

H†�i !D µH
�

+
ic̄Hl

v2
�
l̄R�

µlR
� �

H† !D µH
�
,

(2.3)

1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.
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As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with

�LSILH =
c̄H
2v2

@µ
⇣
H†H

⌘
@µ

⇣
H†H

⌘
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
� c̄

6

�
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v2
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†Hq̄LH
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†HL̄LHlR

⌘
+h.c.

⌘
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W

⇣
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⌘
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W

⇣
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⌘
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m2

W
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m2

W
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+
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2
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W
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m2

W
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µ⌫G

aµ⌫ ,

(2.2)

�LF1 =
ic̄Hq
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�
H† !D µH

�
+
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�
q̄L�
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� �
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�
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�
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�
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�
+ h.c.
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�
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µLL
� �
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�
+

ic̄0HL

v2
�
L̄L�

µ�iLL
� �

H†�i !D µH
�

+
ic̄Hl

v2
�
l̄R�

µlR
� �

H† !D µH
�
,

(2.3)

1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.
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As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with

�LSILH =
c̄H
2v2

@µ
⇣
H†H

⌘
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⇣
H†H

⌘
+
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2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
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+
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yuH
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ydH
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ylH
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+h.c.
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⇣
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⇣
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ic̄HW g

m2

W
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µ⌫ +
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m2

W

(DµH)†(D⌫H)Bµ⌫

+
c̄� g0

2

m2

W

H†HBµ⌫B
µ⌫ +

c̄g g2S
m2

W

H†HGa
µ⌫G

aµ⌫ ,

(2.2)

�LF1 =
ic̄Hq

v2
(q̄L�

µqL)
�
H† !D µH

�
+

ic̄0Hq

v2
�
q̄L�

µ�iqL
� �

H†�i !D µH
�

+
ic̄Hu
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�
H† !D µH

�
+
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�
d̄R�

µdR
� �

H† !D µH
�

+

✓
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(ūR�
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�
Hc † !D µH

�
+ h.c.

◆

+
ic̄HL
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�
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µLL
� �
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+

ic̄0HL
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�
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1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.
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D[ρXµν] = 0 [Dρ,Dα] ∼ Xρα

X E

X3

X Y Z

εµνρσ
X ν

µ Y ρ
ν Z µ

ρ

XαµXβνZµνgαβ = 0

Z

X ν
µ X̃ ρ

ν = −1
4δ
ρ
µXαβX̃αβ (µρ) Z

B ν
µ W Iρ

ν W̃ Iµ
ρ = 0

fABC

εIJK X3

X2ϕ2 SU(2)L
ϕ†ϕ ϕ†τ Iϕ ϕ†τ I ϕ̃

X2ϕ2

SU(2)L SU(3)C

ϕ6

ϕ⋆ϕ

SU(2)L

εIJK(ϕ†τ Iϕ)(ϕ†τJϕ)(ϕ†τKϕ) = 0

(ϕ†τ Iϕ)(ϕ†τ Iϕ)(ϕ†ϕ)

(ϕ†ϕ)3

(ϕ†ϕ)3

ϕ4D2 ϕ

ϕ

SU(2)L

ϕ4D2

(ϕ†τ Iϕ)
[
(Dµϕ)†τ I(Dµϕ)

]
(4.3)
= 2

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
− (ϕ†ϕ)

[
(Dµϕ)†(Dµϕ)

]
,

(ϕ†ϕ)
[
(Dµϕ)†(Dµϕ)

]
(5.1)
=

1

2
(ϕ†ϕ)!(ϕ†ϕ) + ψ2ϕ3 + ϕ6 + m2 ϕ4 + E .

redundant ops.
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are the product of L and R currents, each of which has ne CP -even and no CP -odd

components, for n2
e + n2

o CP -even and 2neno CP -odd terms. The counting for (LL)(LL)

and (RR)(RR) operators when the currents are different, Q(1,3)
lq , Qeu, Qed, Q

(1,3)
ud , is the

same as for the (LL)(RR) operators. The interesting case is for Qll, Q(1,3)
qq , Quu, Qdd

where the two currents are identical, so that all four flavor indices transform under the

same SU(ng) flavor group. The operators transform as the 1+adj+adj+aa+ss where adj

is the adjoint representation, aa is the representation T [ij]
[kl] antisymmetric in the upper and

lower indices, and ss is the representation T (ij)
(kl) symmetric in the upper and lower indices.9

The aa representation vanishes for ng = 3. The singlet has one CP -even parameter, the

adjoint has (ng − 1)(ng + 2)/2 CP -even and ng(ng − 1)/2 CP -odd parameters, aa has

ng(ng − 3)(n2
g + ng +2)/8 CP -even and ng(ng − 3)(ng − 1)(ng +2)/8 CP -odd parameters,

and ss has ng(ng − 1)(ng +1)(ng +2)/8 CP -even and ng(ng − 1)(n2
g +3ng − 2)/8 CP -odd

parameters. The operator Qee is a special case, because of the Fierz identity

(ēpγµer)(ēsγµet) = (ēsγµer)(ēpγµet), (A.1)

which implies that the operator must be symmetric in the two e indices and in the two e

indices. This identity does not hold for the other fermions, because they have SU(2) or

color indices. Qee transforms as 1 + adj + ss because of the Fierz identity.

Adding up the individual contributions gives table 2.

B Conversion of Pi operators to the standard basis

The equations of motion can be used to express the operators Pi in the standard basis.

The identifications are

PB=
1

2
yHg21QH! + 2g21yHQHD +

1

2
g21

[
ylQ

(1)
Hl
tt

+ yeQHe
tt

+ yqQ
(1)
Hq
tt

+ yuQHu
tt

+ ydQHd
tt

]
,

PW =
3

4
g22QH! −

1

2
g22m

2
H(H†H)2 + 2g22λQH +

1

4
g22

[
Q(3)

Hl
tt

+Q(3)
Hq
tt

]

+
1

2
g22

(
[Y †

u ]rsQuH
rs

+ [Y †
d ]rsQdH

rs
+ [Y †

e ]rsQeH
rs

+ h.c.

)
,

PHB=
1

2
g21yHQH! + 2g21yHQHD −

1

2
yHg21QHB −

1

4
g1g2QHWB,

+
1

2
g21

[
ylQ

(1)
Hl
tt

+ yeQHe
tt

+ yqQ
(1)
Hq
tt

+ yuQHu
tt

+ ydQHd
tt

]
,

PHW =
3

4
g22QH!−

1

2
g22m

2
H(H

†H)2+2g22λQH−
1

4
g22QHW−

1

2
yHg1g2QHWB+

1

4
g22

[
Q(3)

Hl+Q(3)
Hq

]

+
1

2
g22

(
[Y †

u ]rsQuH
rs

+ [Y †
d ]rsQdH

rs
+ [Y †

e ]rsQeH
rs

+ h.c.

)
,

PT =−QH! − 4QHD. (B.1)

9The relevant group theory results can be found, for example, in refs. [96, 97].
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As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with

�LSILH =
c̄H
2v2

@µ
⇣
H†H

⌘
@µ

⇣
H†H

⌘
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
� c̄

6

�

v2

⇣
H†H

⌘
3

+
⇣⇣ c̄u

v2
yuH

†Hq̄LH
cuR+

c̄d
v2

ydH
†Hq̄LHdR+

c̄l
v2

ylH
†HL̄LHlR

⌘
+h.c.

⌘

+
ic̄W g

2m2

W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄B g0

2m2

W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2

W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HB g0

m2

W

(DµH)†(D⌫H)Bµ⌫

+
c̄� g0

2

m2

W

H†HBµ⌫B
µ⌫ +

c̄g g2S
m2

W

H†HGa
µ⌫G

aµ⌫ ,

(2.2)

�LF1 =
ic̄Hq

v2
(q̄L�

µqL)
�
H† !D µH

�
+

ic̄0Hq

v2
�
q̄L�

µ�iqL
� �

H†�i !D µH
�

+
ic̄Hu

v2
(ūR�

µuR)
�
H† !D µH

�
+

ic̄Hd

v2
�
d̄R�

µdR
� �

H† !D µH
�

+

✓
ic̄Hud

v2
(ūR�

µdR)
�
Hc † !D µH

�
+ h.c.

◆

+
ic̄HL

v2
�
L̄L�

µLL
� �

H† !D µH
�
+

ic̄0HL

v2
�
L̄L�

µ�iLL
� �

H†�i !D µH
�

+
ic̄Hl

v2
�
l̄R�

µlR
� �

H† !D µH
�
,

(2.3)

1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.
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Example:  Higgs-only operators

“Independent” Effective Operator
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Warsaw basis
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X3 ϕ6 ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

Q eG
fABCG̃Aν

µ GBρ
ν GCµ

ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν W Kµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QfW
εIJKW̃ Iν

µ W Jρ
ν W Kµ

ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

Q
ϕ eG

ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕfW

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ Iγµqr)

Q
ϕ eB

ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

Q
ϕfWB

ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Q(1)
lq → Q(1)prst

lq

B

B L

X3 X2ϕ2 ϕ6 ϕ4D2

X̃µν

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R) ψ2ϕ2D2

Qϕud

Q−
(+)

Q†

“SILH”
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As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with

�LSILH =
c̄H
2v2

@µ
⇣
H†H

⌘
@µ

⇣
H†H

⌘
+

c̄T
2v2

⇣
H† !DµH

⌘⇣
H† !D µH

⌘
� c̄

6

�

v2

⇣
H†H

⌘
3

+
⇣⇣ c̄u

v2
yuH

†Hq̄LH
cuR+

c̄d
v2

ydH
†Hq̄LHdR+

c̄l
v2

ylH
†HL̄LHlR

⌘
+h.c.

⌘

+
ic̄W g

2m2

W

⇣
H†�i !DµH

⌘
(D⌫Wµ⌫)

i +
ic̄B g0

2m2

W

⇣
H† !DµH

⌘
(@⌫Bµ⌫)

+
ic̄HW g

m2

W

(DµH)†�i(D⌫H)W i
µ⌫ +

ic̄HB g0

m2

W

(DµH)†(D⌫H)Bµ⌫

+
c̄� g0

2

m2

W

H†HBµ⌫B
µ⌫ +

c̄g g2S
m2

W

H†HGa
µ⌫G

aµ⌫ ,

(2.2)

�LF1 =
ic̄Hq
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�
H† !D µH

�
+

ic̄0Hq
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�
q̄L�
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� �

H†�i !D µH
�

+
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�
H† !D µH

�
+

ic̄Hd

v2
�
d̄R�

µdR
� �

H† !D µH
�

+

✓
ic̄Hud

v2
(ūR�

µdR)
�
Hc † !D µH

�
+ h.c.

◆

+
ic̄HL

v2
�
L̄L�

µLL
� �

H† !D µH
�
+
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�
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µ�iLL
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+
ic̄Hl
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�
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µlR
� �
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�
,

(2.3)

1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.
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As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with

�LSILH =
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As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:
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are the product of L and R currents, each of which has ne CP -even and no CP -odd

components, for n2
e + n2

o CP -even and 2neno CP -odd terms. The counting for (LL)(LL)

and (RR)(RR) operators when the currents are different, Q(1,3)
lq , Qeu, Qed, Q

(1,3)
ud , is the

same as for the (LL)(RR) operators. The interesting case is for Qll, Q(1,3)
qq , Quu, Qdd

where the two currents are identical, so that all four flavor indices transform under the

same SU(ng) flavor group. The operators transform as the 1+adj+adj+aa+ss where adj

is the adjoint representation, aa is the representation T [ij]
[kl] antisymmetric in the upper and

lower indices, and ss is the representation T (ij)
(kl) symmetric in the upper and lower indices.9

The aa representation vanishes for ng = 3. The singlet has one CP -even parameter, the

adjoint has (ng − 1)(ng + 2)/2 CP -even and ng(ng − 1)/2 CP -odd parameters, aa has

ng(ng − 3)(n2
g + ng +2)/8 CP -even and ng(ng − 3)(ng − 1)(ng +2)/8 CP -odd parameters,

and ss has ng(ng − 1)(ng +1)(ng +2)/8 CP -even and ng(ng − 1)(n2
g +3ng − 2)/8 CP -odd

parameters. The operator Qee is a special case, because of the Fierz identity

(ēpγµer)(ēsγµet) = (ēsγµer)(ēpγµet), (A.1)

which implies that the operator must be symmetric in the two e indices and in the two e

indices. This identity does not hold for the other fermions, because they have SU(2) or

color indices. Qee transforms as 1 + adj + ss because of the Fierz identity.

Adding up the individual contributions gives table 2.

B Conversion of Pi operators to the standard basis

The equations of motion can be used to express the operators Pi in the standard basis.

The identifications are

PB=
1

2
yHg21QH! + 2g21yHQHD +

1

2
g21

[
ylQ

(1)
Hl
tt

+ yeQHe
tt

+ yqQ
(1)
Hq
tt

+ yuQHu
tt

+ ydQHd
tt

]
,

PW =
3

4
g22QH! −

1

2
g22m

2
H(H†H)2 + 2g22λQH +

1

4
g22

[
Q(3)

Hl
tt

+Q(3)
Hq
tt

]

+
1

2
g22

(
[Y †

u ]rsQuH
rs

+ [Y †
d ]rsQdH

rs
+ [Y †

e ]rsQeH
rs

+ h.c.

)
,

PHB=
1

2
g21yHQH! + 2g21yHQHD −

1

2
yHg21QHB −

1

4
g1g2QHWB,

+
1

2
g21

[
ylQ

(1)
Hl
tt

+ yeQHe
tt

+ yqQ
(1)
Hq
tt

+ yuQHu
tt

+ ydQHd
tt

]
,

PHW =
3

4
g22QH!−

1

2
g22m

2
H(H

†H)2+2g22λQH−
1

4
g22QHW−

1

2
yHg1g2QHWB+

1

4
g22

[
Q(3)

Hl+Q(3)
Hq

]

+
1

2
g22

(
[Y †

u ]rsQuH
rs

+ [Y †
d ]rsQdH

rs
+ [Y †

e ]rsQeH
rs

+ h.c.

)
,

PT =−QH! − 4QHD. (B.1)

9The relevant group theory results can be found, for example, in refs. [96, 97].
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As an illustration of our analysis and to better demonstrate how the e↵ective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 E↵ective Lagrangian for a light Higgs doublet

The most general SU(3)C ⇥SU(2)L⇥U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
X

i

c̄iOi ⌘ LSM +�LSILH +�LF1 +�LF2 (2.1)

with
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there is no particular reason in general for tree level matchings, as 
opposed to non-perturbative matchings, to be the largest contribu-
tion to the Wilson coefficients. Such extra matching contributions 
are difficult to characterize (other than by using the full SMEFT 
formalism) and only reinforce our main point on the non-minimal 
character of the SMEFT, so we do not focus on these contributions.

The number of operators induced in matching is operator ba-
sis dependent. However, the conditions uncovered on the UV field 
content to reduce the operator profile (i.e. the number of inde-
pendent SU(3) × SU(2) × U(1) operators) are still meaningful. The 
conditions can be framed in terms of symmetries and several sim-
ple observations on new physics spectra and dynamics that can 
generate a scale !, as we show. Practically speaking, most global 
analyses are being constructed using the well defined Warsaw ba-
sis [2], so we focus on this basis when examining the one operator 
question. We use the notation Q i to denote an operator defined 
in the Warsaw basis in this work, and refer the reader to Ref. [2]
for the explicit operator definitions. Note also that we refer to one 
operator with the understanding that, consistent with our assump-
tions of G symmetry, flavor indices are not used to distinguish 
operators.

The structure of this paper is as follows. Following a brief 
comment on the dimension-5 operator and Fermi theory in Sec-
tion 2, we provide in Section 3.1 a comprehensive discussion on 
the SMEFT matching at tree level onto L6 when a massive spin-1
state present in a UV physics sector is integrated out. We focus 
this discussion on the “one operator induced at tree level” ques-
tion consistent with the assumed (approximate) G symmetry. We 
demonstrate why such a simple UV sector cannot be a complete 
scenario if a mechanism to generate the heavy state’s mass is 
demanded. We then discuss the spin-1/2 case, drawing a similar 
conclusions in Section 3.2. In Section 3.3 we examine the case of 
integrating out a scalar field focused on the “one operator” ques-
tion. We show how the scalar case is more subtle, but still argues 
for more operators when UV complete scenarios are demanded. 
Section 4 contains our conclusions.

2. Two exceptional EFT cases

When considering the one operator question, we note that a 
few historical accidents in EFTs can be misleading. First of all, L5
and Ld with d ≥ 6 are distinct when considering this question. Due 
to the charges of the SM field content, only one operator (with 
flavor indices) can be constructed in L5. The operator that results 
[17,18],

L5 = ci j

2

(
Lc

L,i H̃⋆
)(

H̃† LL, j

)
+ h.c. (2)

is the well known example where one operator at a particular 
mass dimension does result when integrating out UV physics.4 The 
interplay of global U(1)L number violation and the constraints of 
the SM field’s representations leading to one operator in L5 is an 
exception that is not repeated at higher orders in the SMEFT oper-
ator expansion [6–10].

Historically, Fermi theory has frequently been used as a pro-
totypical EFT to build intuition. This can be unfortunate, as Fermi 
theory is atypical and has a number of non-trivial accidental fea-
tures that are not generic. In Fermi theory, the four-fermion oper-
ator

Q ℓℓ =
(
LL γ µLL

) (
LL γµLL

)
, (3)

4 Here and below our notation with a c superscript indicates a charge conjugate 
representation of a SM field.

Table 1
Vector representations [21,22] consistent with our assumptions. The first three rows 
are the same field sub-classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix T A (for both color and flavor 8’s) is 
present but suppressed in the coupling to some fermion bi-linears. σI is the Pauli 
matrix. The table largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8 and 
3 ⊗ 3 = 6 ⊕ 3̄.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γ µ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄ L γ µ Q L

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄ Lσ I γ µ Q L

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ µ uR

V(1,8)
VII 1,8 1 −1 (3̄,3,1) (1,1) d̄R γ µ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄ L γ µ Q L

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄ Lσ I γ µ Q L

V(3̄,6)
X 3̄,6 2 −1/6 (1,3,3) (1,1) d̄R γ µ Q c

L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ µ Q c

L

is generated when the W boson is integrated out. This effective 
operator is used in the process µ− → e− + ν̄e + νµ to infer the 
Fermi constant, G F . The UV sector in the case of Fermi theory is 
the SM which does induce a series of other operators at tree level, 
in addition to the operator Q ℓℓ . These four-fermion operators are 
due to the Higgs field and the Z boson. However, the highly sup-
pressed Yukawa couplings of the SM Higgs to light fermions leads 
to an exceptional situation numerically in terms of the operator 
profiles. The small Yukawa couplings are not formally the conse-
quence of a fine tuning, as they are protected by the full chiral 
symmetry of the SM. More discussion on the accidents in Fermi 
theory, and how it is commonly misunderstood, can be found in 
Ref. [19].

Arguably, there is some theoretical evidence based on the struc-
ture and particle content of the SM in the direction of embedding 
this model into SU(5) or SU(10), see for example the arguments 
in Ref. [20]. This could be interpreted as a hint to an underlying 
theory, similar to the chiral structure of the SM being a low en-
ergy hint of its UV structure. However, the problems of TeV scale 
grand unified theories are very well known. In this work we make 
a more phenomenologically motivated choice and assume approx-
imate G symmetry (and CP symmetry).

3. G symmetric tree level matchings

3.1. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in the 
manner assumed are given by Table 1 [21–23]. The requirement 
of linear couplings of mass dimension less than four, together 
with Lorentz symmetry and invariance under the full SM gauge 
group constrains the possible quantum numbers of UV field con-
tent. Fields with other representations that give SMEFT matchings 
respecting G are possible, if these conditions are relaxed. Our no-
tation is that Q c , Lc are the right handed conjugate doublet fields 
of the SM fermions. The global flavor symmetry in the quark and 
lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton bi-linears, 
to quark-lepton bi-linears or have an interaction with the SM Higgs 
field. We list the corresponding fields in Table 2 and Table 3. 
Cases VXII, VXIII have fields that carry a global lepton number and 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3
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Q (1)

qq
ptsr

− 1
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Q (3)
qq
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, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
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I T A γ µ Q t
L) =
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Q (3)
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, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 

110 Y. Jiang, M. Trott / Physics Letters B 770 (2017) 108–116

Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 

BSM	candidates:		
• Extra	gauge	bosons	
• vector	leptoquarks
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
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I T A γ µ Q t
L) =

−1
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ptsr
+ 3

4
Q (1)
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, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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there is no particular reason in general for tree level matchings, as 
opposed to non-perturbative matchings, to be the largest contribu-
tion to the Wilson coefficients. Such extra matching contributions 
are difficult to characterize (other than by using the full SMEFT 
formalism) and only reinforce our main point on the non-minimal 
character of the SMEFT, so we do not focus on these contributions.

The number of operators induced in matching is operator ba-
sis dependent. However, the conditions uncovered on the UV field 
content to reduce the operator profile (i.e. the number of inde-
pendent SU(3) × SU(2) × U(1) operators) are still meaningful. The 
conditions can be framed in terms of symmetries and several sim-
ple observations on new physics spectra and dynamics that can 
generate a scale !, as we show. Practically speaking, most global 
analyses are being constructed using the well defined Warsaw ba-
sis [2], so we focus on this basis when examining the one operator 
question. We use the notation Q i to denote an operator defined 
in the Warsaw basis in this work, and refer the reader to Ref. [2]
for the explicit operator definitions. Note also that we refer to one 
operator with the understanding that, consistent with our assump-
tions of G symmetry, flavor indices are not used to distinguish 
operators.

The structure of this paper is as follows. Following a brief 
comment on the dimension-5 operator and Fermi theory in Sec-
tion 2, we provide in Section 3.1 a comprehensive discussion on 
the SMEFT matching at tree level onto L6 when a massive spin-1
state present in a UV physics sector is integrated out. We focus 
this discussion on the “one operator induced at tree level” ques-
tion consistent with the assumed (approximate) G symmetry. We 
demonstrate why such a simple UV sector cannot be a complete 
scenario if a mechanism to generate the heavy state’s mass is 
demanded. We then discuss the spin-1/2 case, drawing a similar 
conclusions in Section 3.2. In Section 3.3 we examine the case of 
integrating out a scalar field focused on the “one operator” ques-
tion. We show how the scalar case is more subtle, but still argues 
for more operators when UV complete scenarios are demanded. 
Section 4 contains our conclusions.

2. Two exceptional EFT cases

When considering the one operator question, we note that a 
few historical accidents in EFTs can be misleading. First of all, L5
and Ld with d ≥ 6 are distinct when considering this question. Due 
to the charges of the SM field content, only one operator (with 
flavor indices) can be constructed in L5. The operator that results 
[17,18],

L5 = ci j

2

(
Lc

L,i H̃⋆
)(

H̃† LL, j

)
+ h.c. (2)

is the well known example where one operator at a particular 
mass dimension does result when integrating out UV physics.4 The 
interplay of global U(1)L number violation and the constraints of 
the SM field’s representations leading to one operator in L5 is an 
exception that is not repeated at higher orders in the SMEFT oper-
ator expansion [6–10].

Historically, Fermi theory has frequently been used as a pro-
totypical EFT to build intuition. This can be unfortunate, as Fermi 
theory is atypical and has a number of non-trivial accidental fea-
tures that are not generic. In Fermi theory, the four-fermion oper-
ator

Q ℓℓ =
(
LL γ µLL

) (
LL γµLL

)
, (3)

4 Here and below our notation with a c superscript indicates a charge conjugate 
representation of a SM field.

Table 1
Vector representations [21,22] consistent with our assumptions. The first three rows 
are the same field sub-classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix T A (for both color and flavor 8’s) is 
present but suppressed in the coupling to some fermion bi-linears. σI is the Pauli 
matrix. The table largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8 and 
3 ⊗ 3 = 6 ⊕ 3̄.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γ µ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄ L γ µ Q L

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄ Lσ I γ µ Q L

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ µ uR

V(1,8)
VII 1,8 1 −1 (3̄,3,1) (1,1) d̄R γ µ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄ L γ µ Q L

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄ Lσ I γ µ Q L

V(3̄,6)
X 3̄,6 2 −1/6 (1,3,3) (1,1) d̄R γ µ Q c

L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ µ Q c

L

is generated when the W boson is integrated out. This effective 
operator is used in the process µ− → e− + ν̄e + νµ to infer the 
Fermi constant, G F . The UV sector in the case of Fermi theory is 
the SM which does induce a series of other operators at tree level, 
in addition to the operator Q ℓℓ . These four-fermion operators are 
due to the Higgs field and the Z boson. However, the highly sup-
pressed Yukawa couplings of the SM Higgs to light fermions leads 
to an exceptional situation numerically in terms of the operator 
profiles. The small Yukawa couplings are not formally the conse-
quence of a fine tuning, as they are protected by the full chiral 
symmetry of the SM. More discussion on the accidents in Fermi 
theory, and how it is commonly misunderstood, can be found in 
Ref. [19].

Arguably, there is some theoretical evidence based on the struc-
ture and particle content of the SM in the direction of embedding 
this model into SU(5) or SU(10), see for example the arguments 
in Ref. [20]. This could be interpreted as a hint to an underlying 
theory, similar to the chiral structure of the SM being a low en-
ergy hint of its UV structure. However, the problems of TeV scale 
grand unified theories are very well known. In this work we make 
a more phenomenologically motivated choice and assume approx-
imate G symmetry (and CP symmetry).

3. G symmetric tree level matchings

3.1. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in the 
manner assumed are given by Table 1 [21–23]. The requirement 
of linear couplings of mass dimension less than four, together 
with Lorentz symmetry and invariance under the full SM gauge 
group constrains the possible quantum numbers of UV field con-
tent. Fields with other representations that give SMEFT matchings 
respecting G are possible, if these conditions are relaxed. Our no-
tation is that Q c , Lc are the right handed conjugate doublet fields 
of the SM fermions. The global flavor symmetry in the quark and 
lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton bi-linears, 
to quark-lepton bi-linears or have an interaction with the SM Higgs 
field. We list the corresponding fields in Table 2 and Table 3. 
Cases VXII, VXIII have fields that carry a global lepton number and 
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there is no particular reason in general for tree level matchings, as 
opposed to non-perturbative matchings, to be the largest contribu-
tion to the Wilson coefficients. Such extra matching contributions 
are difficult to characterize (other than by using the full SMEFT 
formalism) and only reinforce our main point on the non-minimal 
character of the SMEFT, so we do not focus on these contributions.

The number of operators induced in matching is operator ba-
sis dependent. However, the conditions uncovered on the UV field 
content to reduce the operator profile (i.e. the number of inde-
pendent SU(3) × SU(2) × U(1) operators) are still meaningful. The 
conditions can be framed in terms of symmetries and several sim-
ple observations on new physics spectra and dynamics that can 
generate a scale !, as we show. Practically speaking, most global 
analyses are being constructed using the well defined Warsaw ba-
sis [2], so we focus on this basis when examining the one operator 
question. We use the notation Q i to denote an operator defined 
in the Warsaw basis in this work, and refer the reader to Ref. [2]
for the explicit operator definitions. Note also that we refer to one 
operator with the understanding that, consistent with our assump-
tions of G symmetry, flavor indices are not used to distinguish 
operators.

The structure of this paper is as follows. Following a brief 
comment on the dimension-5 operator and Fermi theory in Sec-
tion 2, we provide in Section 3.1 a comprehensive discussion on 
the SMEFT matching at tree level onto L6 when a massive spin-1
state present in a UV physics sector is integrated out. We focus 
this discussion on the “one operator induced at tree level” ques-
tion consistent with the assumed (approximate) G symmetry. We 
demonstrate why such a simple UV sector cannot be a complete 
scenario if a mechanism to generate the heavy state’s mass is 
demanded. We then discuss the spin-1/2 case, drawing a similar 
conclusions in Section 3.2. In Section 3.3 we examine the case of 
integrating out a scalar field focused on the “one operator” ques-
tion. We show how the scalar case is more subtle, but still argues 
for more operators when UV complete scenarios are demanded. 
Section 4 contains our conclusions.

2. Two exceptional EFT cases

When considering the one operator question, we note that a 
few historical accidents in EFTs can be misleading. First of all, L5
and Ld with d ≥ 6 are distinct when considering this question. Due 
to the charges of the SM field content, only one operator (with 
flavor indices) can be constructed in L5. The operator that results 
[17,18],

L5 = ci j

2

(
Lc

L,i H̃⋆
)(

H̃† LL, j

)
+ h.c. (2)

is the well known example where one operator at a particular 
mass dimension does result when integrating out UV physics.4 The 
interplay of global U(1)L number violation and the constraints of 
the SM field’s representations leading to one operator in L5 is an 
exception that is not repeated at higher orders in the SMEFT oper-
ator expansion [6–10].

Historically, Fermi theory has frequently been used as a pro-
totypical EFT to build intuition. This can be unfortunate, as Fermi 
theory is atypical and has a number of non-trivial accidental fea-
tures that are not generic. In Fermi theory, the four-fermion oper-
ator

Q ℓℓ =
(
LL γ µLL

) (
LL γµLL

)
, (3)

4 Here and below our notation with a c superscript indicates a charge conjugate 
representation of a SM field.

Table 1
Vector representations [21,22] consistent with our assumptions. The first three rows 
are the same field sub-classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix T A (for both color and flavor 8’s) is 
present but suppressed in the coupling to some fermion bi-linears. σI is the Pauli 
matrix. The table largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8 and 
3 ⊗ 3 = 6 ⊕ 3̄.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γ µ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄ L γ µ Q L

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄ Lσ I γ µ Q L

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ µ uR

V(1,8)
VII 1,8 1 −1 (3̄,3,1) (1,1) d̄R γ µ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄ L γ µ Q L

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄ Lσ I γ µ Q L

V(3̄,6)
X 3̄,6 2 −1/6 (1,3,3) (1,1) d̄R γ µ Q c

L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ µ Q c

L

is generated when the W boson is integrated out. This effective 
operator is used in the process µ− → e− + ν̄e + νµ to infer the 
Fermi constant, G F . The UV sector in the case of Fermi theory is 
the SM which does induce a series of other operators at tree level, 
in addition to the operator Q ℓℓ . These four-fermion operators are 
due to the Higgs field and the Z boson. However, the highly sup-
pressed Yukawa couplings of the SM Higgs to light fermions leads 
to an exceptional situation numerically in terms of the operator 
profiles. The small Yukawa couplings are not formally the conse-
quence of a fine tuning, as they are protected by the full chiral 
symmetry of the SM. More discussion on the accidents in Fermi 
theory, and how it is commonly misunderstood, can be found in 
Ref. [19].

Arguably, there is some theoretical evidence based on the struc-
ture and particle content of the SM in the direction of embedding 
this model into SU(5) or SU(10), see for example the arguments 
in Ref. [20]. This could be interpreted as a hint to an underlying 
theory, similar to the chiral structure of the SM being a low en-
ergy hint of its UV structure. However, the problems of TeV scale 
grand unified theories are very well known. In this work we make 
a more phenomenologically motivated choice and assume approx-
imate G symmetry (and CP symmetry).

3. G symmetric tree level matchings

3.1. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in the 
manner assumed are given by Table 1 [21–23]. The requirement 
of linear couplings of mass dimension less than four, together 
with Lorentz symmetry and invariance under the full SM gauge 
group constrains the possible quantum numbers of UV field con-
tent. Fields with other representations that give SMEFT matchings 
respecting G are possible, if these conditions are relaxed. Our no-
tation is that Q c , Lc are the right handed conjugate doublet fields 
of the SM fermions. The global flavor symmetry in the quark and 
lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton bi-linears, 
to quark-lepton bi-linears or have an interaction with the SM Higgs 
field. We list the corresponding fields in Table 2 and Table 3. 
Cases VXII, VXIII have fields that carry a global lepton number and 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 

H  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G  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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
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L) =
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here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3
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Q (1)

qq
ptsr

− 1
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Q (3)
qq
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, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 

BSM	candidates:		
• Extra	gauge	bosons	
• vector	leptoquarks

110 Y. Jiang, M. Trott / Physics Letters B 770 (2017) 108–116

Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r
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L) =
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− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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there is no particular reason in general for tree level matchings, as 
opposed to non-perturbative matchings, to be the largest contribu-
tion to the Wilson coefficients. Such extra matching contributions 
are difficult to characterize (other than by using the full SMEFT 
formalism) and only reinforce our main point on the non-minimal 
character of the SMEFT, so we do not focus on these contributions.

The number of operators induced in matching is operator ba-
sis dependent. However, the conditions uncovered on the UV field 
content to reduce the operator profile (i.e. the number of inde-
pendent SU(3) × SU(2) × U(1) operators) are still meaningful. The 
conditions can be framed in terms of symmetries and several sim-
ple observations on new physics spectra and dynamics that can 
generate a scale !, as we show. Practically speaking, most global 
analyses are being constructed using the well defined Warsaw ba-
sis [2], so we focus on this basis when examining the one operator 
question. We use the notation Q i to denote an operator defined 
in the Warsaw basis in this work, and refer the reader to Ref. [2]
for the explicit operator definitions. Note also that we refer to one 
operator with the understanding that, consistent with our assump-
tions of G symmetry, flavor indices are not used to distinguish 
operators.

The structure of this paper is as follows. Following a brief 
comment on the dimension-5 operator and Fermi theory in Sec-
tion 2, we provide in Section 3.1 a comprehensive discussion on 
the SMEFT matching at tree level onto L6 when a massive spin-1
state present in a UV physics sector is integrated out. We focus 
this discussion on the “one operator induced at tree level” ques-
tion consistent with the assumed (approximate) G symmetry. We 
demonstrate why such a simple UV sector cannot be a complete 
scenario if a mechanism to generate the heavy state’s mass is 
demanded. We then discuss the spin-1/2 case, drawing a similar 
conclusions in Section 3.2. In Section 3.3 we examine the case of 
integrating out a scalar field focused on the “one operator” ques-
tion. We show how the scalar case is more subtle, but still argues 
for more operators when UV complete scenarios are demanded. 
Section 4 contains our conclusions.

2. Two exceptional EFT cases

When considering the one operator question, we note that a 
few historical accidents in EFTs can be misleading. First of all, L5
and Ld with d ≥ 6 are distinct when considering this question. Due 
to the charges of the SM field content, only one operator (with 
flavor indices) can be constructed in L5. The operator that results 
[17,18],

L5 = ci j

2

(
Lc

L,i H̃⋆
)(

H̃† LL, j

)
+ h.c. (2)

is the well known example where one operator at a particular 
mass dimension does result when integrating out UV physics.4 The 
interplay of global U(1)L number violation and the constraints of 
the SM field’s representations leading to one operator in L5 is an 
exception that is not repeated at higher orders in the SMEFT oper-
ator expansion [6–10].

Historically, Fermi theory has frequently been used as a pro-
totypical EFT to build intuition. This can be unfortunate, as Fermi 
theory is atypical and has a number of non-trivial accidental fea-
tures that are not generic. In Fermi theory, the four-fermion oper-
ator

Q ℓℓ =
(
LL γ µLL

) (
LL γµLL

)
, (3)

4 Here and below our notation with a c superscript indicates a charge conjugate 
representation of a SM field.

Table 1
Vector representations [21,22] consistent with our assumptions. The first three rows 
are the same field sub-classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix T A (for both color and flavor 8’s) is 
present but suppressed in the coupling to some fermion bi-linears. σI is the Pauli 
matrix. The table largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8 and 
3 ⊗ 3 = 6 ⊕ 3̄.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γ µ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄ L γ µ Q L

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄ Lσ I γ µ Q L

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ µ uR

V(1,8)
VII 1,8 1 −1 (3̄,3,1) (1,1) d̄R γ µ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄ L γ µ Q L

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄ Lσ I γ µ Q L

V(3̄,6)
X 3̄,6 2 −1/6 (1,3,3) (1,1) d̄R γ µ Q c

L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ µ Q c

L

is generated when the W boson is integrated out. This effective 
operator is used in the process µ− → e− + ν̄e + νµ to infer the 
Fermi constant, G F . The UV sector in the case of Fermi theory is 
the SM which does induce a series of other operators at tree level, 
in addition to the operator Q ℓℓ . These four-fermion operators are 
due to the Higgs field and the Z boson. However, the highly sup-
pressed Yukawa couplings of the SM Higgs to light fermions leads 
to an exceptional situation numerically in terms of the operator 
profiles. The small Yukawa couplings are not formally the conse-
quence of a fine tuning, as they are protected by the full chiral 
symmetry of the SM. More discussion on the accidents in Fermi 
theory, and how it is commonly misunderstood, can be found in 
Ref. [19].

Arguably, there is some theoretical evidence based on the struc-
ture and particle content of the SM in the direction of embedding 
this model into SU(5) or SU(10), see for example the arguments 
in Ref. [20]. This could be interpreted as a hint to an underlying 
theory, similar to the chiral structure of the SM being a low en-
ergy hint of its UV structure. However, the problems of TeV scale 
grand unified theories are very well known. In this work we make 
a more phenomenologically motivated choice and assume approx-
imate G symmetry (and CP symmetry).

3. G symmetric tree level matchings

3.1. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in the 
manner assumed are given by Table 1 [21–23]. The requirement 
of linear couplings of mass dimension less than four, together 
with Lorentz symmetry and invariance under the full SM gauge 
group constrains the possible quantum numbers of UV field con-
tent. Fields with other representations that give SMEFT matchings 
respecting G are possible, if these conditions are relaxed. Our no-
tation is that Q c , Lc are the right handed conjugate doublet fields 
of the SM fermions. The global flavor symmetry in the quark and 
lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton bi-linears, 
to quark-lepton bi-linears or have an interaction with the SM Higgs 
field. We list the corresponding fields in Table 2 and Table 3. 
Cases VXII, VXIII have fields that carry a global lepton number and 
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there is no particular reason in general for tree level matchings, as 
opposed to non-perturbative matchings, to be the largest contribu-
tion to the Wilson coefficients. Such extra matching contributions 
are difficult to characterize (other than by using the full SMEFT 
formalism) and only reinforce our main point on the non-minimal 
character of the SMEFT, so we do not focus on these contributions.

The number of operators induced in matching is operator ba-
sis dependent. However, the conditions uncovered on the UV field 
content to reduce the operator profile (i.e. the number of inde-
pendent SU(3) × SU(2) × U(1) operators) are still meaningful. The 
conditions can be framed in terms of symmetries and several sim-
ple observations on new physics spectra and dynamics that can 
generate a scale !, as we show. Practically speaking, most global 
analyses are being constructed using the well defined Warsaw ba-
sis [2], so we focus on this basis when examining the one operator 
question. We use the notation Q i to denote an operator defined 
in the Warsaw basis in this work, and refer the reader to Ref. [2]
for the explicit operator definitions. Note also that we refer to one 
operator with the understanding that, consistent with our assump-
tions of G symmetry, flavor indices are not used to distinguish 
operators.

The structure of this paper is as follows. Following a brief 
comment on the dimension-5 operator and Fermi theory in Sec-
tion 2, we provide in Section 3.1 a comprehensive discussion on 
the SMEFT matching at tree level onto L6 when a massive spin-1
state present in a UV physics sector is integrated out. We focus 
this discussion on the “one operator induced at tree level” ques-
tion consistent with the assumed (approximate) G symmetry. We 
demonstrate why such a simple UV sector cannot be a complete 
scenario if a mechanism to generate the heavy state’s mass is 
demanded. We then discuss the spin-1/2 case, drawing a similar 
conclusions in Section 3.2. In Section 3.3 we examine the case of 
integrating out a scalar field focused on the “one operator” ques-
tion. We show how the scalar case is more subtle, but still argues 
for more operators when UV complete scenarios are demanded. 
Section 4 contains our conclusions.

2. Two exceptional EFT cases

When considering the one operator question, we note that a 
few historical accidents in EFTs can be misleading. First of all, L5
and Ld with d ≥ 6 are distinct when considering this question. Due 
to the charges of the SM field content, only one operator (with 
flavor indices) can be constructed in L5. The operator that results 
[17,18],

L5 = ci j

2

(
Lc

L,i H̃⋆
)(

H̃† LL, j

)
+ h.c. (2)

is the well known example where one operator at a particular 
mass dimension does result when integrating out UV physics.4 The 
interplay of global U(1)L number violation and the constraints of 
the SM field’s representations leading to one operator in L5 is an 
exception that is not repeated at higher orders in the SMEFT oper-
ator expansion [6–10].

Historically, Fermi theory has frequently been used as a pro-
totypical EFT to build intuition. This can be unfortunate, as Fermi 
theory is atypical and has a number of non-trivial accidental fea-
tures that are not generic. In Fermi theory, the four-fermion oper-
ator

Q ℓℓ =
(
LL γ µLL

) (
LL γµLL

)
, (3)

4 Here and below our notation with a c superscript indicates a charge conjugate 
representation of a SM field.

Table 1
Vector representations [21,22] consistent with our assumptions. The first three rows 
are the same field sub-classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix T A (for both color and flavor 8’s) is 
present but suppressed in the coupling to some fermion bi-linears. σI is the Pauli 
matrix. The table largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8 and 
3 ⊗ 3 = 6 ⊕ 3̄.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γ µ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄ L γ µ Q L

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄ Lσ I γ µ Q L

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ µ uR

V(1,8)
VII 1,8 1 −1 (3̄,3,1) (1,1) d̄R γ µ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄ L γ µ Q L

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄ Lσ I γ µ Q L

V(3̄,6)
X 3̄,6 2 −1/6 (1,3,3) (1,1) d̄R γ µ Q c

L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ µ Q c

L

is generated when the W boson is integrated out. This effective 
operator is used in the process µ− → e− + ν̄e + νµ to infer the 
Fermi constant, G F . The UV sector in the case of Fermi theory is 
the SM which does induce a series of other operators at tree level, 
in addition to the operator Q ℓℓ . These four-fermion operators are 
due to the Higgs field and the Z boson. However, the highly sup-
pressed Yukawa couplings of the SM Higgs to light fermions leads 
to an exceptional situation numerically in terms of the operator 
profiles. The small Yukawa couplings are not formally the conse-
quence of a fine tuning, as they are protected by the full chiral 
symmetry of the SM. More discussion on the accidents in Fermi 
theory, and how it is commonly misunderstood, can be found in 
Ref. [19].

Arguably, there is some theoretical evidence based on the struc-
ture and particle content of the SM in the direction of embedding 
this model into SU(5) or SU(10), see for example the arguments 
in Ref. [20]. This could be interpreted as a hint to an underlying 
theory, similar to the chiral structure of the SM being a low en-
ergy hint of its UV structure. However, the problems of TeV scale 
grand unified theories are very well known. In this work we make 
a more phenomenologically motivated choice and assume approx-
imate G symmetry (and CP symmetry).

3. G symmetric tree level matchings

3.1. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in the 
manner assumed are given by Table 1 [21–23]. The requirement 
of linear couplings of mass dimension less than four, together 
with Lorentz symmetry and invariance under the full SM gauge 
group constrains the possible quantum numbers of UV field con-
tent. Fields with other representations that give SMEFT matchings 
respecting G are possible, if these conditions are relaxed. Our no-
tation is that Q c , Lc are the right handed conjugate doublet fields 
of the SM fermions. The global flavor symmetry in the quark and 
lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton bi-linears, 
to quark-lepton bi-linears or have an interaction with the SM Higgs 
field. We list the corresponding fields in Table 2 and Table 3. 
Cases VXII, VXIII have fields that carry a global lepton number and 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 

H  
I  
G  
G  
S  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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
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L) =
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, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
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Q (1)

qq
ptsr
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Q (3)
qq
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, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]

(Q̄ p
L σ I T A γ µ Q r

L)(Q̄ s
Lσ

I T A γ µ Q t
L) =

−1
4

Q (3)
qq

ptsr
+ 3

4
Q (1)

qq
ptsr

− 1
6

Q (3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ µ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ I γ µ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ µ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ µ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ µ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ µ uR
VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ µ Q c

L
VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ µ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ I γ µ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ µ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ I γ µ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDµ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDµ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDµ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dµ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jµψ , JµH } = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ $}, (6)

and the tree level matching is given by

%L6 ⊃ − 1

M2
V

( Jµa )† Jµb . (7)

Here $ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jµψ )† Jψ,µ ,

• scalar derivative: ( JµH )† J H,µ ,
• mixed scalar-fermion: ( Jµψ )† J H,µ, ( JµH )† Jψ,µ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dµ Fµν with F = {B, W , G} is redundant [23].

Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)
Hq,Hl, Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)
lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H✷, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H✷, Q eH , Q uH , Q dH
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Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jµψ )† Jψ,µ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)
lq −2/3 /

V(3̄,6)
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V(3̄,6)
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qu 5/6 /
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V(1)
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V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jµψ )† Jψ,µ operators via the relation [2]
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here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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there is no particular reason in general for tree level matchings, as 
opposed to non-perturbative matchings, to be the largest contribu-
tion to the Wilson coefficients. Such extra matching contributions 
are difficult to characterize (other than by using the full SMEFT 
formalism) and only reinforce our main point on the non-minimal 
character of the SMEFT, so we do not focus on these contributions.

The number of operators induced in matching is operator ba-
sis dependent. However, the conditions uncovered on the UV field 
content to reduce the operator profile (i.e. the number of inde-
pendent SU(3) × SU(2) × U(1) operators) are still meaningful. The 
conditions can be framed in terms of symmetries and several sim-
ple observations on new physics spectra and dynamics that can 
generate a scale !, as we show. Practically speaking, most global 
analyses are being constructed using the well defined Warsaw ba-
sis [2], so we focus on this basis when examining the one operator 
question. We use the notation Q i to denote an operator defined 
in the Warsaw basis in this work, and refer the reader to Ref. [2]
for the explicit operator definitions. Note also that we refer to one 
operator with the understanding that, consistent with our assump-
tions of G symmetry, flavor indices are not used to distinguish 
operators.

The structure of this paper is as follows. Following a brief 
comment on the dimension-5 operator and Fermi theory in Sec-
tion 2, we provide in Section 3.1 a comprehensive discussion on 
the SMEFT matching at tree level onto L6 when a massive spin-1
state present in a UV physics sector is integrated out. We focus 
this discussion on the “one operator induced at tree level” ques-
tion consistent with the assumed (approximate) G symmetry. We 
demonstrate why such a simple UV sector cannot be a complete 
scenario if a mechanism to generate the heavy state’s mass is 
demanded. We then discuss the spin-1/2 case, drawing a similar 
conclusions in Section 3.2. In Section 3.3 we examine the case of 
integrating out a scalar field focused on the “one operator” ques-
tion. We show how the scalar case is more subtle, but still argues 
for more operators when UV complete scenarios are demanded. 
Section 4 contains our conclusions.

2. Two exceptional EFT cases

When considering the one operator question, we note that a 
few historical accidents in EFTs can be misleading. First of all, L5
and Ld with d ≥ 6 are distinct when considering this question. Due 
to the charges of the SM field content, only one operator (with 
flavor indices) can be constructed in L5. The operator that results 
[17,18],

L5 = ci j

2

(
Lc

L,i H̃⋆
)(

H̃† LL, j

)
+ h.c. (2)

is the well known example where one operator at a particular 
mass dimension does result when integrating out UV physics.4 The 
interplay of global U(1)L number violation and the constraints of 
the SM field’s representations leading to one operator in L5 is an 
exception that is not repeated at higher orders in the SMEFT oper-
ator expansion [6–10].

Historically, Fermi theory has frequently been used as a pro-
totypical EFT to build intuition. This can be unfortunate, as Fermi 
theory is atypical and has a number of non-trivial accidental fea-
tures that are not generic. In Fermi theory, the four-fermion oper-
ator

Q ℓℓ =
(
LL γ µLL

) (
LL γµLL

)
, (3)

4 Here and below our notation with a c superscript indicates a charge conjugate 
representation of a SM field.

Table 1
Vector representations [21,22] consistent with our assumptions. The first three rows 
are the same field sub-classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix T A (for both color and flavor 8’s) is 
present but suppressed in the coupling to some fermion bi-linears. σI is the Pauli 
matrix. The table largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8 and 
3 ⊗ 3 = 6 ⊕ 3̄.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γ µ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄ L γ µ Q L

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄ Lσ I γ µ Q L

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ µ uR

V(1,8)
VII 1,8 1 −1 (3̄,3,1) (1,1) d̄R γ µ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄ L γ µ Q L

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄ Lσ I γ µ Q L

V(3̄,6)
X 3̄,6 2 −1/6 (1,3,3) (1,1) d̄R γ µ Q c

L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ µ Q c

L

is generated when the W boson is integrated out. This effective 
operator is used in the process µ− → e− + ν̄e + νµ to infer the 
Fermi constant, G F . The UV sector in the case of Fermi theory is 
the SM which does induce a series of other operators at tree level, 
in addition to the operator Q ℓℓ . These four-fermion operators are 
due to the Higgs field and the Z boson. However, the highly sup-
pressed Yukawa couplings of the SM Higgs to light fermions leads 
to an exceptional situation numerically in terms of the operator 
profiles. The small Yukawa couplings are not formally the conse-
quence of a fine tuning, as they are protected by the full chiral 
symmetry of the SM. More discussion on the accidents in Fermi 
theory, and how it is commonly misunderstood, can be found in 
Ref. [19].

Arguably, there is some theoretical evidence based on the struc-
ture and particle content of the SM in the direction of embedding 
this model into SU(5) or SU(10), see for example the arguments 
in Ref. [20]. This could be interpreted as a hint to an underlying 
theory, similar to the chiral structure of the SM being a low en-
ergy hint of its UV structure. However, the problems of TeV scale 
grand unified theories are very well known. In this work we make 
a more phenomenologically motivated choice and assume approx-
imate G symmetry (and CP symmetry).

3. G symmetric tree level matchings

3.1. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in the 
manner assumed are given by Table 1 [21–23]. The requirement 
of linear couplings of mass dimension less than four, together 
with Lorentz symmetry and invariance under the full SM gauge 
group constrains the possible quantum numbers of UV field con-
tent. Fields with other representations that give SMEFT matchings 
respecting G are possible, if these conditions are relaxed. Our no-
tation is that Q c , Lc are the right handed conjugate doublet fields 
of the SM fermions. The global flavor symmetry in the quark and 
lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton bi-linears, 
to quark-lepton bi-linears or have an interaction with the SM Higgs 
field. We list the corresponding fields in Table 2 and Table 3. 
Cases VXII, VXIII have fields that carry a global lepton number and 
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For our purposes, it is not important whether the new vector bosons are the gauge
bosons of a broken extended gauge group or not. Nevertheless, it is interesting to note that
all the types of vector bosons in Table 1 can in principle be obtained as the gauge bosons
of an extended gauge group broken down to the SM. Models with bigger gauge groups
usually incorporate new fermions, which in particular are necessary to cancel anomalies.
[JY: Is it true?] Here, we will assume that these exotic fermions, if they exist at all, do not
contribute to EWPD. At any rate, in our general low-energy formulation, we only impose
the SM gauge invariance, and the absence of anomalies does not impose any restriction on
the couplings of the new vectors to the SM fermions.

2.1.1 E�ective dimension-6 interactions

Let us first consider an augment of the SM by a vector field V a
µ . In the following

analysis we assume it can be either trivial or non-trivial representation RV under the
SM gauge symmetry. Here a = 1, 2, 3 denotes the SU(2) gauge index. The most general
dimension-four Lagrangian we can build is given by

L = LSM + L0
V + Lint

V , (2.1)

where
L0

V = ≠1
2[DµV‹ ]†a[DµV ‹ ]a + 1

2[DµV‹ ]†a[D‹V µ]a+M2
V

2 V †a
µ V µ

a , (2.2)

and
Lint

V = gV V V †a
µ V µ

a „†„ ≠ (V †µ
a JV a

µ + h.c.), (2.3)

where the current JV
µ includes the interactions with two fermions and with two scalars.

Here we assume the mass term for heavy vector field present as well as although it explicitly
breaks the gauge invariance. In the next section we will discuss the origin of this mass term.
Note that eq. (2.3) is modified. The first term of eq. (2.3) induces dim-8 operator and is
thus ignored in the following derivation.

JV
µ = (gÂ

V )ijÂ̄i“µ ¢RV Âj +
1
ig„

V �† ¢RV Dµ„ + h.c.
2

. (2.4)

where � represents „ or „̃. We consider only terms with only one heavy fields, and assume
diagonal and universal couplings to the three families of fermions, in the weak basis. In
order to find the e�ective lagrangian describing the physics below the scale � ≥ MV , we
integrate out the heavy modes for a generic addition of vector bosons.

Equivalently, we can solve the classical equations of motion for the heavy vectors and
substitute the solutions into the Lagrangian. 1

M2
V Vµ ≠ JV

µ + D2Vµ ≠ D‹DµV‹ = 0 (2.5)
1Here we assume the mixing between the SM Z boson and heavy ZÕ boson is very small and thus will not

generate the considerable corrections to the Z boson. As a result, one can take (Zµ, ZÕ
µ) as mass eigenstates

as a good approximation.
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QED-like scalar QED-like

group structure embedded in the vertex

3

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].

At this stage we 
are not worried 
about the 
mechanism of 
generating the Vµ 
mass. 
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of an extended gauge group broken down to the SM. Models with bigger gauge groups
usually incorporate new fermions, which in particular are necessary to cancel anomalies.
[JY: Is it true?] Here, we will assume that these exotic fermions, if they exist at all, do not
contribute to EWPD. At any rate, in our general low-energy formulation, we only impose
the SM gauge invariance, and the absence of anomalies does not impose any restriction on
the couplings of the new vectors to the SM fermions.

2.1.1 E�ective dimension-6 interactions

Let us first consider an augment of the SM by a vector field V a
µ . In the following

analysis we assume it can be either trivial or non-trivial representation RV under the
SM gauge symmetry. Here a = 1, 2, 3 denotes the SU(2) gauge index. The most general
dimension-four Lagrangian we can build is given by

L = LSM + L0
V + Lint

V , (2.1)

where
L0

V = ≠1
2[DµV‹ ]†a[DµV ‹ ]a + 1

2[DµV‹ ]†a[D‹V µ]a+M2
V

2 V †a
µ V µ

a , (2.2)

and
Lint

V = gV V V †a
µ V µ

a „†„ ≠ (V †µ
a JV a

µ + h.c.), (2.3)

where the current JV
µ includes the interactions with two fermions and with two scalars.

Here we assume the mass term for heavy vector field present as well as although it explicitly
breaks the gauge invariance. In the next section we will discuss the origin of this mass term.
Note that eq. (2.3) is modified. The first term of eq. (2.3) induces dim-8 operator and is
thus ignored in the following derivation.

JV
µ = (gÂ

V )ijÂ̄i“µ ¢RV Âj +
1
ig„

V �† ¢RV Dµ„ + h.c.
2

. (2.4)

where � represents „ or „̃. We consider only terms with only one heavy fields, and assume
diagonal and universal couplings to the three families of fermions, in the weak basis. In
order to find the e�ective lagrangian describing the physics below the scale � ≥ MV , we
integrate out the heavy modes for a generic addition of vector bosons.

Equivalently, we can solve the classical equations of motion for the heavy vectors and
substitute the solutions into the Lagrangian. 1

M2
V Vµ ≠ JV

µ + D2Vµ ≠ D‹DµV‹ = 0 (2.5)
1Here we assume the mixing between the SM Z boson and heavy ZÕ boson is very small and thus will not

generate the considerable corrections to the Z boson. As a result, one can take (Zµ, ZÕ
µ) as mass eigenstates

as a good approximation.
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• Consider an augment of the SM by a vector field Vµa 

QED-like scalar QED-like

group structure embedded in the vertex

3

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].

At this stage we 
are not worried 
about the 
mechanism of 
generating the Vµ 
mass. 
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Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].

the current product has three types: 
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Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].
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vor indices are not used to distinguish operators.
The structure of this paper is as follows. Following a

brief comment on the dimension-5 operator and Fermi the-
ory in Section II, we provide in Section III.A a comprehen-
sive discussion on the SMEFT matching at tree level onto
L6 when a massive spin-1 state present in a UV physics
sector is integrated out. We focus this discussion on the
“one operator induced at tree level” question consistent
with the assumed (approximate) G symmetry. We demon-
strate why such a simple UV sector cannot be a complete
scenario if a mechanism to generate the heavy state’s mass
is demanded. We then discuss the spin-1/2 case, drawing
a similar conclusions in Section III.B. In Section III.C we
examine the case of integrating out a scalar field focused
on the “one operator” question. We show how the scalar
case is more subtle, but still argues for more operators
when UV complete scenarios are demanded. Section IV
contains our conclusions.

II. TWO EXCEPTIONAL EFT CASES

When considering the one operator question, we note
that a few historical accidents in EFTs can be mislead-
ing. First of all, L5 and Ld with d ≥ 6 are distinct when
considering this question. Due to the charges of the SM
field content, only one operator (with flavor indices) can
be constructed in L5. The operator that results [17, 18],

L5 =
cij
2

(

L̄c
iH̃

⋆
)(

H̃† Lj

)

+ h.c. (2)

is the well known example where one operator at a par-
ticular mass dimension does result when integrating out
UV physics.4 The interplay of global U(1)L number viola-
tion and the constraints of the SM field’s representations
leading to one operator in L5 is an exception that is not re-
peated at higher orders in the SMEFT operator expansion
[6–10].
Historically, Fermi theory has frequently been used as

a prototypical EFT to build intuition. This can be un-
fortunate, as Fermi theory is atypical and has a number
of non-trivial accidental features that are not generic. In
Fermi theory, the four-fermion operator

Q ℓℓ
µµee

=
(

L̄µ γ
µPLLµ

) (

L̄e γµPLLe

)

, (3)

is generated when the W boson is integrated out. This ef-
fective operator is used in the process µ− → e−+ν̄e+νµ to
infer the Fermi constant, GF . The UV sector in the case of
Fermi theory is the SM which does induce a series of other
operators at tree level, in addition to the operator Qℓℓ.
These four-fermion operators are due to the Higgs field
and the Z boson. However, the highly suppressed Yukawa
couplings of the SM Higgs to light fermions leads to an

4 Here and below our notation with a c superscript indicates a charge
conjugate representation of a SM field.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ

µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γµ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄L γ

µ QL

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄Lσ

I γµ QL

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ

µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ

µ uR

V(1,8)
VII 1,8 1 -1 (3̄,3,1) (1,1) d̄R γµ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄L γ

µ QL

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄Lσ

I γµ QL

V(3̄,6)
X 3̄,6 2 -1/6 (1,3,3) (1,1) d̄R γ

µ Qc
L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ

µ Qc
L

TABLE I. Vector representations [21, 22] consistent with our
assumptions. The first three rows are the same field sub-
classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix TA (for both
color and flavor 8’s) is present but suppressed in the coupling
to some fermion bi-linears. σI is the Pauli matrix. The table
largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8
and 3⊗ 3 = 6⊕ 3̄.

exceptional situation numerically in terms of the operator
profiles. The small Yukawa couplings are not formally the
consequence of a fine tuning, as they are protected by the
full chiral symmetry of the SM. More discussion on the
accidents in Fermi theory, and how it is commonly misun-
derstood, can be found in Ref. [19].

Arguably, there is some theoretical evidence based on
the structure and particle content of the SM in the direc-
tion of embedding this model into SU(5) or SU(10), see
for example the arguments in Ref. [20]. This could be in-
terpreted as a hint to an underlying theory, similar to the
chiral structure of the SM being a low energy hint of its
UV structure. However, the problems of TeV scale grand
unified theories are very well known. In this work we make
a more phenomenologically motivated choice and assume
approximate G symmetry (and CP symmetry).

III. G SYMMETRIC TREE LEVEL MATCHINGS

A. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in
the manner assumed are given by Table I [21–23]. The re-
quirement of linear couplings of mass dimension less than
four, together with Lorentz symmetry and invariance un-
der the full SM gauge group constrains the possible quan-
tum numbers of UV field content. Fields with other repre-
sentations that give SMEFT matchings respecting G are
possible, if these conditions are relaxed. Our notation is
that Qc, Lc are the right handed conjugate doublet fields
of the SM fermions. The global flavor symmetry in the

3

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].
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Case SU(3)C SU(2)L U(1)Y GQ GL Couples to
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I 1 1 0 (1,1,1) (1,1) ēR γ
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I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].
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vor indices are not used to distinguish operators.
The structure of this paper is as follows. Following a

brief comment on the dimension-5 operator and Fermi the-
ory in Section II, we provide in Section III.A a comprehen-
sive discussion on the SMEFT matching at tree level onto
L6 when a massive spin-1 state present in a UV physics
sector is integrated out. We focus this discussion on the
“one operator induced at tree level” question consistent
with the assumed (approximate) G symmetry. We demon-
strate why such a simple UV sector cannot be a complete
scenario if a mechanism to generate the heavy state’s mass
is demanded. We then discuss the spin-1/2 case, drawing
a similar conclusions in Section III.B. In Section III.C we
examine the case of integrating out a scalar field focused
on the “one operator” question. We show how the scalar
case is more subtle, but still argues for more operators
when UV complete scenarios are demanded. Section IV
contains our conclusions.

II. TWO EXCEPTIONAL EFT CASES

When considering the one operator question, we note
that a few historical accidents in EFTs can be mislead-
ing. First of all, L5 and Ld with d ≥ 6 are distinct when
considering this question. Due to the charges of the SM
field content, only one operator (with flavor indices) can
be constructed in L5. The operator that results [17, 18],

L5 =
cij
2

(

L̄c
iH̃

⋆
)(

H̃† Lj

)

+ h.c. (2)

is the well known example where one operator at a par-
ticular mass dimension does result when integrating out
UV physics.4 The interplay of global U(1)L number viola-
tion and the constraints of the SM field’s representations
leading to one operator in L5 is an exception that is not re-
peated at higher orders in the SMEFT operator expansion
[6–10].
Historically, Fermi theory has frequently been used as

a prototypical EFT to build intuition. This can be un-
fortunate, as Fermi theory is atypical and has a number
of non-trivial accidental features that are not generic. In
Fermi theory, the four-fermion operator

Q ℓℓ
µµee

=
(

L̄µ γ
µPLLµ

) (

L̄e γµPLLe

)

, (3)

is generated when the W boson is integrated out. This ef-
fective operator is used in the process µ− → e−+ν̄e+νµ to
infer the Fermi constant, GF . The UV sector in the case of
Fermi theory is the SM which does induce a series of other
operators at tree level, in addition to the operator Qℓℓ.
These four-fermion operators are due to the Higgs field
and the Z boson. However, the highly suppressed Yukawa
couplings of the SM Higgs to light fermions leads to an

4 Here and below our notation with a c superscript indicates a charge
conjugate representation of a SM field.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ

µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γµ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄L γ

µ QL

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄Lσ

I γµ QL

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ

µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ

µ uR

V(1,8)
VII 1,8 1 -1 (3̄,3,1) (1,1) d̄R γµ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄L γ

µ QL

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄Lσ

I γµ QL

V(3̄,6)
X 3̄,6 2 -1/6 (1,3,3) (1,1) d̄R γ

µ Qc
L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ

µ Qc
L

TABLE I. Vector representations [21, 22] consistent with our
assumptions. The first three rows are the same field sub-
classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix TA (for both
color and flavor 8’s) is present but suppressed in the coupling
to some fermion bi-linears. σI is the Pauli matrix. The table
largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8
and 3⊗ 3 = 6⊕ 3̄.

exceptional situation numerically in terms of the operator
profiles. The small Yukawa couplings are not formally the
consequence of a fine tuning, as they are protected by the
full chiral symmetry of the SM. More discussion on the
accidents in Fermi theory, and how it is commonly misun-
derstood, can be found in Ref. [19].

Arguably, there is some theoretical evidence based on
the structure and particle content of the SM in the direc-
tion of embedding this model into SU(5) or SU(10), see
for example the arguments in Ref. [20]. This could be in-
terpreted as a hint to an underlying theory, similar to the
chiral structure of the SM being a low energy hint of its
UV structure. However, the problems of TeV scale grand
unified theories are very well known. In this work we make
a more phenomenologically motivated choice and assume
approximate G symmetry (and CP symmetry).

III. G SYMMETRIC TREE LEVEL MATCHINGS

A. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in
the manner assumed are given by Table I [21–23]. The re-
quirement of linear couplings of mass dimension less than
four, together with Lorentz symmetry and invariance un-
der the full SM gauge group constrains the possible quan-
tum numbers of UV field content. Fields with other repre-
sentations that give SMEFT matchings respecting G are
possible, if these conditions are relaxed. Our notation is
that Qc, Lc are the right handed conjugate doublet fields
of the SM fermions. The global flavor symmetry in the

3

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].
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Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
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V(8)
IX Q(1)
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(3)
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VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].

for a singlet vector under SM gauge symmetries
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vor indices are not used to distinguish operators.
The structure of this paper is as follows. Following a

brief comment on the dimension-5 operator and Fermi the-
ory in Section II, we provide in Section III.A a comprehen-
sive discussion on the SMEFT matching at tree level onto
L6 when a massive spin-1 state present in a UV physics
sector is integrated out. We focus this discussion on the
“one operator induced at tree level” question consistent
with the assumed (approximate) G symmetry. We demon-
strate why such a simple UV sector cannot be a complete
scenario if a mechanism to generate the heavy state’s mass
is demanded. We then discuss the spin-1/2 case, drawing
a similar conclusions in Section III.B. In Section III.C we
examine the case of integrating out a scalar field focused
on the “one operator” question. We show how the scalar
case is more subtle, but still argues for more operators
when UV complete scenarios are demanded. Section IV
contains our conclusions.

II. TWO EXCEPTIONAL EFT CASES

When considering the one operator question, we note
that a few historical accidents in EFTs can be mislead-
ing. First of all, L5 and Ld with d ≥ 6 are distinct when
considering this question. Due to the charges of the SM
field content, only one operator (with flavor indices) can
be constructed in L5. The operator that results [17, 18],

L5 =
cij
2

(

L̄c
iH̃

⋆
)(

H̃† Lj

)

+ h.c. (2)

is the well known example where one operator at a par-
ticular mass dimension does result when integrating out
UV physics.4 The interplay of global U(1)L number viola-
tion and the constraints of the SM field’s representations
leading to one operator in L5 is an exception that is not re-
peated at higher orders in the SMEFT operator expansion
[6–10].
Historically, Fermi theory has frequently been used as

a prototypical EFT to build intuition. This can be un-
fortunate, as Fermi theory is atypical and has a number
of non-trivial accidental features that are not generic. In
Fermi theory, the four-fermion operator

Q ℓℓ
µµee

=
(

L̄µ γ
µPLLµ

) (

L̄e γµPLLe

)

, (3)

is generated when the W boson is integrated out. This ef-
fective operator is used in the process µ− → e−+ν̄e+νµ to
infer the Fermi constant, GF . The UV sector in the case of
Fermi theory is the SM which does induce a series of other
operators at tree level, in addition to the operator Qℓℓ.
These four-fermion operators are due to the Higgs field
and the Z boson. However, the highly suppressed Yukawa
couplings of the SM Higgs to light fermions leads to an

4 Here and below our notation with a c superscript indicates a charge
conjugate representation of a SM field.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ

µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γµ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄L γ

µ QL

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄Lσ

I γµ QL

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ

µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ

µ uR

V(1,8)
VII 1,8 1 -1 (3̄,3,1) (1,1) d̄R γµ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄L γ

µ QL

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄Lσ

I γµ QL

V(3̄,6)
X 3̄,6 2 -1/6 (1,3,3) (1,1) d̄R γ

µ Qc
L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ

µ Qc
L

TABLE I. Vector representations [21, 22] consistent with our
assumptions. The first three rows are the same field sub-
classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix TA (for both
color and flavor 8’s) is present but suppressed in the coupling
to some fermion bi-linears. σI is the Pauli matrix. The table
largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8
and 3⊗ 3 = 6⊕ 3̄.

exceptional situation numerically in terms of the operator
profiles. The small Yukawa couplings are not formally the
consequence of a fine tuning, as they are protected by the
full chiral symmetry of the SM. More discussion on the
accidents in Fermi theory, and how it is commonly misun-
derstood, can be found in Ref. [19].

Arguably, there is some theoretical evidence based on
the structure and particle content of the SM in the direc-
tion of embedding this model into SU(5) or SU(10), see
for example the arguments in Ref. [20]. This could be in-
terpreted as a hint to an underlying theory, similar to the
chiral structure of the SM being a low energy hint of its
UV structure. However, the problems of TeV scale grand
unified theories are very well known. In this work we make
a more phenomenologically motivated choice and assume
approximate G symmetry (and CP symmetry).

III. G SYMMETRIC TREE LEVEL MATCHINGS

A. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in
the manner assumed are given by Table I [21–23]. The re-
quirement of linear couplings of mass dimension less than
four, together with Lorentz symmetry and invariance un-
der the full SM gauge group constrains the possible quan-
tum numbers of UV field content. Fields with other repre-
sentations that give SMEFT matchings respecting G are
possible, if these conditions are relaxed. Our notation is
that Qc, Lc are the right handed conjugate doublet fields
of the SM fermions. The global flavor symmetry in the

3

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].

3

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].

for a singlet vector under SM gauge symmetries
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vor indices are not used to distinguish operators.
The structure of this paper is as follows. Following a

brief comment on the dimension-5 operator and Fermi the-
ory in Section II, we provide in Section III.A a comprehen-
sive discussion on the SMEFT matching at tree level onto
L6 when a massive spin-1 state present in a UV physics
sector is integrated out. We focus this discussion on the
“one operator induced at tree level” question consistent
with the assumed (approximate) G symmetry. We demon-
strate why such a simple UV sector cannot be a complete
scenario if a mechanism to generate the heavy state’s mass
is demanded. We then discuss the spin-1/2 case, drawing
a similar conclusions in Section III.B. In Section III.C we
examine the case of integrating out a scalar field focused
on the “one operator” question. We show how the scalar
case is more subtle, but still argues for more operators
when UV complete scenarios are demanded. Section IV
contains our conclusions.

II. TWO EXCEPTIONAL EFT CASES

When considering the one operator question, we note
that a few historical accidents in EFTs can be mislead-
ing. First of all, L5 and Ld with d ≥ 6 are distinct when
considering this question. Due to the charges of the SM
field content, only one operator (with flavor indices) can
be constructed in L5. The operator that results [17, 18],

L5 =
cij
2

(

L̄c
iH̃

⋆
)(

H̃† Lj

)

+ h.c. (2)

is the well known example where one operator at a par-
ticular mass dimension does result when integrating out
UV physics.4 The interplay of global U(1)L number viola-
tion and the constraints of the SM field’s representations
leading to one operator in L5 is an exception that is not re-
peated at higher orders in the SMEFT operator expansion
[6–10].
Historically, Fermi theory has frequently been used as

a prototypical EFT to build intuition. This can be un-
fortunate, as Fermi theory is atypical and has a number
of non-trivial accidental features that are not generic. In
Fermi theory, the four-fermion operator

Q ℓℓ
µµee

=
(

L̄µ γ
µPLLµ

) (

L̄e γµPLLe

)

, (3)

is generated when the W boson is integrated out. This ef-
fective operator is used in the process µ− → e−+ν̄e+νµ to
infer the Fermi constant, GF . The UV sector in the case of
Fermi theory is the SM which does induce a series of other
operators at tree level, in addition to the operator Qℓℓ.
These four-fermion operators are due to the Higgs field
and the Z boson. However, the highly suppressed Yukawa
couplings of the SM Higgs to light fermions leads to an

4 Here and below our notation with a c superscript indicates a charge
conjugate representation of a SM field.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ

µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γµ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄L γ

µ QL

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄Lσ

I γµ QL

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ

µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ

µ uR

V(1,8)
VII 1,8 1 -1 (3̄,3,1) (1,1) d̄R γµ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄L γ

µ QL

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄Lσ

I γµ QL

V(3̄,6)
X 3̄,6 2 -1/6 (1,3,3) (1,1) d̄R γ

µ Qc
L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ

µ Qc
L

TABLE I. Vector representations [21, 22] consistent with our
assumptions. The first three rows are the same field sub-
classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix TA (for both
color and flavor 8’s) is present but suppressed in the coupling
to some fermion bi-linears. σI is the Pauli matrix. The table
largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8
and 3⊗ 3 = 6⊕ 3̄.

exceptional situation numerically in terms of the operator
profiles. The small Yukawa couplings are not formally the
consequence of a fine tuning, as they are protected by the
full chiral symmetry of the SM. More discussion on the
accidents in Fermi theory, and how it is commonly misun-
derstood, can be found in Ref. [19].

Arguably, there is some theoretical evidence based on
the structure and particle content of the SM in the direc-
tion of embedding this model into SU(5) or SU(10), see
for example the arguments in Ref. [20]. This could be in-
terpreted as a hint to an underlying theory, similar to the
chiral structure of the SM being a low energy hint of its
UV structure. However, the problems of TeV scale grand
unified theories are very well known. In this work we make
a more phenomenologically motivated choice and assume
approximate G symmetry (and CP symmetry).

III. G SYMMETRIC TREE LEVEL MATCHINGS

A. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in
the manner assumed are given by Table I [21–23]. The re-
quirement of linear couplings of mass dimension less than
four, together with Lorentz symmetry and invariance un-
der the full SM gauge group constrains the possible quan-
tum numbers of UV field content. Fields with other repre-
sentations that give SMEFT matchings respecting G are
possible, if these conditions are relaxed. Our notation is
that Qc, Lc are the right handed conjugate doublet fields
of the SM fermions. The global flavor symmetry in the

3

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].
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Case SU(3)C SU(2)L U(1)Y GQ GL Couples to
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VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR
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µ uR
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L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to
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TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)
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bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.
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in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J
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H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by
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M2
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(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].

for a singlet vector under SM gauge symmetries
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Case Op U(1)Y GQ, GL Spurion

V(1)
VIII Q(1)

qq 0 TA Y †
uYu, T

A Y †
d Yd

V(1)
IX Q(1)

qq 0 TA Y †
uYu, TA Y †

d Yd

VXIX Q(1)
lq -2/3 /

V(3̄,6)
X Q(1)

qd -1/6 /

V(3̄,6)
XI Q(1)

qu 5/6 /

VXVIII Qqe -5/6 /

VXII Qle 3/2 /

VXIV Qlu -1/6 /

VXV Qld 5/6 /

V(1)
V Qdd 0 TA Y †

d Yd

V(1)
VI Quu 0 TA Y †

uYu

V(1)
VII Q(1)

ud -1 Y †
d Yu

VXIII Qee 0 TA Y †
e Ye

VXVI Qed -2/3 /

VXVII Qeu -5/3 /

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

ψ)
† Jψ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
ψ)

† Jψ,µ operators via the relation [2]

(Q̄p
Lσ

I TA γµ Qr
L)(Q̄

s
Lσ

I TA γµ Qt
L) =

−
1

4
Q(3)

qq
ptsr

+
3

4
Q(1)

qq
ptsr

−
1

6
Q(3)

qq
prst

, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ × GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table V. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.
A spurion analysis allows the corrections due to the

nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q

r
L H̃† − (Yd)

p
r d̄R,p Q

r
LH†

− (Ye)
p
r ēR,pL

r
LH† + h.c. (9)

GQ×GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ∼ (3, 1, 3̄, 1, 1), Yd ∼ (1, 3, 3̄, 1, 1),

Ye ∼ (1, 1, 1, 3̄, 3). (10)

Introducing GQ × GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

ψ)
† JH,µ, (J

µ
H)† Jψ,µ current products

are induced proportional to one flavor breaking spurion in-
sertion. Here we refer to the spurions listed in Table V that
are bi-linear in Yukawa matricies. As a specific example

consider V(1)
VIII that is a 8 under SU(3)QL . The Lagrangian

7

is given by LSM + L
V

(1)
VIII

where

L
V

(1)
VIII

= −
1

2
(DµVν DµVν −DµVν DνVµ)−

M2
V

2
VνVν

+
(

λVVµ,AT
A Y †

uYu (D
µH)†H + h.c.

)

, (11)

+ gVVµ,A(Q̄LT
AγµQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking
proportional to Y †

d Yd is neglected in what follows. Inte-
grating by parts and the on-shell condition for the vector
field are used to manipulate the derivative to appear as
shown on the second line in Eqn. (11). Integrating out the

field V(1)
VIII using the classical EOM gives

∆L6 ⊃
g2V

4M2
V

[

Q(1)
qq

rssr
−

1

3
Q(1)

qq
rrss

]

+
1

4M2
V

[

((ImλV)
2 − (ReλV )

2)QH✷ + 4(ImλV)
2 QHD

+2i(ReλV )(ImλV )(Y
†
b QbH − YbQ

†
bH)

−2i(ReλV )(ImλV )(Y
†
uQuH − YuQ

†
uH)

]

×
[

Tr[(Y †
u Yu)(Y

†
u Yu)]−

(diag(Y †
u Yu))2

3

]

(12)

−
gV Im[λV ]

2M2
V

Q(1)
Hq
pr

[

(Y †
u Yu)

p
r −

diag(Y †
uYu)

3
δpr

]

+ i
gVRe[λV ]

2M2
V

[

((Y †
u Yu)Y

†
a )

m
i QaH

im
− (Ya(Y

†
u Yu))

i
mQ†

aH
mi

]

− i
gVRe[λV ]

6M2
V

Tr[Y †
uYu]

[

(Y †
a )

m
i QaH

im
− (Ya)

i
mQ†

aH
mi

]

,

where the dummy labels a and b are summed over {u, d}
and {e, d}, respectively. A similar pattern of matchings
onto the class 3 (D2H4), 5 (H3ψ̄ψ) and 7 (H2Dψ̄ψ) op-
erators of the Warsaw basis is present for almost all color
singlet fields with flavor quantum numbers listed in Ta-
bles II and III. The exceptional case is the field VXII whose
non-trivial SU(2)L representation and U(1)Y charge for-
bids a scalar current from being induced at tree level in
this manner.
The pattern of tree level matchings is strongly dictated

by the charges and representations of the UV fields under

7 Recall the flavor adjoint 8 representation is real.
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Case Op U(1)Y GQ, GL Spurion
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TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

ψ)
† Jψ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
ψ)

† Jψ,µ operators via the relation [2]

(Q̄p
Lσ

I TA γµ Qr
L)(Q̄

s
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I TA γµ Qt
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−
1

4
Q(3)

qq
ptsr

+
3

4
Q(1)

qq
ptsr

−
1

6
Q(3)

qq
prst

, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ × GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table V. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.
A spurion analysis allows the corrections due to the

nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q

r
L H̃† − (Yd)

p
r d̄R,p Q

r
LH†

− (Ye)
p
r ēR,pL

r
LH† + h.c. (9)

GQ×GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ∼ (3, 1, 3̄, 1, 1), Yd ∼ (1, 3, 3̄, 1, 1),

Ye ∼ (1, 1, 1, 3̄, 3). (10)

Introducing GQ × GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

ψ)
† JH,µ, (J

µ
H)† Jψ,µ current products

are induced proportional to one flavor breaking spurion in-
sertion. Here we refer to the spurions listed in Table V that
are bi-linear in Yukawa matricies. As a specific example

consider V(1)
VIII that is a 8 under SU(3)QL . The Lagrangian
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is given by LSM + L
V

(1)
VIII

where

L
V

(1)
VIII

= −
1

2
(DµVν DµVν −DµVν DνVµ)−
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V

2
VνVν

+
(

λVVµ,AT
A Y †

uYu (D
µH)†H + h.c.

)

, (11)

+ gVVµ,A(Q̄LT
AγµQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking
proportional to Y †

d Yd is neglected in what follows. Inte-
grating by parts and the on-shell condition for the vector
field are used to manipulate the derivative to appear as
shown on the second line in Eqn. (11). Integrating out the

field V(1)
VIII using the classical EOM gives
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+
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×
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−
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r −
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u Yu))
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,

where the dummy labels a and b are summed over {u, d}
and {e, d}, respectively. A similar pattern of matchings
onto the class 3 (D2H4), 5 (H3ψ̄ψ) and 7 (H2Dψ̄ψ) op-
erators of the Warsaw basis is present for almost all color
singlet fields with flavor quantum numbers listed in Ta-
bles II and III. The exceptional case is the field VXII whose
non-trivial SU(2)L representation and U(1)Y charge for-
bids a scalar current from being induced at tree level in
this manner.
The pattern of tree level matchings is strongly dictated

by the charges and representations of the UV fields under

7 Recall the flavor adjoint 8 representation is real.
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vor indices are not used to distinguish operators.
The structure of this paper is as follows. Following a

brief comment on the dimension-5 operator and Fermi the-
ory in Section II, we provide in Section III.A a comprehen-
sive discussion on the SMEFT matching at tree level onto
L6 when a massive spin-1 state present in a UV physics
sector is integrated out. We focus this discussion on the
“one operator induced at tree level” question consistent
with the assumed (approximate) G symmetry. We demon-
strate why such a simple UV sector cannot be a complete
scenario if a mechanism to generate the heavy state’s mass
is demanded. We then discuss the spin-1/2 case, drawing
a similar conclusions in Section III.B. In Section III.C we
examine the case of integrating out a scalar field focused
on the “one operator” question. We show how the scalar
case is more subtle, but still argues for more operators
when UV complete scenarios are demanded. Section IV
contains our conclusions.

II. TWO EXCEPTIONAL EFT CASES

When considering the one operator question, we note
that a few historical accidents in EFTs can be mislead-
ing. First of all, L5 and Ld with d ≥ 6 are distinct when
considering this question. Due to the charges of the SM
field content, only one operator (with flavor indices) can
be constructed in L5. The operator that results [17, 18],

L5 =
cij
2

(

L̄c
iH̃

⋆
)(

H̃† Lj

)

+ h.c. (2)

is the well known example where one operator at a par-
ticular mass dimension does result when integrating out
UV physics.4 The interplay of global U(1)L number viola-
tion and the constraints of the SM field’s representations
leading to one operator in L5 is an exception that is not re-
peated at higher orders in the SMEFT operator expansion
[6–10].
Historically, Fermi theory has frequently been used as

a prototypical EFT to build intuition. This can be un-
fortunate, as Fermi theory is atypical and has a number
of non-trivial accidental features that are not generic. In
Fermi theory, the four-fermion operator

Q ℓℓ
µµee

=
(

L̄µ γ
µPLLµ

) (

L̄e γµPLLe

)

, (3)

is generated when the W boson is integrated out. This ef-
fective operator is used in the process µ− → e−+ν̄e+νµ to
infer the Fermi constant, GF . The UV sector in the case of
Fermi theory is the SM which does induce a series of other
operators at tree level, in addition to the operator Qℓℓ.
These four-fermion operators are due to the Higgs field
and the Z boson. However, the highly suppressed Yukawa
couplings of the SM Higgs to light fermions leads to an

4 Here and below our notation with a c superscript indicates a charge
conjugate representation of a SM field.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ

µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γµ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄L γ

µ QL

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄Lσ

I γµ QL

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ

µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ

µ uR

V(1,8)
VII 1,8 1 -1 (3̄,3,1) (1,1) d̄R γµ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄L γ

µ QL

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄Lσ

I γµ QL

V(3̄,6)
X 3̄,6 2 -1/6 (1,3,3) (1,1) d̄R γ

µ Qc
L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ

µ Qc
L

TABLE I. Vector representations [21, 22] consistent with our
assumptions. The first three rows are the same field sub-
classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix TA (for both
color and flavor 8’s) is present but suppressed in the coupling
to some fermion bi-linears. σI is the Pauli matrix. The table
largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8
and 3⊗ 3 = 6⊕ 3̄.

exceptional situation numerically in terms of the operator
profiles. The small Yukawa couplings are not formally the
consequence of a fine tuning, as they are protected by the
full chiral symmetry of the SM. More discussion on the
accidents in Fermi theory, and how it is commonly misun-
derstood, can be found in Ref. [19].

Arguably, there is some theoretical evidence based on
the structure and particle content of the SM in the direc-
tion of embedding this model into SU(5) or SU(10), see
for example the arguments in Ref. [20]. This could be in-
terpreted as a hint to an underlying theory, similar to the
chiral structure of the SM being a low energy hint of its
UV structure. However, the problems of TeV scale grand
unified theories are very well known. In this work we make
a more phenomenologically motivated choice and assume
approximate G symmetry (and CP symmetry).

III. G SYMMETRIC TREE LEVEL MATCHINGS

A. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in
the manner assumed are given by Table I [21–23]. The re-
quirement of linear couplings of mass dimension less than
four, together with Lorentz symmetry and invariance un-
der the full SM gauge group constrains the possible quan-
tum numbers of UV field content. Fields with other repre-
sentations that give SMEFT matchings respecting G are
possible, if these conditions are relaxed. Our notation is
that Qc, Lc are the right handed conjugate doublet fields
of the SM fermions. The global flavor symmetry in the

3

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].
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structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.
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TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].

for a singlet vector under SM gauge symmetries

POSSIBLE CURRENTS

color octet

iso-tripletcolor-octet 
iso-triplet
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Case Op U(1)Y GQ, GL Spurion

V(1)
VIII Q(1)

qq 0 TA Y †
uYu, T

A Y †
d Yd

V(1)
IX Q(1)

qq 0 TA Y †
uYu, TA Y †

d Yd

VXIX Q(1)
lq -2/3 /

V(3̄,6)
X Q(1)

qd -1/6 /

V(3̄,6)
XI Q(1)

qu 5/6 /

VXVIII Qqe -5/6 /

VXII Qle 3/2 /

VXIV Qlu -1/6 /

VXV Qld 5/6 /

V(1)
V Qdd 0 TA Y †

d Yd

V(1)
VI Quu 0 TA Y †

uYu

V(1)
VII Q(1)

ud -1 Y †
d Yu

VXIII Qee 0 TA Y †
e Ye

VXVI Qed -2/3 /

VXVII Qeu -5/3 /

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

ψ)
† Jψ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
ψ)

† Jψ,µ operators via the relation [2]

(Q̄p
Lσ

I TA γµ Qr
L)(Q̄

s
Lσ

I TA γµ Qt
L) =

−
1

4
Q(3)

qq
ptsr

+
3

4
Q(1)

qq
ptsr

−
1

6
Q(3)

qq
prst

, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ × GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table V. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.
A spurion analysis allows the corrections due to the

nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q

r
L H̃† − (Yd)

p
r d̄R,p Q

r
LH†

− (Ye)
p
r ēR,pL

r
LH† + h.c. (9)

GQ×GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ∼ (3, 1, 3̄, 1, 1), Yd ∼ (1, 3, 3̄, 1, 1),

Ye ∼ (1, 1, 1, 3̄, 3). (10)

Introducing GQ × GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

ψ)
† JH,µ, (J

µ
H)† Jψ,µ current products

are induced proportional to one flavor breaking spurion in-
sertion. Here we refer to the spurions listed in Table V that
are bi-linear in Yukawa matricies. As a specific example

consider V(1)
VIII that is a 8 under SU(3)QL . The Lagrangian

7

is given by LSM + L
V

(1)
VIII

where

L
V

(1)
VIII

= −
1

2
(DµVν DµVν −DµVν DνVµ)−

M2
V

2
VνVν

+
(

λVVµ,AT
A Y †

uYu (D
µH)†H + h.c.

)

, (11)

+ gVVµ,A(Q̄LT
AγµQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking
proportional to Y †

d Yd is neglected in what follows. Inte-
grating by parts and the on-shell condition for the vector
field are used to manipulate the derivative to appear as
shown on the second line in Eqn. (11). Integrating out the

field V(1)
VIII using the classical EOM gives

∆L6 ⊃
g2V

4M2
V

[

Q(1)
qq

rssr
−

1

3
Q(1)

qq
rrss

]

+
1

4M2
V

[

((ImλV)
2 − (ReλV )

2)QH✷ + 4(ImλV)
2 QHD

+2i(ReλV )(ImλV )(Y
†
b QbH − YbQ

†
bH)

−2i(ReλV )(ImλV )(Y
†
uQuH − YuQ

†
uH)

]

×
[

Tr[(Y †
u Yu)(Y

†
u Yu)]−

(diag(Y †
u Yu))2

3

]

(12)

−
gV Im[λV ]

2M2
V

Q(1)
Hq
pr

[

(Y †
u Yu)

p
r −

diag(Y †
uYu)

3
δpr

]

+ i
gVRe[λV ]

2M2
V

[

((Y †
u Yu)Y

†
a )

m
i QaH

im
− (Ya(Y

†
u Yu))

i
mQ†

aH
mi

]

− i
gVRe[λV ]

6M2
V

Tr[Y †
uYu]

[

(Y †
a )

m
i QaH

im
− (Ya)

i
mQ†

aH
mi

]

,

where the dummy labels a and b are summed over {u, d}
and {e, d}, respectively. A similar pattern of matchings
onto the class 3 (D2H4), 5 (H3ψ̄ψ) and 7 (H2Dψ̄ψ) op-
erators of the Warsaw basis is present for almost all color
singlet fields with flavor quantum numbers listed in Ta-
bles II and III. The exceptional case is the field VXII whose
non-trivial SU(2)L representation and U(1)Y charge for-
bids a scalar current from being induced at tree level in
this manner.
The pattern of tree level matchings is strongly dictated

by the charges and representations of the UV fields under

7 Recall the flavor adjoint 8 representation is real.
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† Jψ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.
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the multiple operators induced when integrating out vec-
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d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.
A spurion analysis allows the corrections due to the
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Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking
proportional to Y †

d Yd is neglected in what follows. Inte-
grating by parts and the on-shell condition for the vector
field are used to manipulate the derivative to appear as
shown on the second line in Eqn. (11). Integrating out the

field V(1)
VIII using the classical EOM gives
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where the dummy labels a and b are summed over {u, d}
and {e, d}, respectively. A similar pattern of matchings
onto the class 3 (D2H4), 5 (H3ψ̄ψ) and 7 (H2Dψ̄ψ) op-
erators of the Warsaw basis is present for almost all color
singlet fields with flavor quantum numbers listed in Ta-
bles II and III. The exceptional case is the field VXII whose
non-trivial SU(2)L representation and U(1)Y charge for-
bids a scalar current from being induced at tree level in
this manner.
The pattern of tree level matchings is strongly dictated

by the charges and representations of the UV fields under

7 Recall the flavor adjoint 8 representation is real.

e.g.

U(1) charge
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Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].
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vor indices are not used to distinguish operators.
The structure of this paper is as follows. Following a

brief comment on the dimension-5 operator and Fermi the-
ory in Section II, we provide in Section III.A a comprehen-
sive discussion on the SMEFT matching at tree level onto
L6 when a massive spin-1 state present in a UV physics
sector is integrated out. We focus this discussion on the
“one operator induced at tree level” question consistent
with the assumed (approximate) G symmetry. We demon-
strate why such a simple UV sector cannot be a complete
scenario if a mechanism to generate the heavy state’s mass
is demanded. We then discuss the spin-1/2 case, drawing
a similar conclusions in Section III.B. In Section III.C we
examine the case of integrating out a scalar field focused
on the “one operator” question. We show how the scalar
case is more subtle, but still argues for more operators
when UV complete scenarios are demanded. Section IV
contains our conclusions.

II. TWO EXCEPTIONAL EFT CASES

When considering the one operator question, we note
that a few historical accidents in EFTs can be mislead-
ing. First of all, L5 and Ld with d ≥ 6 are distinct when
considering this question. Due to the charges of the SM
field content, only one operator (with flavor indices) can
be constructed in L5. The operator that results [17, 18],

L5 =
cij
2

(

L̄c
iH̃

⋆
)(

H̃† Lj

)

+ h.c. (2)

is the well known example where one operator at a par-
ticular mass dimension does result when integrating out
UV physics.4 The interplay of global U(1)L number viola-
tion and the constraints of the SM field’s representations
leading to one operator in L5 is an exception that is not re-
peated at higher orders in the SMEFT operator expansion
[6–10].
Historically, Fermi theory has frequently been used as

a prototypical EFT to build intuition. This can be un-
fortunate, as Fermi theory is atypical and has a number
of non-trivial accidental features that are not generic. In
Fermi theory, the four-fermion operator

Q ℓℓ
µµee

=
(

L̄µ γ
µPLLµ

) (

L̄e γµPLLe

)

, (3)

is generated when the W boson is integrated out. This ef-
fective operator is used in the process µ− → e−+ν̄e+νµ to
infer the Fermi constant, GF . The UV sector in the case of
Fermi theory is the SM which does induce a series of other
operators at tree level, in addition to the operator Qℓℓ.
These four-fermion operators are due to the Higgs field
and the Z boson. However, the highly suppressed Yukawa
couplings of the SM Higgs to light fermions leads to an

4 Here and below our notation with a c superscript indicates a charge
conjugate representation of a SM field.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ

µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γµ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄L γ

µ QL

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄Lσ

I γµ QL

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ

µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ

µ uR

V(1,8)
VII 1,8 1 -1 (3̄,3,1) (1,1) d̄R γµ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄L γ

µ QL

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄Lσ

I γµ QL

V(3̄,6)
X 3̄,6 2 -1/6 (1,3,3) (1,1) d̄R γ

µ Qc
L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ

µ Qc
L

TABLE I. Vector representations [21, 22] consistent with our
assumptions. The first three rows are the same field sub-
classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix TA (for both
color and flavor 8’s) is present but suppressed in the coupling
to some fermion bi-linears. σI is the Pauli matrix. The table
largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8
and 3⊗ 3 = 6⊕ 3̄.

exceptional situation numerically in terms of the operator
profiles. The small Yukawa couplings are not formally the
consequence of a fine tuning, as they are protected by the
full chiral symmetry of the SM. More discussion on the
accidents in Fermi theory, and how it is commonly misun-
derstood, can be found in Ref. [19].

Arguably, there is some theoretical evidence based on
the structure and particle content of the SM in the direc-
tion of embedding this model into SU(5) or SU(10), see
for example the arguments in Ref. [20]. This could be in-
terpreted as a hint to an underlying theory, similar to the
chiral structure of the SM being a low energy hint of its
UV structure. However, the problems of TeV scale grand
unified theories are very well known. In this work we make
a more phenomenologically motivated choice and assume
approximate G symmetry (and CP symmetry).

III. G SYMMETRIC TREE LEVEL MATCHINGS

A. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in
the manner assumed are given by Table I [21–23]. The re-
quirement of linear couplings of mass dimension less than
four, together with Lorentz symmetry and invariance un-
der the full SM gauge group constrains the possible quan-
tum numbers of UV field content. Fields with other repre-
sentations that give SMEFT matchings respecting G are
possible, if these conditions are relaxed. Our notation is
that Qc, Lc are the right handed conjugate doublet fields
of the SM fermions. The global flavor symmetry in the

3

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].

3

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].

for a singlet vector under SM gauge symmetries

POSSIBLE CURRENTS

color octet

iso-triplet

Flavor singlet vector fields induce more than one operator  
at tree level when matching onto the SMEFT Warsaw basis. 

color-octet 
iso-triplet

4

Case Op U(1)Y GQ, GL Spurion

V(1)
VIII Q(1)

qq 0 TA Y †
uYu, T

A Y †
d Yd

V(1)
IX Q(1)

qq 0 TA Y †
uYu, TA Y †

d Yd

VXIX Q(1)
lq -2/3 /

V(3̄,6)
X Q(1)

qd -1/6 /

V(3̄,6)
XI Q(1)

qu 5/6 /

VXVIII Qqe -5/6 /

VXII Qle 3/2 /

VXIV Qlu -1/6 /

VXV Qld 5/6 /

V(1)
V Qdd 0 TA Y †

d Yd

V(1)
VI Quu 0 TA Y †

uYu

V(1)
VII Q(1)

ud -1 Y †
d Yu

VXIII Qee 0 TA Y †
e Ye

VXVI Qed -2/3 /

VXVII Qeu -5/3 /

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

ψ)
† Jψ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
ψ)

† Jψ,µ operators via the relation [2]

(Q̄p
Lσ

I TA γµ Qr
L)(Q̄

s
Lσ

I TA γµ Qt
L) =

−
1

4
Q(3)

qq
ptsr

+
3

4
Q(1)

qq
ptsr

−
1

6
Q(3)

qq
prst

, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ × GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table V. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.
A spurion analysis allows the corrections due to the

nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q

r
L H̃† − (Yd)

p
r d̄R,p Q

r
LH†

− (Ye)
p
r ēR,pL

r
LH† + h.c. (9)

GQ×GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ∼ (3, 1, 3̄, 1, 1), Yd ∼ (1, 3, 3̄, 1, 1),

Ye ∼ (1, 1, 1, 3̄, 3). (10)

Introducing GQ × GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

ψ)
† JH,µ, (J

µ
H)† Jψ,µ current products

are induced proportional to one flavor breaking spurion in-
sertion. Here we refer to the spurions listed in Table V that
are bi-linear in Yukawa matricies. As a specific example

consider V(1)
VIII that is a 8 under SU(3)QL . The Lagrangian

7

is given by LSM + L
V

(1)
VIII

where

L
V

(1)
VIII

= −
1

2
(DµVν DµVν −DµVν DνVµ)−

M2
V

2
VνVν

+
(

λVVµ,AT
A Y †

uYu (D
µH)†H + h.c.

)

, (11)

+ gVVµ,A(Q̄LT
AγµQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking
proportional to Y †

d Yd is neglected in what follows. Inte-
grating by parts and the on-shell condition for the vector
field are used to manipulate the derivative to appear as
shown on the second line in Eqn. (11). Integrating out the

field V(1)
VIII using the classical EOM gives

∆L6 ⊃
g2V

4M2
V

[

Q(1)
qq

rssr
−

1

3
Q(1)

qq
rrss

]

+
1

4M2
V

[

((ImλV)
2 − (ReλV )

2)QH✷ + 4(ImλV)
2 QHD

+2i(ReλV )(ImλV )(Y
†
b QbH − YbQ

†
bH)

−2i(ReλV )(ImλV )(Y
†
uQuH − YuQ

†
uH)

]

×
[

Tr[(Y †
u Yu)(Y

†
u Yu)]−

(diag(Y †
u Yu))2

3

]

(12)

−
gV Im[λV ]

2M2
V

Q(1)
Hq
pr

[

(Y †
u Yu)

p
r −

diag(Y †
uYu)

3
δpr

]

+ i
gVRe[λV ]

2M2
V

[

((Y †
u Yu)Y

†
a )

m
i QaH

im
− (Ya(Y

†
u Yu))

i
mQ†

aH
mi

]

− i
gVRe[λV ]

6M2
V

Tr[Y †
uYu]

[

(Y †
a )

m
i QaH

im
− (Ya)

i
mQ†

aH
mi

]

,

where the dummy labels a and b are summed over {u, d}
and {e, d}, respectively. A similar pattern of matchings
onto the class 3 (D2H4), 5 (H3ψ̄ψ) and 7 (H2Dψ̄ψ) op-
erators of the Warsaw basis is present for almost all color
singlet fields with flavor quantum numbers listed in Ta-
bles II and III. The exceptional case is the field VXII whose
non-trivial SU(2)L representation and U(1)Y charge for-
bids a scalar current from being induced at tree level in
this manner.
The pattern of tree level matchings is strongly dictated

by the charges and representations of the UV fields under

7 Recall the flavor adjoint 8 representation is real.
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Case Op U(1)Y GQ, GL Spurion

V(1)
VIII Q(1)

qq 0 TA Y †
uYu, T

A Y †
d Yd

V(1)
IX Q(1)

qq 0 TA Y †
uYu, TA Y †

d Yd

VXIX Q(1)
lq -2/3 /

V(3̄,6)
X Q(1)

qd -1/6 /

V(3̄,6)
XI Q(1)

qu 5/6 /

VXVIII Qqe -5/6 /

VXII Qle 3/2 /

VXIV Qlu -1/6 /

VXV Qld 5/6 /

V(1)
V Qdd 0 TA Y †

d Yd

V(1)
VI Quu 0 TA Y †

uYu

V(1)
VII Q(1)

ud -1 Y †
d Yu

VXIII Qee 0 TA Y †
e Ye

VXVI Qed -2/3 /

VXVII Qeu -5/3 /

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

ψ)
† Jψ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
ψ)

† Jψ,µ operators via the relation [2]

(Q̄p
Lσ

I TA γµ Qr
L)(Q̄

s
Lσ

I TA γµ Qt
L) =

−
1

4
Q(3)

qq
ptsr

+
3

4
Q(1)

qq
ptsr

−
1

6
Q(3)

qq
prst

, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ × GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table V. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.
A spurion analysis allows the corrections due to the

nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q

r
L H̃† − (Yd)

p
r d̄R,p Q

r
LH†

− (Ye)
p
r ēR,pL

r
LH† + h.c. (9)

GQ×GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ∼ (3, 1, 3̄, 1, 1), Yd ∼ (1, 3, 3̄, 1, 1),

Ye ∼ (1, 1, 1, 3̄, 3). (10)

Introducing GQ × GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

ψ)
† JH,µ, (J

µ
H)† Jψ,µ current products

are induced proportional to one flavor breaking spurion in-
sertion. Here we refer to the spurions listed in Table V that
are bi-linear in Yukawa matricies. As a specific example

consider V(1)
VIII that is a 8 under SU(3)QL . The Lagrangian

7

is given by LSM + L
V

(1)
VIII

where

L
V

(1)
VIII

= −
1

2
(DµVν DµVν −DµVν DνVµ)−

M2
V

2
VνVν

+
(

λVVµ,AT
A Y †

uYu (D
µH)†H + h.c.

)

, (11)

+ gVVµ,A(Q̄LT
AγµQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking
proportional to Y †

d Yd is neglected in what follows. Inte-
grating by parts and the on-shell condition for the vector
field are used to manipulate the derivative to appear as
shown on the second line in Eqn. (11). Integrating out the

field V(1)
VIII using the classical EOM gives

∆L6 ⊃
g2V

4M2
V

[

Q(1)
qq

rssr
−

1

3
Q(1)

qq
rrss

]

+
1

4M2
V

[

((ImλV)
2 − (ReλV )

2)QH✷ + 4(ImλV)
2 QHD

+2i(ReλV )(ImλV )(Y
†
b QbH − YbQ

†
bH)

−2i(ReλV )(ImλV )(Y
†
uQuH − YuQ

†
uH)

]

×
[

Tr[(Y †
u Yu)(Y

†
u Yu)]−

(diag(Y †
u Yu))2

3

]

(12)

−
gV Im[λV ]

2M2
V

Q(1)
Hq
pr

[

(Y †
u Yu)

p
r −

diag(Y †
uYu)

3
δpr

]

+ i
gVRe[λV ]

2M2
V

[

((Y †
u Yu)Y

†
a )

m
i QaH

im
− (Ya(Y

†
u Yu))

i
mQ†

aH
mi

]

− i
gVRe[λV ]

6M2
V

Tr[Y †
uYu]

[

(Y †
a )

m
i QaH

im
− (Ya)

i
mQ†

aH
mi

]

,

where the dummy labels a and b are summed over {u, d}
and {e, d}, respectively. A similar pattern of matchings
onto the class 3 (D2H4), 5 (H3ψ̄ψ) and 7 (H2Dψ̄ψ) op-
erators of the Warsaw basis is present for almost all color
singlet fields with flavor quantum numbers listed in Ta-
bles II and III. The exceptional case is the field VXII whose
non-trivial SU(2)L representation and U(1)Y charge for-
bids a scalar current from being induced at tree level in
this manner.
The pattern of tree level matchings is strongly dictated

by the charges and representations of the UV fields under

7 Recall the flavor adjoint 8 representation is real.

e.g.

U(1) charge

3

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ

µ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γµ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γµ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ

µ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ
µ eR

VXIV 3̄ 2 -1/6 (3̄,1,1) (3̄,1) L̄c
L γ

µ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ

µ dR

VXVI 3̄ 1 -2/3 (1,3̄,1) (1,3) ēR γ
µ dR

VXVII 3̄ 1 -5/3 (3̄,1,1) (1,3) ēR γ
µ uR

VXVIII 3 2 -5/6 (1,1,3) (1,3) ēR γ
µ Qc

L

VXIX 3̄ 1 -2/3 (1,1,3̄) (3,1) L̄L γ
µ QL

VXX 3̄ 3 -2/3 (1,1,3̄) (3,1) L̄LσI γµ QL

TABLE II. Different vector representations that couple to
fermion bi-linears respecting G, without the insertion of a
Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V
(1)
III 1 1 0 (1,1,1) (1,1) H†iDµH

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σIiDµH

V(1)
XXI 1 1 -1 (1,1,1) (1,1) HT iDµH

V(1)
XXII 1 3 -1 (1,1,1) (1,1) HT iσIDµH

TABLE III. Vector representations coupling to currents con-
structed from Higgs fields.

quark and lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton
bi-linears, to quark-lepton bi-linears or have an interac-
tion with the SM Higgs field. We list the corresponding
fields in Table II and Table III. Cases VXII, VXIII have
fields that carry a global lepton number and VXIV − VXX

carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers
do not necessarily lead to lower energy signatures of flavor
violation – outside of the MFV pattern. Similarly, fields
carrying lepton number do not necessarily lead to lower
energy signatures of lepton flavor violation at tree level.5

Fields that carry both lepton and baryon number are po-
tentially more problematic in inducing proton decay, but
such phenomenological constraints are not the focus of this
paper.

5 This was previously noted in Ref. [23] in the lepton number case
for flavor singlet fields.

Case Qi generated at tree level

V(1)
IV Qll, Q

(1,3)
qq , Q(1,3)

lq , QH , QHD, QH✷, QeH , QuH , QdH

V(8)
IV Q(1)

qq , Q
(3)
qq

V(8)
IX Q(1)

qq , Q
(3)
qq

VXX Q(1)
lq , Q(3)

lq

V(1)
XXI QH , QHD, QH✷, QeH , QuH , QdH

V(1)
XXII QH , QHD, QH✷, QeH , QuH , QdH

TABLE IV. Examples of the sets of L6 operators in the SMEFT
obtained by integrating out various massive vectors.

Dimension-6 operator matching

Solving the classical equations of motion (EOM) for the
heavy vector fields and substituting the classical solution
into the Lagrangian results in a direct tree level matching
in terms of a product of currents. We define the currents
as

Ja = {Jµ
ψ , J

µ
H} = {ψ̄ γµ ⊗ ψ, (DµH)† ⊗ Φ}, (6)

and the tree level matching is given by

∆L6 ⊃ −
1

M2
V

(Jµ
a )

†Jµ
b . (7)

Here Φ represents H or H̃ = i σ2 H⋆ and ⊗ indicates a
group product characterized by the SU(2)L representation
of vector fields.6 For a vector field of the form considered
in Tables I, II and III, the current product falls into one
of three types:

• four-fermion: (Jµ
ψ)

† Jψ,µ,

• scalar derivative: (Jµ
H)† JH,µ,

• mixed scalar-fermion: (Jµ
ψ)

† JH,µ, (J
µ
H)† Jψ,µ.

We have systematically examined the profile in terms of
operators obtained in tree level matchings to the Warsaw
basis from the fields listed in Tables I,II and III, finding
the following rule:

Flavour singlet vector fields that do not break GQ ×GL

induce more than one operator at tree level when matching
onto the SMEFT Warsaw basis.

This result is easy to demonstrate. Fields that are SU(3)C
and SU(2)L singlets couple to (quark and lepton) fermion
fields and also the scalar currents, inducing a large number
of operators at tree level. A vector field can be made to
couple to the left-handed doublets by assigning the field
to a 3 of SU(2)L. The scalar and leptonic couplings can
be removed by assigning the field to a 8 of SU(3)C. In

6 This notation is consistent with Ref. [23]. Note also that a further
current of the form DµFµν with F = {B,W,G} is redundant [23].

multiple operators induced when projecting into Warsaw basis

This is a basis-dependent conclusion
Yun Jiang (NBI) On the non-minimal SMEFT 
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Case SM group GQ GL Op Couples to

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq Q̄L �µ QL

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq Q̄L�
I �µ QL

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd d̄R �µ dR

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu ūR �µ uR

VXIII (1, 1)0 (1,1,1) (1,8) Qee ēR �µ eR

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud d̄R �µ uR

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd d̄R �µ Qc
L

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu ūR �µ Qc
L

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe ēR �µ Qc
L

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle L̄c
L �µ eR

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu L̄c
L �µ uR

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld L̄c
L �µ dR

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed ēR �µ dR

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu ēR �µ uR

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq L̄L �µ QL

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

Case SM group GQ GL Op GQ, GL Spurion

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd TA Y †

d Yd

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu TA Y †

uYu

VXIII (1, 1)0 (1,1,1) (1,8) Qee TA Y †
e Ye

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud Y †
d Yu

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd /

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu /

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe /

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle /

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu /

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld /

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed /

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu /

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq /

TABLE VI. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
 )

† J ,µ operators via the relation [2]

(Q̄p
L�

I TA �µ Qr
L)(Q̄

s
L�

I TA �µ Qt
L) =

�1

4
Q

(3)
qq

ptsr
+

3

4
Q

(1)
qq

ptsr
� 1

6
Q

(3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ ⇥ GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table VI. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.

A spurion analysis allows the corrections due to the
nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = �(Yu)
p
r ūR,p Q

r
L H̃† � (Yd)

p
r d̄R,p Q

r
L H†

� (Ye)
p
r ēR,p L

r
L H† + h.c. (9)

GQ⇥GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ⇠ (3, 1, 3̄, 1, 1), Yd ⇠ (1, 3, 3̄, 1, 1),

Ye ⇠ (1, 1, 1, 3̄, 3). (10)

Introducing GQ ⇥ GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

 )
† JH,µ, (J

µ
H)† J ,µ current products

are induced proportional to one flavor breaking spurion
insertion. Here we refer to the spurions listed in Table
VI that are bi-linear in Yukawa matricies. As a specific

example consider V(1)
VIII that is a 8 under SU(3)QL . The

Lagrangian7 is given by LSM + LV(1)
VIII

where

LV(1)
VIII

= �1

2
(DµV⌫ DµV⌫ �DµV⌫ D⌫Vµ)� M2

V
2

V⌫V⌫

+
�
�VVµ,AT

A Y †
uYu (D

µH)†H + h.c.
�
, (11)

+ gVVµ,A(Q̄LT
A�µQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking

7 Recall the flavor adjoint 8 representation is real.
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Case SM group GQ GL Op Couples to

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq Q̄L �µ QL

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq Q̄L�
I �µ QL

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd d̄R �µ dR

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu ūR �µ uR

VXIII (1, 1)0 (1,1,1) (1,8) Qee ēR �µ eR

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud d̄R �µ uR

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd d̄R �µ Qc
L

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu ūR �µ Qc
L

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe ēR �µ Qc
L

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle L̄c
L �µ eR

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu L̄c
L �µ uR

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld L̄c
L �µ dR

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed ēR �µ dR

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu ēR �µ uR

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq L̄L �µ QL

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

Case SM group GQ GL Op GQ, GL Spurion

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd TA Y †

d Yd

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu TA Y †

uYu

VXIII (1, 1)0 (1,1,1) (1,8) Qee TA Y †
e Ye

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud Y †
d Yu

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd /

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu /

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe /

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle /

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu /

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld /

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed /

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu /

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq /

TABLE VI. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
 )

† J ,µ operators via the relation [2]

(Q̄p
L�

I TA �µ Qr
L)(Q̄

s
L�

I TA �µ Qt
L) =

�1

4
Q

(3)
qq

ptsr
+

3

4
Q

(1)
qq

ptsr
� 1

6
Q

(3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ ⇥ GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table VI. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.

A spurion analysis allows the corrections due to the
nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = �(Yu)
p
r ūR,p Q

r
L H̃† � (Yd)

p
r d̄R,p Q

r
L H†

� (Ye)
p
r ēR,p L

r
L H† + h.c. (9)

GQ⇥GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ⇠ (3, 1, 3̄, 1, 1), Yd ⇠ (1, 3, 3̄, 1, 1),

Ye ⇠ (1, 1, 1, 3̄, 3). (10)

Introducing GQ ⇥ GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

 )
† JH,µ, (J

µ
H)† J ,µ current products

are induced proportional to one flavor breaking spurion
insertion. Here we refer to the spurions listed in Table
VI that are bi-linear in Yukawa matricies. As a specific

example consider V(1)
VIII that is a 8 under SU(3)QL . The

Lagrangian7 is given by LSM + LV(1)
VIII

where

LV(1)
VIII

= �1

2
(DµV⌫ DµV⌫ �DµV⌫ D⌫Vµ)� M2

V
2

V⌫V⌫

+
�
�VVµ,AT

A Y †
uYu (D

µH)†H + h.c.
�
, (11)

+ gVVµ,A(Q̄LT
A�µQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking

7 Recall the flavor adjoint 8 representation is real.
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self interactions of the vector are studied for unitarity violation, 
as will be discussed shortly.

A spurion analysis allows the corrections due to the nonzero 
Yukawa matrices of the SM (that break the flavor symmetry in a 
phenomenologically safe MFV pattern) to be systematically stud-
ied. We define the SM Yukawa matrices Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q r

L H̃† − (Yd)
p
r d̄R,p Q r

L H†

− (Ye)
p
r ēR,p Lr

L H† + h.c. (9)

GQ × GL symmetry is restored if we endow the Yukawa matrices 
with the transformation properties under {GQ, GL}

Yu ∼ (3,1, 3̄,1,1), Yd ∼ (1,3, 3̄,1,1),

Ye ∼ (1,1,1, 3̄,3). (10)

Introducing GQ × GL symmetry breaking when the Yu, Yd, Ye ma-
trices take on their SM values gives more operators at tree level 
for fields with flavor quantum numbers. On general grounds, the 
( JµH )† J H,µ current products are induced proportional to two spu-
rions breaking the flavor symmetry, and the ( Jµψ )† J H,µ, ( JµH )† Jψ,µ

current products are induced proportional to one flavor breaking 
spurion insertion. Here we refer to the spurions listed in Table 5
that are bi-linear in Yukawa matrices. As a specific example con-
sider V(1)

VIII that is a 8 under SU(3)QL . The Lagrangian7 is given by 
LSM + LV(1)

VIII
where

LV(1)
VIII

= −1
2

(
DµVν DµVν − DµVν DνVµ)

− M2
V

2
VνVν

+
(
λVVµ,A T A Y †

u Yu (DµH)† H + h.c.
)

, (11)

+ gVVµ,A(Q̄ L T Aγ µ Q L) + · · · .

Note that the largest spurion that restores the flavor symmetry for 
the second line is T A Y †

u Yu and some indices are suppressed in 
Eqn. (11). The additional spurion breaking proportional to Y †

d Yd is 
neglected in what follows. Integrating by parts and the EOM for 
the vector field are used to manipulate the derivative to appear as 
shown on the second line in Eqn. (11). Integrating out the field 
V(1)

VIII using the classical EOM gives

%L6 ⊃ g2
V

4 M2
V

[
Q (1)

qq
rssr

− 1
3

Q (1)
qq

rrss

]

+ 1

4 M2
V

[
((ImλV )2 − (ReλV )2)Q H✷ + 4(ImλV )2 Q H D

+ 2i(ReλV )(ImλV )(Y †
b Q bH − Yb Q †

bH )

− 2i(ReλV )(ImλV )(Y †
u Q uH − Yu Q †

uH )
]

×
[

Tr[(Y †
u Yu)(Y †

u Yu)] − (diag(Y †
u Yu))2

3

]

(12)

− gV Im[λV ]
2M2

V
Q (1)

Hq
pr

[

(Y †
u Yu)

p
r − diag(Y †

u Yu)

3
δpr

]

+ i
gVRe[λV ]

2M2
V

[
((Y †

u Yu)Y †
a)

m
i Q aH

im
− (Ya(Y †

u Yu))i
m Q †

aH
mi

]

− i
gVRe[λV ]

6M2
V

Tr[Y †
u Yu]

[
(Y †

a)
m
i Q aH

im
− (Ya)

i
m Q †

aH
mi

]
,

7 Recall the flavor adjoint 8 representation is real.

where the dummy labels a and b are summed over {u, d} and 
{e, d}, respectively. A similar pattern of matchings onto the class 
3 (D2 H4), 5 (H3ψ̄ψ ) and 7 (H2 Dψ̄ψ ) operators of the Warsaw 
basis is present for almost all color singlet fields with flavor quan-
tum numbers listed in Tables 2 and 3. The exceptional case is 
the field VXII whose non-trivial SU(2)L representation and U(1)Y
charge forbids a scalar current from being induced at tree level in 
this manner.

The pattern of tree level matchings is strongly dictated by 
the charges and representations of the UV fields under SU(3)C ×
SU(2)L × U(1)Y, GQ and GL. We emphasize, data fits to subsets of 
operators in the SMEFT formalism can be justified by appealing 
to UV field content with U(1)Y charges and non-trivial represen-
tations under SM groups when only retaining tree level matching 
contributions. See Table 5 for details on cases that generate only 
one operator at a time.

This conclusion is subject to the following qualifications. First, 
the single operators obtained in tree level matchings to the vectors 
in Tables 2, 3 are limited to ( Jµψ )† Jψ,µ operator forms. Such opera-
tors at LHC contribute to continuum parton production in a fashion 
dictated by the power counting of the theory. Conversely, the pre-
cise measurements made on a scattering through a SM resonance 
(with mass M and width ') parametrically has a '/M suppression, 
compared to the leading resonant behavior, when considering the 
interference with ( Jµψ )† Jψ,µ operators.

Second, as yt ≃ 1, a flavor symmetry spurion breaking propor-
tional to only powers of Yu can induce operators of class 3, 5 and 
7 without significant numerical suppression. This makes it difficult 
to justify “one at a time” data fits to ( Jµψ )† Jψ,µ SMEFT operators 
with up quark field content (consistent with our assumptions). On 
the other hand, one at a time data fits to ( Jµψ )† Jψ,µ operators that 
only have leptonic or down quark field content can be potentially 
justified. In these cases the induced scalar currents proportional 
to MFV like flavor breaking spurious are numerically suppressed 
compared to pure up quark spurions by at least yb/yt ∼ 10−2.

Finally, we also note that we never obtain only one operator 
in such a tree level matching that involves the Higgs field, in the 
cases of massive vector UV field content considered.

3.1.2. Arguments against orphaned vectors
The vector fields listed in Tables 1, 2 and 3 inducing a single L6

SMEFT operator at tree level, carry at least one non-trivial repre-
sentation under the SM gauge symmetry and flavor symmetries.8

Non-trivial representations and U(1)Y charges reduce the interac-
tions for SM particles with the new sector, which consequently 
minimizes the IR SMEFT operator profile. However, such fields in 
general do not indicate a stand alone UV complete scenario (where 
the vector could be an “orphan”) for the following reasons.

(1) Landau poles and triviality. The β function of the cou-
pling of the vector fields to the fermion bi-linears (denoted gV in 
Eqn. (11)) is determined by renormalizing the fermion fields and 
vector field two point functions, and subsequently extracting the β
function for gV . We relate the bare (0) and renormalized (r) fields 
and couplings as

V (0)
µ =

√
Z V V (r)

µ , g(0)
V = Z gV g(r)

V µϵ, (13)

ψ
(0)
i =

√
Zψi ψ

(r)
i , (14)

where Zx = 1 + δZx for x = {V , gV , ψ̄, ψ}. We use a renormaliza-
tion scheme employing MS subtraction and d = 4 − 2ϵ dimensions 

8 In all cases but one, multiple non-trivial representations are present. The one 
exceptional case is VXIII which is only an 8 under SU(3)eR .

• In the limit of zero Yukawa matrices
The	infrared	SMEFT	operator	profile	can	be	
reduced	to	one	operator	in	the	Warsaw	basis.

Higgs-Yukawa	interac?ons
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Case SM group GQ GL Op Couples to

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq Q̄L �µ QL

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq Q̄L�
I �µ QL

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd d̄R �µ dR

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu ūR �µ uR

VXIII (1, 1)0 (1,1,1) (1,8) Qee ēR �µ eR

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud d̄R �µ uR

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd d̄R �µ Qc
L

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu ūR �µ Qc
L

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe ēR �µ Qc
L

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle L̄c
L �µ eR

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu L̄c
L �µ uR

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld L̄c
L �µ dR

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed ēR �µ dR

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu ēR �µ uR

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq L̄L �µ QL

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

Case SM group GQ GL Op GQ, GL Spurion

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd TA Y †

d Yd

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu TA Y †

uYu

VXIII (1, 1)0 (1,1,1) (1,8) Qee TA Y †
e Ye

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud Y †
d Yu

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd /

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu /

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe /

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle /

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu /

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld /

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed /

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu /

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq /

TABLE VI. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
 )

† J ,µ operators via the relation [2]

(Q̄p
L�

I TA �µ Qr
L)(Q̄

s
L�

I TA �µ Qt
L) =

�1

4
Q

(3)
qq

ptsr
+

3

4
Q

(1)
qq

ptsr
� 1

6
Q

(3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ ⇥ GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table VI. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.

A spurion analysis allows the corrections due to the
nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = �(Yu)
p
r ūR,p Q

r
L H̃† � (Yd)

p
r d̄R,p Q

r
L H†

� (Ye)
p
r ēR,p L

r
L H† + h.c. (9)

GQ⇥GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ⇠ (3, 1, 3̄, 1, 1), Yd ⇠ (1, 3, 3̄, 1, 1),

Ye ⇠ (1, 1, 1, 3̄, 3). (10)

Introducing GQ ⇥ GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

 )
† JH,µ, (J

µ
H)† J ,µ current products

are induced proportional to one flavor breaking spurion
insertion. Here we refer to the spurions listed in Table
VI that are bi-linear in Yukawa matricies. As a specific

example consider V(1)
VIII that is a 8 under SU(3)QL . The

Lagrangian7 is given by LSM + LV(1)
VIII

where

LV(1)
VIII

= �1

2
(DµV⌫ DµV⌫ �DµV⌫ D⌫Vµ)� M2

V
2

V⌫V⌫

+
�
�VVµ,AT

A Y †
uYu (D

µH)†H + h.c.
�
, (11)

+ gVVµ,A(Q̄LT
A�µQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking

7 Recall the flavor adjoint 8 representation is real.
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Case SU(3)C SU(2)L U(1)Y Op GQ, GL Spurion

V(1)
VIII 1 1 0 Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
IX 1 3 0 Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

VXIX 3̄ 1 -2/3 Q(1)
lq /

V(3̄,6)
X 3̄, 6 2 -1/6 Q(1)

qd /

V(3̄,6)
XI 3̄, 6 2 5/6 Q(1)

qu /

VXVIII 3 2 -5/6 Qqe /

VXII 1 2 3/2 Qle /

VXIV 3̄ 2 -1/6 Qlu /

VXV 3̄ 2 5/6 Qld /

V(1)
V 1 1 0 Qdd TA Y †

d Yd

V(1)
VI 1 1 0 Quu TA Y †

uYu

V(1)
VII 1 1 -1 Q(1)

ud Y †
d Yu

VXIII 1 1 0 Qee TA Y †
e Ye

VXVI 3̄ 1 -2/3 Qed /

VXVII 3̄ 1 -5/3 Qeu /

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
 )

† J ,µ operators via the relation [2]

(Q̄p
L�

I TA �µ Qr
L)(Q̄

s
L�

I TA �µ Qt
L) =

�1

4
Q

(3)
qq

ptsr
+

3

4
Q

(1)
qq

ptsr
� 1

6
Q

(3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ ⇥ GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table V. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.

A spurion analysis allows the corrections due to the
nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = �(Yu)
p
r ūR,p Q

r
L H̃† � (Yd)

p
r d̄R,p Q

r
L H†

� (Ye)
p
r ēR,p L

r
L H† + h.c. (9)

GQ⇥GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ⇠ (3, 1, 3̄, 1, 1), Yd ⇠ (1, 3, 3̄, 1, 1),

Ye ⇠ (1, 1, 1, 3̄, 3). (10)

Introducing GQ ⇥ GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

 )
† JH,µ, (J

µ
H)† J ,µ current products

are induced proportional to one flavor breaking spurion in-
sertion. Here we refer to the spurions listed in Table V that
are bi-linear in Yukawa matricies. As a specific example

consider V(1)
VIII that is a 8 under SU(3)QL . The Lagrangian

7

is given by LSM + LV(1)
VIII

where

LV(1)
VIII

= �1

2
(DµV⌫ DµV⌫ �DµV⌫ D⌫Vµ)� M2

V
2

V⌫V⌫

+
�
�VVµ,AT

A Y †
uYu (D

µH)†H + h.c.
�
, (11)

+ gVVµ,A(Q̄LT
A�µQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking
proportional to Y †

d Yd is neglected in what follows. Inte-
grating by parts and the on-shell condition for the vector
field are used to manipulate the derivative to appear as
shown on the second line in Eqn. (11). Integrating out the

field V(1)
VIII using the classical EOM gives

�L6 � g2V
4M2

V


Q

(1)
qq

rssr
� 1

3
Q

(1)
qq

rrss

�

+
1

4M2
V

h
((Im�V)

2 � (Re�V)
2)QH2 + 4(Im�V)

2 QHD

+2i(Re�V)(Im�V)(Y
†
b QbH � YbQ

†
bH)

�2i(Re�V)(Im�V)(Y
†
uQuH � YuQ

†
uH)

i

⇥

Tr[(Y †

uYu)(Y
†
uYu)]� (diag(Y †

uYu))2

3

�
(12)

� gV Im[�V ]

2M2
V

Q
(1)
Hq
pr


(Y †

uYu)
p
r �

diag(Y †
uYu)

3
�pr

�

+ i
gVRe[�V ]

2M2
V


((Y †

uYu)Y
†
a )

m
i QaH

im
� (Ya(Y

†
uYu))

i
mQ†

aH
mi

�

� i
gVRe[�V ]

6M2
V

Tr[Y †
uYu]


(Y †

a )
m
i QaH

im
� (Ya)

i
mQ†

aH
mi

�
,

where the dummy labels a and b are summed over {u, d}
and {e, d}, respectively. A similar pattern of matchings
onto the class 3 (D2H4), 5 (H3 ̄ ) and 7 (H2D ̄ ) oper-
ators of the Warsaw basis is present for almost all color sin-
glet fields with flavor quantum numbers listed in Tables II
and III. The exceptional case is the field VXII whose non-
trivial SU(2)L representation and U(1)Y charge forbids a
scalar current from being induced at tree level in this man-
ner.

The pattern of tree level matchings is strongly dictated
by the charges and representations of the UV fields under

7 Recall the flavor adjoint 8 representation is real.

To	restore	the	symmetry,	the	Yukawa	matrices

4

Case SM group GQ GL Op Couples to

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq Q̄L �µ QL

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq Q̄L�
I �µ QL

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd d̄R �µ dR

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu ūR �µ uR

VXIII (1, 1)0 (1,1,1) (1,8) Qee ēR �µ eR

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud d̄R �µ uR

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd d̄R �µ Qc
L

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu ūR �µ Qc
L

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe ēR �µ Qc
L

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle L̄c
L �µ eR

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu L̄c
L �µ uR

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld L̄c
L �µ dR

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed ēR �µ dR

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu ēR �µ uR

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq L̄L �µ QL

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

Case SM group GQ GL Op GQ, GL Spurion

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd TA Y †

d Yd

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu TA Y †

uYu

VXIII (1, 1)0 (1,1,1) (1,8) Qee TA Y †
e Ye

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud Y †
d Yu

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd /

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu /

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe /

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle /

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu /

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld /

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed /

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu /

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq /

TABLE VI. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
 )

† J ,µ operators via the relation [2]

(Q̄p
L�

I TA �µ Qr
L)(Q̄

s
L�

I TA �µ Qt
L) =

�1

4
Q

(3)
qq

ptsr
+

3

4
Q

(1)
qq

ptsr
� 1

6
Q

(3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ ⇥ GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table VI. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.

A spurion analysis allows the corrections due to the
nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = �(Yu)
p
r ūR,p Q

r
L H̃† � (Yd)

p
r d̄R,p Q

r
L H†

� (Ye)
p
r ēR,p L

r
L H† + h.c. (9)

GQ⇥GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ⇠ (3, 1, 3̄, 1, 1), Yd ⇠ (1, 3, 3̄, 1, 1),

Ye ⇠ (1, 1, 1, 3̄, 3). (10)

Introducing GQ ⇥ GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

 )
† JH,µ, (J

µ
H)† J ,µ current products

are induced proportional to one flavor breaking spurion
insertion. Here we refer to the spurions listed in Table
VI that are bi-linear in Yukawa matricies. As a specific

example consider V(1)
VIII that is a 8 under SU(3)QL . The

Lagrangian7 is given by LSM + LV(1)
VIII

where

LV(1)
VIII

= �1

2
(DµV⌫ DµV⌫ �DµV⌫ D⌫Vµ)� M2

V
2

V⌫V⌫

+
�
�VVµ,AT

A Y †
uYu (D

µH)†H + h.c.
�
, (11)

+ gVVµ,A(Q̄LT
A�µQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking

7 Recall the flavor adjoint 8 representation is real.

Trea?ng	them	as	spurion	fields	allows	addi?onal	
interac?ons	with	V	and	SM.	Introducing	flavor	
symmetry	breaking,	when	the	they	take	the	SM	
values,	induce	more	operators.
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self interactions of the vector are studied for unitarity violation, 
as will be discussed shortly.

A spurion analysis allows the corrections due to the nonzero 
Yukawa matrices of the SM (that break the flavor symmetry in a 
phenomenologically safe MFV pattern) to be systematically stud-
ied. We define the SM Yukawa matrices Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q r

L H̃† − (Yd)
p
r d̄R,p Q r

L H†

− (Ye)
p
r ēR,p Lr

L H† + h.c. (9)

GQ × GL symmetry is restored if we endow the Yukawa matrices 
with the transformation properties under {GQ, GL}

Yu ∼ (3,1, 3̄,1,1), Yd ∼ (1,3, 3̄,1,1),

Ye ∼ (1,1,1, 3̄,3). (10)

Introducing GQ × GL symmetry breaking when the Yu, Yd, Ye ma-
trices take on their SM values gives more operators at tree level 
for fields with flavor quantum numbers. On general grounds, the 
( JµH )† J H,µ current products are induced proportional to two spu-
rions breaking the flavor symmetry, and the ( Jµψ )† J H,µ, ( JµH )† Jψ,µ

current products are induced proportional to one flavor breaking 
spurion insertion. Here we refer to the spurions listed in Table 5
that are bi-linear in Yukawa matrices. As a specific example con-
sider V(1)

VIII that is a 8 under SU(3)QL . The Lagrangian7 is given by 
LSM + LV(1)

VIII
where

LV(1)
VIII

= −1
2

(
DµVν DµVν − DµVν DνVµ)

− M2
V

2
VνVν

+
(
λVVµ,A T A Y †

u Yu (DµH)† H + h.c.
)

, (11)

+ gVVµ,A(Q̄ L T Aγ µ Q L) + · · · .

Note that the largest spurion that restores the flavor symmetry for 
the second line is T A Y †

u Yu and some indices are suppressed in 
Eqn. (11). The additional spurion breaking proportional to Y †

d Yd is 
neglected in what follows. Integrating by parts and the EOM for 
the vector field are used to manipulate the derivative to appear as 
shown on the second line in Eqn. (11). Integrating out the field 
V(1)

VIII using the classical EOM gives

%L6 ⊃ g2
V

4 M2
V

[
Q (1)

qq
rssr

− 1
3

Q (1)
qq

rrss

]

+ 1

4 M2
V

[
((ImλV )2 − (ReλV )2)Q H✷ + 4(ImλV )2 Q H D

+ 2i(ReλV )(ImλV )(Y †
b Q bH − Yb Q †

bH )

− 2i(ReλV )(ImλV )(Y †
u Q uH − Yu Q †

uH )
]

×
[

Tr[(Y †
u Yu)(Y †

u Yu)] − (diag(Y †
u Yu))2

3

]

(12)

− gV Im[λV ]
2M2

V
Q (1)

Hq
pr

[

(Y †
u Yu)

p
r − diag(Y †

u Yu)

3
δpr

]

+ i
gVRe[λV ]

2M2
V

[
((Y †

u Yu)Y †
a)

m
i Q aH

im
− (Ya(Y †

u Yu))i
m Q †

aH
mi

]

− i
gVRe[λV ]

6M2
V

Tr[Y †
u Yu]

[
(Y †

a)
m
i Q aH

im
− (Ya)

i
m Q †

aH
mi

]
,

7 Recall the flavor adjoint 8 representation is real.

where the dummy labels a and b are summed over {u, d} and 
{e, d}, respectively. A similar pattern of matchings onto the class 
3 (D2 H4), 5 (H3ψ̄ψ ) and 7 (H2 Dψ̄ψ ) operators of the Warsaw 
basis is present for almost all color singlet fields with flavor quan-
tum numbers listed in Tables 2 and 3. The exceptional case is 
the field VXII whose non-trivial SU(2)L representation and U(1)Y
charge forbids a scalar current from being induced at tree level in 
this manner.

The pattern of tree level matchings is strongly dictated by 
the charges and representations of the UV fields under SU(3)C ×
SU(2)L × U(1)Y, GQ and GL. We emphasize, data fits to subsets of 
operators in the SMEFT formalism can be justified by appealing 
to UV field content with U(1)Y charges and non-trivial represen-
tations under SM groups when only retaining tree level matching 
contributions. See Table 5 for details on cases that generate only 
one operator at a time.

This conclusion is subject to the following qualifications. First, 
the single operators obtained in tree level matchings to the vectors 
in Tables 2, 3 are limited to ( Jµψ )† Jψ,µ operator forms. Such opera-
tors at LHC contribute to continuum parton production in a fashion 
dictated by the power counting of the theory. Conversely, the pre-
cise measurements made on a scattering through a SM resonance 
(with mass M and width ') parametrically has a '/M suppression, 
compared to the leading resonant behavior, when considering the 
interference with ( Jµψ )† Jψ,µ operators.

Second, as yt ≃ 1, a flavor symmetry spurion breaking propor-
tional to only powers of Yu can induce operators of class 3, 5 and 
7 without significant numerical suppression. This makes it difficult 
to justify “one at a time” data fits to ( Jµψ )† Jψ,µ SMEFT operators 
with up quark field content (consistent with our assumptions). On 
the other hand, one at a time data fits to ( Jµψ )† Jψ,µ operators that 
only have leptonic or down quark field content can be potentially 
justified. In these cases the induced scalar currents proportional 
to MFV like flavor breaking spurious are numerically suppressed 
compared to pure up quark spurions by at least yb/yt ∼ 10−2.

Finally, we also note that we never obtain only one operator 
in such a tree level matching that involves the Higgs field, in the 
cases of massive vector UV field content considered.

3.1.2. Arguments against orphaned vectors
The vector fields listed in Tables 1, 2 and 3 inducing a single L6

SMEFT operator at tree level, carry at least one non-trivial repre-
sentation under the SM gauge symmetry and flavor symmetries.8

Non-trivial representations and U(1)Y charges reduce the interac-
tions for SM particles with the new sector, which consequently 
minimizes the IR SMEFT operator profile. However, such fields in 
general do not indicate a stand alone UV complete scenario (where 
the vector could be an “orphan”) for the following reasons.

(1) Landau poles and triviality. The β function of the cou-
pling of the vector fields to the fermion bi-linears (denoted gV in 
Eqn. (11)) is determined by renormalizing the fermion fields and 
vector field two point functions, and subsequently extracting the β
function for gV . We relate the bare (0) and renormalized (r) fields 
and couplings as

V (0)
µ =

√
Z V V (r)

µ , g(0)
V = Z gV g(r)

V µϵ, (13)

ψ
(0)
i =

√
Zψi ψ

(r)
i , (14)

where Zx = 1 + δZx for x = {V , gV , ψ̄, ψ}. We use a renormaliza-
tion scheme employing MS subtraction and d = 4 − 2ϵ dimensions 

8 In all cases but one, multiple non-trivial representations are present. The one 
exceptional case is VXIII which is only an 8 under SU(3)eR .

• In the limit of zero Yukawa matrices
The	infrared	SMEFT	operator	profile	can	be	
reduced	to	one	operator	in	the	Warsaw	basis.

Higgs-Yukawa	interac?ons
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An	example:	color-singlet,	flavor-octet

4

Case Op U(1)Y GQ, GL Spurion

V(1)
VIII Q(1)

qq 0 TA Y †
uYu, T

A Y †
d Yd

V(1)
IX Q(1)

qq 0 TA Y †
uYu, TA Y †

d Yd

VXIX Q(1)
lq -2/3 /

V(3̄,6)
X Q(1)

qd -1/6 /

V(3̄,6)
XI Q(1)

qu 5/6 /

VXVIII Qqe -5/6 /

VXII Qle 3/2 /

VXIV Qlu -1/6 /

VXV Qld 5/6 /

V(1)
V Qdd 0 TA Y †

d Yd

V(1)
VI Quu 0 TA Y †

uYu

V(1)
VII Q(1)

ud -1 Y †
d Yu

VXIII Qee 0 TA Y †
e Ye

VXVI Qed -2/3 /

VXVII Qeu -5/3 /

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

ψ)
† Jψ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
ψ)

† Jψ,µ operators via the relation [2]

(Q̄p
Lσ

I TA γµ Qr
L)(Q̄

s
Lσ

I TA γµ Qt
L) =

−
1

4
Q(3)

qq
ptsr

+
3

4
Q(1)

qq
ptsr

−
1

6
Q(3)

qq
prst

, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ × GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table V. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.
A spurion analysis allows the corrections due to the

nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q

r
L H̃† − (Yd)

p
r d̄R,p Q

r
LH†

− (Ye)
p
r ēR,pL

r
LH† + h.c. (9)

GQ×GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ∼ (3, 1, 3̄, 1, 1), Yd ∼ (1, 3, 3̄, 1, 1),

Ye ∼ (1, 1, 1, 3̄, 3). (10)

Introducing GQ × GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

ψ)
† JH,µ, (J

µ
H)† Jψ,µ current products

are induced proportional to one flavor breaking spurion in-
sertion. Here we refer to the spurions listed in Table V that
are bi-linear in Yukawa matricies. As a specific example

consider V(1)
VIII that is a 8 under SU(3)QL . The Lagrangian

7

is given by LSM + L
V

(1)
VIII

where

L
V

(1)
VIII

= −
1

2
(DµVν DµVν −DµVν DνVµ)−

M2
V

2
VνVν

+
(

λVVµ,AT
A Y †

uYu (D
µH)†H + h.c.

)

, (11)

+ gVVµ,A(Q̄LT
AγµQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking
proportional to Y †

d Yd is neglected in what follows. Inte-
grating by parts and the on-shell condition for the vector
field are used to manipulate the derivative to appear as
shown on the second line in Eqn. (11). Integrating out the

field V(1)
VIII using the classical EOM gives

∆L6 ⊃
g2V

4M2
V

[

Q(1)
qq

rssr
−

1

3
Q(1)

qq
rrss

]

+
1

4M2
V

[

((ImλV)
2 − (ReλV )

2)QH✷ + 4(ImλV)
2 QHD

+2i(ReλV )(ImλV )(Y
†
b QbH − YbQ

†
bH)

−2i(ReλV )(ImλV )(Y
†
uQuH − YuQ

†
uH)

]

×
[

Tr[(Y †
u Yu)(Y

†
u Yu)]−

(diag(Y †
u Yu))2

3

]

(12)

−
gV Im[λV ]

2M2
V

Q(1)
Hq
pr

[

(Y †
u Yu)

p
r −

diag(Y †
uYu)

3
δpr

]

+ i
gVRe[λV ]

2M2
V

[

((Y †
u Yu)Y

†
a )

m
i QaH

im
− (Ya(Y

†
u Yu))

i
mQ†

aH
mi

]

− i
gVRe[λV ]

6M2
V

Tr[Y †
uYu]

[

(Y †
a )

m
i QaH

im
− (Ya)

i
mQ†

aH
mi

]

,

where the dummy labels a and b are summed over {u, d}
and {e, d}, respectively. A similar pattern of matchings
onto the class 3 (D2H4), 5 (H3ψ̄ψ) and 7 (H2Dψ̄ψ) op-
erators of the Warsaw basis is present for almost all color
singlet fields with flavor quantum numbers listed in Ta-
bles II and III. The exceptional case is the field VXII whose
non-trivial SU(2)L representation and U(1)Y charge for-
bids a scalar current from being induced at tree level in
this manner.
The pattern of tree level matchings is strongly dictated

by the charges and representations of the UV fields under

7 Recall the flavor adjoint 8 representation is real.
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Case Op U(1)Y GQ, GL Spurion

V(1)
VIII Q(1)

qq 0 TA Y †
uYu, T

A Y †
d Yd

V(1)
IX Q(1)

qq 0 TA Y †
uYu, TA Y †

d Yd

VXIX Q(1)
lq -2/3 /

V(3̄,6)
X Q(1)

qd -1/6 /

V(3̄,6)
XI Q(1)

qu 5/6 /

VXVIII Qqe -5/6 /

VXII Qle 3/2 /

VXIV Qlu -1/6 /

VXV Qld 5/6 /

V(1)
V Qdd 0 TA Y †

d Yd

V(1)
VI Quu 0 TA Y †

uYu

V(1)
VII Q(1)

ud -1 Y †
d Yu

VXIII Qee 0 TA Y †
e Ye

VXVI Qed -2/3 /

VXVII Qeu -5/3 /

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

ψ)
† Jψ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
ψ)

† Jψ,µ operators via the relation [2]

(Q̄p
Lσ

I TA γµ Qr
L)(Q̄

s
Lσ

I TA γµ Qt
L) =

−
1

4
Q(3)

qq
ptsr

+
3

4
Q(1)

qq
ptsr

−
1

6
Q(3)

qq
prst

, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ × GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table V. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.
A spurion analysis allows the corrections due to the

nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q

r
L H̃† − (Yd)

p
r d̄R,p Q

r
LH†

− (Ye)
p
r ēR,pL

r
LH† + h.c. (9)

GQ×GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ∼ (3, 1, 3̄, 1, 1), Yd ∼ (1, 3, 3̄, 1, 1),

Ye ∼ (1, 1, 1, 3̄, 3). (10)

Introducing GQ × GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

ψ)
† JH,µ, (J

µ
H)† Jψ,µ current products

are induced proportional to one flavor breaking spurion in-
sertion. Here we refer to the spurions listed in Table V that
are bi-linear in Yukawa matricies. As a specific example

consider V(1)
VIII that is a 8 under SU(3)QL . The Lagrangian

7

is given by LSM + L
V

(1)
VIII

where

L
V

(1)
VIII

= −
1

2
(DµVν DµVν −DµVν DνVµ)−

M2
V

2
VνVν

+
(

λVVµ,AT
A Y †

uYu (D
µH)†H + h.c.

)

, (11)

+ gVVµ,A(Q̄LT
AγµQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking
proportional to Y †

d Yd is neglected in what follows. Inte-
grating by parts and the on-shell condition for the vector
field are used to manipulate the derivative to appear as
shown on the second line in Eqn. (11). Integrating out the

field V(1)
VIII using the classical EOM gives

∆L6 ⊃
g2V

4M2
V

[

Q(1)
qq

rssr
−

1

3
Q(1)

qq
rrss

]

+
1

4M2
V

[

((ImλV)
2 − (ReλV )

2)QH✷ + 4(ImλV)
2 QHD

+2i(ReλV )(ImλV )(Y
†
b QbH − YbQ

†
bH)

−2i(ReλV )(ImλV )(Y
†
uQuH − YuQ

†
uH)

]

×
[

Tr[(Y †
u Yu)(Y

†
u Yu)]−

(diag(Y †
u Yu))2

3

]

(12)

−
gV Im[λV ]

2M2
V

Q(1)
Hq
pr

[

(Y †
u Yu)

p
r −

diag(Y †
uYu)

3
δpr

]

+ i
gVRe[λV ]

2M2
V

[

((Y †
u Yu)Y

†
a )

m
i QaH

im
− (Ya(Y

†
u Yu))

i
mQ†

aH
mi

]

− i
gVRe[λV ]

6M2
V

Tr[Y †
uYu]

[

(Y †
a )

m
i QaH

im
− (Ya)

i
mQ†

aH
mi

]

,

where the dummy labels a and b are summed over {u, d}
and {e, d}, respectively. A similar pattern of matchings
onto the class 3 (D2H4), 5 (H3ψ̄ψ) and 7 (H2Dψ̄ψ) op-
erators of the Warsaw basis is present for almost all color
singlet fields with flavor quantum numbers listed in Ta-
bles II and III. The exceptional case is the field VXII whose
non-trivial SU(2)L representation and U(1)Y charge for-
bids a scalar current from being induced at tree level in
this manner.
The pattern of tree level matchings is strongly dictated

by the charges and representations of the UV fields under

7 Recall the flavor adjoint 8 representation is real.

a bunch of operators generated!

integra(ng	out	the	heavy	vector
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Case SM group GQ GL Op Couples to

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq Q̄L �µ QL

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq Q̄L�
I �µ QL

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd d̄R �µ dR

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu ūR �µ uR

VXIII (1, 1)0 (1,1,1) (1,8) Qee ēR �µ eR

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud d̄R �µ uR

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd d̄R �µ Qc
L

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu ūR �µ Qc
L

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe ēR �µ Qc
L

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle L̄c
L �µ eR

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu L̄c
L �µ uR

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld L̄c
L �µ dR

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed ēR �µ dR

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu ēR �µ uR

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq L̄L �µ QL

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

Case SM group GQ GL Op GQ, GL Spurion

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd TA Y †

d Yd

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu TA Y †

uYu

VXIII (1, 1)0 (1,1,1) (1,8) Qee TA Y †
e Ye

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud Y †
d Yu

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd /

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu /

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe /

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle /

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu /

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld /

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed /

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu /

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq /

TABLE VI. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
 )

† J ,µ operators via the relation [2]

(Q̄p
L�

I TA �µ Qr
L)(Q̄

s
L�

I TA �µ Qt
L) =

�1

4
Q

(3)
qq

ptsr
+

3

4
Q

(1)
qq

ptsr
� 1

6
Q

(3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ ⇥ GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table VI. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.

A spurion analysis allows the corrections due to the
nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = �(Yu)
p
r ūR,p Q

r
L H̃† � (Yd)

p
r d̄R,p Q

r
L H†

� (Ye)
p
r ēR,p L

r
L H† + h.c. (9)

GQ⇥GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ⇠ (3, 1, 3̄, 1, 1), Yd ⇠ (1, 3, 3̄, 1, 1),

Ye ⇠ (1, 1, 1, 3̄, 3). (10)

Introducing GQ ⇥ GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

 )
† JH,µ, (J

µ
H)† J ,µ current products

are induced proportional to one flavor breaking spurion
insertion. Here we refer to the spurions listed in Table
VI that are bi-linear in Yukawa matricies. As a specific

example consider V(1)
VIII that is a 8 under SU(3)QL . The

Lagrangian7 is given by LSM + LV(1)
VIII

where

LV(1)
VIII

= �1

2
(DµV⌫ DµV⌫ �DµV⌫ D⌫Vµ)� M2

V
2

V⌫V⌫

+
�
�VVµ,AT

A Y †
uYu (D

µH)†H + h.c.
�
, (11)

+ gVVµ,A(Q̄LT
A�µQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking

7 Recall the flavor adjoint 8 representation is real.

4

Case SM group GQ GL Op Couples to

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq Q̄L �µ QL

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq Q̄L�
I �µ QL

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd d̄R �µ dR

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu ūR �µ uR

VXIII (1, 1)0 (1,1,1) (1,8) Qee ēR �µ eR

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud d̄R �µ uR

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd d̄R �µ Qc
L

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu ūR �µ Qc
L

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe ēR �µ Qc
L

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle L̄c
L �µ eR

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu L̄c
L �µ uR

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld L̄c
L �µ dR

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed ēR �µ dR

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu ēR �µ uR

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq L̄L �µ QL

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

Case SM group GQ GL Op GQ, GL Spurion

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd TA Y †

d Yd

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu TA Y †

uYu

VXIII (1, 1)0 (1,1,1) (1,8) Qee TA Y †
e Ye

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud Y †
d Yu

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd /

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu /

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe /

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle /

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu /

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld /

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed /

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu /

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq /

TABLE VI. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
 )

† J ,µ operators via the relation [2]

(Q̄p
L�

I TA �µ Qr
L)(Q̄

s
L�

I TA �µ Qt
L) =

�1

4
Q

(3)
qq

ptsr
+

3

4
Q

(1)
qq

ptsr
� 1

6
Q

(3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ ⇥ GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table VI. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.

A spurion analysis allows the corrections due to the
nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = �(Yu)
p
r ūR,p Q

r
L H̃† � (Yd)

p
r d̄R,p Q

r
L H†

� (Ye)
p
r ēR,p L

r
L H† + h.c. (9)

GQ⇥GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ⇠ (3, 1, 3̄, 1, 1), Yd ⇠ (1, 3, 3̄, 1, 1),

Ye ⇠ (1, 1, 1, 3̄, 3). (10)

Introducing GQ ⇥ GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

 )
† JH,µ, (J

µ
H)† J ,µ current products

are induced proportional to one flavor breaking spurion
insertion. Here we refer to the spurions listed in Table
VI that are bi-linear in Yukawa matricies. As a specific

example consider V(1)
VIII that is a 8 under SU(3)QL . The

Lagrangian7 is given by LSM + LV(1)
VIII

where

LV(1)
VIII

= �1

2
(DµV⌫ DµV⌫ �DµV⌫ D⌫Vµ)� M2

V
2

V⌫V⌫

+
�
�VVµ,AT

A Y †
uYu (D

µH)†H + h.c.
�
, (11)

+ gVVµ,A(Q̄LT
A�µQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking

7 Recall the flavor adjoint 8 representation is real.
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An	example:	color-singlet,	flavor-octet

4

Case Op U(1)Y GQ, GL Spurion

V(1)
VIII Q(1)

qq 0 TA Y †
uYu, T

A Y †
d Yd

V(1)
IX Q(1)

qq 0 TA Y †
uYu, TA Y †

d Yd

VXIX Q(1)
lq -2/3 /

V(3̄,6)
X Q(1)

qd -1/6 /

V(3̄,6)
XI Q(1)

qu 5/6 /

VXVIII Qqe -5/6 /

VXII Qle 3/2 /

VXIV Qlu -1/6 /

VXV Qld 5/6 /

V(1)
V Qdd 0 TA Y †

d Yd

V(1)
VI Quu 0 TA Y †

uYu

V(1)
VII Q(1)

ud -1 Y †
d Yu

VXIII Qee 0 TA Y †
e Ye

VXVI Qed -2/3 /

VXVII Qeu -5/3 /

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

ψ)
† Jψ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
ψ)

† Jψ,µ operators via the relation [2]

(Q̄p
Lσ

I TA γµ Qr
L)(Q̄

s
Lσ

I TA γµ Qt
L) =

−
1

4
Q(3)

qq
ptsr

+
3

4
Q(1)

qq
ptsr

−
1

6
Q(3)

qq
prst

, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ × GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table V. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.
A spurion analysis allows the corrections due to the

nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q

r
L H̃† − (Yd)

p
r d̄R,p Q

r
LH†

− (Ye)
p
r ēR,pL

r
LH† + h.c. (9)

GQ×GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ∼ (3, 1, 3̄, 1, 1), Yd ∼ (1, 3, 3̄, 1, 1),

Ye ∼ (1, 1, 1, 3̄, 3). (10)

Introducing GQ × GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

ψ)
† JH,µ, (J

µ
H)† Jψ,µ current products

are induced proportional to one flavor breaking spurion in-
sertion. Here we refer to the spurions listed in Table V that
are bi-linear in Yukawa matricies. As a specific example

consider V(1)
VIII that is a 8 under SU(3)QL . The Lagrangian

7

is given by LSM + L
V

(1)
VIII

where

L
V

(1)
VIII

= −
1

2
(DµVν DµVν −DµVν DνVµ)−

M2
V

2
VνVν

+
(

λVVµ,AT
A Y †

uYu (D
µH)†H + h.c.

)

, (11)

+ gVVµ,A(Q̄LT
AγµQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking
proportional to Y †

d Yd is neglected in what follows. Inte-
grating by parts and the on-shell condition for the vector
field are used to manipulate the derivative to appear as
shown on the second line in Eqn. (11). Integrating out the

field V(1)
VIII using the classical EOM gives

∆L6 ⊃
g2V

4M2
V

[

Q(1)
qq

rssr
−

1

3
Q(1)

qq
rrss

]

+
1

4M2
V

[

((ImλV)
2 − (ReλV )

2)QH✷ + 4(ImλV)
2 QHD

+2i(ReλV )(ImλV )(Y
†
b QbH − YbQ

†
bH)

−2i(ReλV )(ImλV )(Y
†
uQuH − YuQ

†
uH)

]

×
[

Tr[(Y †
u Yu)(Y

†
u Yu)]−

(diag(Y †
u Yu))2

3

]

(12)

−
gV Im[λV ]

2M2
V

Q(1)
Hq
pr

[

(Y †
u Yu)

p
r −

diag(Y †
uYu)

3
δpr

]

+ i
gVRe[λV ]

2M2
V

[

((Y †
u Yu)Y

†
a )

m
i QaH

im
− (Ya(Y

†
u Yu))

i
mQ†

aH
mi

]

− i
gVRe[λV ]

6M2
V

Tr[Y †
uYu]

[

(Y †
a )

m
i QaH

im
− (Ya)

i
mQ†

aH
mi

]

,

where the dummy labels a and b are summed over {u, d}
and {e, d}, respectively. A similar pattern of matchings
onto the class 3 (D2H4), 5 (H3ψ̄ψ) and 7 (H2Dψ̄ψ) op-
erators of the Warsaw basis is present for almost all color
singlet fields with flavor quantum numbers listed in Ta-
bles II and III. The exceptional case is the field VXII whose
non-trivial SU(2)L representation and U(1)Y charge for-
bids a scalar current from being induced at tree level in
this manner.
The pattern of tree level matchings is strongly dictated

by the charges and representations of the UV fields under

7 Recall the flavor adjoint 8 representation is real.

4

Case Op U(1)Y GQ, GL Spurion

V(1)
VIII Q(1)

qq 0 TA Y †
uYu, T

A Y †
d Yd

V(1)
IX Q(1)

qq 0 TA Y †
uYu, TA Y †

d Yd

VXIX Q(1)
lq -2/3 /

V(3̄,6)
X Q(1)

qd -1/6 /

V(3̄,6)
XI Q(1)

qu 5/6 /

VXVIII Qqe -5/6 /

VXII Qle 3/2 /

VXIV Qlu -1/6 /

VXV Qld 5/6 /

V(1)
V Qdd 0 TA Y †

d Yd

V(1)
VI Quu 0 TA Y †

uYu

V(1)
VII Q(1)

ud -1 Y †
d Yu

VXIII Qee 0 TA Y †
e Ye

VXVI Qed -2/3 /

VXVII Qeu -5/3 /

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

ψ)
† Jψ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
ψ)

† Jψ,µ operators via the relation [2]

(Q̄p
Lσ

I TA γµ Qr
L)(Q̄

s
Lσ

I TA γµ Qt
L) =

−
1

4
Q(3)

qq
ptsr

+
3

4
Q(1)

qq
ptsr

−
1

6
Q(3)

qq
prst

, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ × GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table V. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.
A spurion analysis allows the corrections due to the

nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q

r
L H̃† − (Yd)

p
r d̄R,p Q

r
LH†

− (Ye)
p
r ēR,pL

r
LH† + h.c. (9)

GQ×GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ∼ (3, 1, 3̄, 1, 1), Yd ∼ (1, 3, 3̄, 1, 1),

Ye ∼ (1, 1, 1, 3̄, 3). (10)

Introducing GQ × GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

ψ)
† JH,µ, (J

µ
H)† Jψ,µ current products

are induced proportional to one flavor breaking spurion in-
sertion. Here we refer to the spurions listed in Table V that
are bi-linear in Yukawa matricies. As a specific example

consider V(1)
VIII that is a 8 under SU(3)QL . The Lagrangian

7

is given by LSM + L
V

(1)
VIII

where

L
V

(1)
VIII

= −
1

2
(DµVν DµVν −DµVν DνVµ)−

M2
V

2
VνVν

+
(

λVVµ,AT
A Y †

uYu (D
µH)†H + h.c.

)

, (11)

+ gVVµ,A(Q̄LT
AγµQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking
proportional to Y †

d Yd is neglected in what follows. Inte-
grating by parts and the on-shell condition for the vector
field are used to manipulate the derivative to appear as
shown on the second line in Eqn. (11). Integrating out the

field V(1)
VIII using the classical EOM gives

∆L6 ⊃
g2V

4M2
V

[

Q(1)
qq

rssr
−

1

3
Q(1)

qq
rrss

]

+
1

4M2
V

[

((ImλV)
2 − (ReλV )

2)QH✷ + 4(ImλV)
2 QHD

+2i(ReλV )(ImλV )(Y
†
b QbH − YbQ

†
bH)

−2i(ReλV )(ImλV )(Y
†
uQuH − YuQ

†
uH)

]

×
[

Tr[(Y †
u Yu)(Y

†
u Yu)]−

(diag(Y †
u Yu))2

3

]

(12)

−
gV Im[λV ]

2M2
V

Q(1)
Hq
pr

[

(Y †
u Yu)

p
r −

diag(Y †
uYu)

3
δpr

]

+ i
gVRe[λV ]

2M2
V

[

((Y †
u Yu)Y

†
a )

m
i QaH

im
− (Ya(Y

†
u Yu))

i
mQ†

aH
mi

]

− i
gVRe[λV ]

6M2
V

Tr[Y †
uYu]

[

(Y †
a )

m
i QaH

im
− (Ya)

i
mQ†

aH
mi

]

,

where the dummy labels a and b are summed over {u, d}
and {e, d}, respectively. A similar pattern of matchings
onto the class 3 (D2H4), 5 (H3ψ̄ψ) and 7 (H2Dψ̄ψ) op-
erators of the Warsaw basis is present for almost all color
singlet fields with flavor quantum numbers listed in Ta-
bles II and III. The exceptional case is the field VXII whose
non-trivial SU(2)L representation and U(1)Y charge for-
bids a scalar current from being induced at tree level in
this manner.
The pattern of tree level matchings is strongly dictated

by the charges and representations of the UV fields under

7 Recall the flavor adjoint 8 representation is real.

a bunch of operators generated!

integra(ng	out	the	heavy	vector
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Case SM group GQ GL Op Couples to

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq Q̄L �µ QL

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq Q̄L�
I �µ QL

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd d̄R �µ dR

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu ūR �µ uR

VXIII (1, 1)0 (1,1,1) (1,8) Qee ēR �µ eR

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud d̄R �µ uR

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd d̄R �µ Qc
L

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu ūR �µ Qc
L

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe ēR �µ Qc
L

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle L̄c
L �µ eR

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu L̄c
L �µ uR

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld L̄c
L �µ dR

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed ēR �µ dR

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu ēR �µ uR

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq L̄L �µ QL

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

Case SM group GQ GL Op GQ, GL Spurion

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd TA Y †

d Yd

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu TA Y †

uYu

VXIII (1, 1)0 (1,1,1) (1,8) Qee TA Y †
e Ye

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud Y †
d Yu

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd /

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu /

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe /

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle /

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu /

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld /

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed /

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu /

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq /

TABLE VI. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
 )

† J ,µ operators via the relation [2]

(Q̄p
L�

I TA �µ Qr
L)(Q̄

s
L�

I TA �µ Qt
L) =

�1

4
Q

(3)
qq

ptsr
+

3

4
Q

(1)
qq

ptsr
� 1

6
Q

(3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ ⇥ GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table VI. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.

A spurion analysis allows the corrections due to the
nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = �(Yu)
p
r ūR,p Q

r
L H̃† � (Yd)

p
r d̄R,p Q

r
L H†

� (Ye)
p
r ēR,p L

r
L H† + h.c. (9)

GQ⇥GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ⇠ (3, 1, 3̄, 1, 1), Yd ⇠ (1, 3, 3̄, 1, 1),

Ye ⇠ (1, 1, 1, 3̄, 3). (10)

Introducing GQ ⇥ GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

 )
† JH,µ, (J

µ
H)† J ,µ current products

are induced proportional to one flavor breaking spurion
insertion. Here we refer to the spurions listed in Table
VI that are bi-linear in Yukawa matricies. As a specific

example consider V(1)
VIII that is a 8 under SU(3)QL . The

Lagrangian7 is given by LSM + LV(1)
VIII

where

LV(1)
VIII

= �1

2
(DµV⌫ DµV⌫ �DµV⌫ D⌫Vµ)� M2

V
2

V⌫V⌫

+
�
�VVµ,AT

A Y †
uYu (D

µH)†H + h.c.
�
, (11)

+ gVVµ,A(Q̄LT
A�µQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking

7 Recall the flavor adjoint 8 representation is real.
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Case SM group GQ GL Op Couples to

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq Q̄L �µ QL

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq Q̄L�
I �µ QL

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd d̄R �µ dR

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu ūR �µ uR

VXIII (1, 1)0 (1,1,1) (1,8) Qee ēR �µ eR

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud d̄R �µ uR

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd d̄R �µ Qc
L

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu ūR �µ Qc
L

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe ēR �µ Qc
L

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle L̄c
L �µ eR

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu L̄c
L �µ uR

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld L̄c
L �µ dR

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed ēR �µ dR

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu ēR �µ uR

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq L̄L �µ QL

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

Case SM group GQ GL Op GQ, GL Spurion

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd TA Y †

d Yd

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu TA Y †

uYu

VXIII (1, 1)0 (1,1,1) (1,8) Qee TA Y †
e Ye

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud Y †
d Yu

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd /

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu /

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe /

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle /

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu /

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld /

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed /

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu /

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq /

TABLE VI. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
 )

† J ,µ operators via the relation [2]

(Q̄p
L�

I TA �µ Qr
L)(Q̄

s
L�

I TA �µ Qt
L) =

�1

4
Q

(3)
qq

ptsr
+

3

4
Q

(1)
qq

ptsr
� 1

6
Q

(3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ ⇥ GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table VI. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.

A spurion analysis allows the corrections due to the
nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = �(Yu)
p
r ūR,p Q

r
L H̃† � (Yd)

p
r d̄R,p Q

r
L H†

� (Ye)
p
r ēR,p L

r
L H† + h.c. (9)

GQ⇥GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ⇠ (3, 1, 3̄, 1, 1), Yd ⇠ (1, 3, 3̄, 1, 1),

Ye ⇠ (1, 1, 1, 3̄, 3). (10)

Introducing GQ ⇥ GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

 )
† JH,µ, (J

µ
H)† J ,µ current products

are induced proportional to one flavor breaking spurion
insertion. Here we refer to the spurions listed in Table
VI that are bi-linear in Yukawa matricies. As a specific

example consider V(1)
VIII that is a 8 under SU(3)QL . The

Lagrangian7 is given by LSM + LV(1)
VIII

where

LV(1)
VIII

= �1

2
(DµV⌫ DµV⌫ �DµV⌫ D⌫Vµ)� M2

V
2

V⌫V⌫

+
�
�VVµ,AT

A Y †
uYu (D

µH)†H + h.c.
�
, (11)

+ gVVµ,A(Q̄LT
A�µQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking

7 Recall the flavor adjoint 8 representation is real.

Fields having U(1)Y charges have no spurion interaction.
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Case SM group GQ GL Op Couples to

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq Q̄L �µ QL

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq Q̄L�
I �µ QL

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd d̄R �µ dR

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu ūR �µ uR

VXIII (1, 1)0 (1,1,1) (1,8) Qee ēR �µ eR

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud d̄R �µ uR

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd d̄R �µ Qc
L

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu ūR �µ Qc
L

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe ēR �µ Qc
L

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle L̄c
L �µ eR

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu L̄c
L �µ uR

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld L̄c
L �µ dR

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed ēR �µ dR

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu ēR �µ uR

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq L̄L �µ QL

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

Case SM group GQ GL Op GQ, GL Spurion

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd TA Y †

d Yd

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu TA Y †

uYu

VXIII (1, 1)0 (1,1,1) (1,8) Qee TA Y †
e Ye

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud Y †
d Yu

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd /

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu /

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe /

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle /

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu /

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld /

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed /

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu /

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq /

TABLE VI. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
 )

† J ,µ operators via the relation [2]

(Q̄p
L�

I TA �µ Qr
L)(Q̄

s
L�

I TA �µ Qt
L) =

�1

4
Q

(3)
qq

ptsr
+

3

4
Q

(1)
qq

ptsr
� 1

6
Q

(3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ ⇥ GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table VI. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.

A spurion analysis allows the corrections due to the
nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = �(Yu)
p
r ūR,p Q

r
L H̃† � (Yd)

p
r d̄R,p Q

r
L H†

� (Ye)
p
r ēR,p L

r
L H† + h.c. (9)

GQ⇥GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ⇠ (3, 1, 3̄, 1, 1), Yd ⇠ (1, 3, 3̄, 1, 1),

Ye ⇠ (1, 1, 1, 3̄, 3). (10)

Introducing GQ ⇥ GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

 )
† JH,µ, (J

µ
H)† J ,µ current products

are induced proportional to one flavor breaking spurion
insertion. Here we refer to the spurions listed in Table
VI that are bi-linear in Yukawa matricies. As a specific

example consider V(1)
VIII that is a 8 under SU(3)QL . The

Lagrangian7 is given by LSM + LV(1)
VIII

where

LV(1)
VIII

= �1

2
(DµV⌫ DµV⌫ �DµV⌫ D⌫Vµ)� M2

V
2

V⌫V⌫

+
�
�VVµ,AT

A Y †
uYu (D

µH)†H + h.c.
�
, (11)

+ gVVµ,A(Q̄LT
A�µQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking

7 Recall the flavor adjoint 8 representation is real.
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Single dim-6 operator induced at tree 
level only for the UV fields that carry
1. U(1)Y charges 
2. non-trivial representation under 

flavor groups 

The single operators obtained in 
tree level matchings to the 
vectors are limited to 4-fermion 
operator forms. 

Never obtain only one operator 
in such a tree level matching 
that involves the Higgs field.

• contributes to continuum 
parton production. 

• parametrically has a Γ/Μ 
suppression 
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Case SM group GQ GL Op Couples to

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq Q̄L �µ QL

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq Q̄L�
I �µ QL

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd d̄R �µ dR

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu ūR �µ uR

VXIII (1, 1)0 (1,1,1) (1,8) Qee ēR �µ eR

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud d̄R �µ uR

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd d̄R �µ Qc
L

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu ūR �µ Qc
L

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe ēR �µ Qc
L

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle L̄c
L �µ eR

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu L̄c
L �µ uR

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld L̄c
L �µ dR

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed ēR �µ dR

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu ēR �µ uR

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq L̄L �µ QL

TABLE V. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

Case SM group GQ GL Op GQ, GL Spurion

V(1)
VIII (1, 1)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
IX (1, 3)0 (1,1,8) (1,1) Q(1)

qq TA Y †
uYu, T

A Y †
d Yd

V(1)
V (1, 1)0 (1,8,1) (1,1) Qdd TA Y †

d Yd

V(1)
VI (1, 1)0 (8,1,1) (1,1) Quu TA Y †

uYu

VXIII (1, 1)0 (1,1,1) (1,8) Qee TA Y †
e Ye

V(1)
VII (1, 1)�1 (3̄, 3, 1) (1,1) Q(1)

ud Y †
d Yu

V(3̄,6)
X (3̄or6, 2)� 1

6
(1,3,3) (1,1) Q(1)

qd /

V(3̄,6)
XI (3̄or6, 2) 5

6
(3,1,3) (1,1) Q(1)

qu /

VXVIII (3, 2)� 5
6

(1,1,3) (1,3) Qqe /

VXII (1, 2) 3
2

(1,1,1) (3̄, 3̄) Qle /

VXIV (3̄, 2)� 1
6

(3̄, 1, 1) (3̄, 1) Qlu /

VXV (3̄, 2) 5
6

(1, 3̄, 1) (3̄, 1) Qld /

VXVI (3̄, 1)� 2
3

(1, 3̄, 1) (1,3) Qed /

VXVII (3̄, 1)� 5
3

(3̄, 1, 1) (1,3) Qeu /

VXIX (3̄, 1)� 2
3

(1, 1, 3̄) (3,1) Q(1)
lq /

TABLE VI. Operators induced at tree level when the massive
vector case is integrated out. The cases are grouped in the
table into the chiral (Jµ

 )
† J ,µ operator classes induced. The

top section refers to LLLL operators. The middle section of
the table refers to LLRR operators. The bottom section of the
table refers to RRRR operators induced at tree level.

this case the operator profile is reduced to at least two
(Jµ
 )

† J ,µ operators via the relation [2]

(Q̄p
L�

I TA �µ Qr
L)(Q̄

s
L�

I TA �µ Qt
L) =

�1

4
Q

(3)
qq

ptsr
+

3

4
Q

(1)
qq

ptsr
� 1

6
Q

(3)
qq

prst
, (8)

here p, r, s, t are flavor indices. We show some examples of
the multiple operators induced when integrating out vec-
tor fields at tree level in Table IV. Introducing GQ ⇥ GL

symmetry, vector fields can be reduced in their infrared
(IR) SMEFT operator profile to one operator in the War-
saw basis in the limit of vanishing Yukawa matricies; see

Table VI. Note that with the exception of case V(1)
VII which

has a bi-linear flavor breaking spurion in Y †
d and Yu, the

presence of a U(1)Y charge is also associated with the lack
of Higgs scalar currents induced. This has an important
consequence when the self interactions of the vector are
studied for unitarity violation, as will be discussed shortly.

A spurion analysis allows the corrections due to the
nonzero Yukawa matricies of the SM (that break the fla-
vor symmetry in a phenomenologically safe MFV pattern)
to be systematically studied. We define the SM Yukawa
matricies Yu, Yd, Ye as

LY = �(Yu)
p
r ūR,p Q

r
L H̃† � (Yd)

p
r d̄R,p Q

r
L H†

� (Ye)
p
r ēR,p L

r
L H† + h.c. (9)

GQ⇥GL symmetry is restored if we endow the Yukawa ma-
tricies with the transformation properties under {GQ,GL}

Yu ⇠ (3, 1, 3̄, 1, 1), Yd ⇠ (1, 3, 3̄, 1, 1),

Ye ⇠ (1, 1, 1, 3̄, 3). (10)

Introducing GQ ⇥ GL symmetry breaking when the
Yu, Yd, Ye matricies take on their SM values gives more op-
erators at tree level for fields with flavor quantum numbers.
On general grounds, the (Jµ

H)† JH,µ current products are
induced proportional to two spurions breaking the flavor
symmetry, and the (Jµ

 )
† JH,µ, (J

µ
H)† J ,µ current products

are induced proportional to one flavor breaking spurion
insertion. Here we refer to the spurions listed in Table
VI that are bi-linear in Yukawa matricies. As a specific

example consider V(1)
VIII that is a 8 under SU(3)QL . The

Lagrangian7 is given by LSM + LV(1)
VIII

where

LV(1)
VIII

= �1

2
(DµV⌫ DµV⌫ �DµV⌫ D⌫Vµ)� M2

V
2

V⌫V⌫

+
�
�VVµ,AT

A Y †
uYu (D

µH)†H + h.c.
�
, (11)

+ gVVµ,A(Q̄LT
A�µQL).

Note that the largest spurion that restores the flavor sym-
metry for the second line is TAY †

uYu and some indices are
suppressed in Eqn. (11). The additional spurion breaking

7 Recall the flavor adjoint 8 representation is real.
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Consider the β-function for the the coupling of the vector field to the 
fermion bi-linears 

5

SU(3)C ⇥ SU(2)L ⇥ U(1)Y, GQ and GL. We emphasize,
data fits to subsets of operators in the SMEFT formal-
ism can be justified by appealing to UV field content with
U(1)Y charges and non-trivial representations under SM
groups when only retaining tree level matching contribu-
tions. See Table V for details on cases that generate only
one operator at a time.

This conclusion is subject to the following qualifications.
First, the single operators obtained in tree level matchings
to the vectors in Tables II, III are limited to (Jµ

 )
† J ,µ op-

erator forms. Such operators at LHC contribute to contin-
uum parton production in a fashion dictated by the power
counting of the theory. Conversely, the precise measure-
ments made on a scattering through a SM resonance (with
mass M and width �) parametrically has a �/M suppres-
sion, compared to the leading resonant behavior, when
considering the interference with (Jµ

 )
† J ,µ operators.

Second, as yt ' 1, a flavor symmetry spurion breaking
proportional to only powers of Yu can induce operators of
class 3, 5 and 7 without significant numerical suppression.
This makes it di�cult to justify “one at a time” data fits to
(Jµ
 )

† J ,µ SMEFT operators with up quark field content
(consistent with our assumptions). On the other hand,
one at a time data fits to (Jµ

 )
† J ,µ operators that only

have leptonic or down quark field content can be poten-
tially justified. In these cases the induced scalar currents
proportional to MFV like flavor breaking spurious are nu-
merically suppressed compared to pure up quark spurions
by at least yb/yt ⇠ 10�2.

Finally, we also note that we never obtain only one op-
erator in such a tree level matching that involves the Higgs
field, in the cases of massive vector UV field content con-
sidered.

Arguments against orphaned vectors.

The vector fields listed in Tables I, II and III inducing
a single L6 SMEFT operator at tree level, carry at least
one non-trivial representation under the SM gauge sym-
metry and flavor symmetries.8 Non-trivial representations
and U(1)Y charges reduce the interactions for SM parti-
cles with new sector, which consequently minimizes the IR
SMEFT operator profile. However, such fields in general
do not indicate a stand alone UV complete scenario (where
the vector could be an “orphan”) for the following reasons.

(1) Landau poles and triviality. The � function of
the coupling of the vector fields to the fermion bi-linears
(denoted gV in Eqn. (11)) is determined by renormalizing
the fermion fields and vector field two point functions, and
subsequently extracting the � function for gV . We relate

8 In all cases but one, multiple non-trivial representations are
present. The one exceptional case is VXIII which is only an 8
under SU(3)eR .

Case
16⇡2✏ �

Z3
g2V hOi

�16⇡2✏ �
Z

 ̄

g2V

�16⇡2✏ �
Z

 

g2V

�16⇡2✏ �
Z

V

g2V
�y

V(1)
VIII F(3Fl) C(3Fl)

F C(3Fl)
F

4
3

�
1
2

�
Fl
· 3C +

V(1)
IX F(2)F(3Fl) C(2)

F C(3Fl)
F C(2)

F C(3Fl)
F

2·3C
3

�
1
2

�
Fl

�
1
2

�
L

+

VXIX 1 3Fl ·3C 3Fl
2
3 · 2 +

V(3̄)
X,XI �1C 3Fl(�2)C ·2 3Fl(�2)C 2

3 ·(�1)C �
V(6)
X,XI 1 3Fl ·1C ·2 3Fl ·1C 2

3 ·1C +

VXVIII 1 3Fl ·3C ·2 3Fl
2
3 +

VXII 1 3Fl 3Fl ·2 2
3 +

VXIV 1 3Fl ·3C 3Fl ·2 2
3 +

VXV 1 3Fl ·3C 3Fl ·2 2
3 +

V(1)
V F(3Fl) C(3Fl)

F C(3Fl)
F

2
3

�
1
2

�
Fl
·3C +

V(1)
VI F(3Fl) C(3Fl)

F C(3Fl)
F

2
3

�
1
2

�
Fl
·3C +

V(1)
VII 1 3Fl 3Fl

2
3 ·3C +

VXIII F(3Fl) C(3Fl)
F C(3Fl)

F
2
3

�
1
2

�
Fl

+

VXVI 1 3Fl ·3C 3Fl
2
3 +

VXVII 1 3Fl ·3C 3Fl
2
3 +

TABLE VI. One loop renormalization results. Here hOi indi-
cates the matrix element of the vector-fermion bilinear inter-
action term and �Z3 corresponds to the divergence present in
this three point interaction at one loop from the vector-fermion
coupling. The notation is such that F(N) ⌘ C(N)

F � 1
2N with

C(N)
F = N2�1

2N . We have labeled several of the numerical factors
in the table with the group space (SU(3)C, SU(3)Fl, SU(2)L)
that generates them, with the subscript Fl indicating a SU(3)
flavour group.

V V   ̄

  ̄

V

FIG. 1. Diagrams relevant for the renormalization of gV .

the bare (0) and renormalized (r) fields and couplings as

V (0)
µ =

p
ZV V (r)

µ , g
(0)
V = ZgV g

(r)
V µ✏, (13)

 
(0)
i =

p
Z 

i

 
(r)
i , (14)

where Zx = 1 + �Z
x

for x = {V, gV ,  ̄, }. We use a
renormalization scheme employing MS subtraction and
d = 4 � 2✏ dimensions. The factor of µ✏ is introduced
in gV to render the renormalized coupling dimensionless.
We use the standard result extracting the � function for
composite operators due to ✏ poles in dimensional regular-
ization [24]. The relevant diagrams are shown in Figure 1.
The �-function for the running of the coupling gV is given
by

�gV = 2 gV ✏

✓
� �Z3

hOi �
1

2
�Z

 ̄

� 1

2
�Z

 

� 1

2
�Z

V

◆
, (15)

where the renormalization factors �Z ’s for the various vec-
tor field cases are presented in Table VI. The general

Suppose no vector self-interaction, the β-function is positive,  
indicating Landau poles at scale,

6

expectation is that gV will have a positive � function –
indicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

 )
† J ,µ operator, with the exception

of color ¯

3 vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the e↵ect of a non-abelian interaction.
An oversimplified UV scenario a✏icted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ⇤L approximated by

⇤L ⇠ MV exp [gV/�gV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ⇤L are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 ! 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

�LV =
�

4
V†
µVµV†

⌫V⌫ + g0 @µVµV†
⌫V⌫ + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ✏µL ' pµ/MV
through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read

ML
3,s = (g0)2Fs

st� su

4M4
V

, (18)

ML
3,t = (g0)2Ft

st� ut

4M4
V

, (19)

ML
3,u = (g0)2Fu

us� ut

4M4
V

, (20)

ML
4 = �

✓
Fs

t2 � u2

4M4
V

+ Ft
s2 � u2

4M4
V

+ Fu
s2 � t2

4M4
V

◆
.(21)

Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If � = (g0)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML

4

with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading

VA,a
µi

VB,b
⌫j

VC,c
⇢,k

VD,d
�,l

V

V

V

V

V

V

V

V

FIG. 2. 2 ! 2 vector scattering diagrams.

scaling in ⇠ s2/M4
V disappears. The full amplitudes then

grow as ⇠ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ⇠ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns o↵ the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.

Standard partial wave unitarity arguments [27–29] give
that the unitarity violation scale associated with the vector
field without a three point interaction is

⇤ . 0.2MV(Ft + Fu)
�1/4��1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is � ⇠ (16⇡)�1, is of little help - one still finds ⇤ ⇠ MV
due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial

representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as hS†Si = v02/2. We requires dim(V) + 1  dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy e↵ects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].

with the exception of color-anti3 case.  
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leg corrections, which we have already calculated and rendered finite by the counterterms
δ2, δm and δ3 in the renormalization of the 2-point functions. As before, we write

− ieRΓµ = 1PI . (19.42)

This is normalized so that at leading order Γµ = γµ. More generally, we showed in Chap-
ter 17 that, by Lorentz invariance and the Ward identity (which holds for off-shell photons),
arbitrary contributions to Γµ can be written in terms of two Lorentz-scalar form factors, F1

and F2:

Γµ(p) = F1(p2)γµ +
iσµν

2me
pνF2(p2). (19.43)

At leading order:

F1

(
p2
)

= 1, F2

(
p2
)

= 0. (19.44)

At next-to-leading order (order e2
R), the form factors get contributions from a loop graph

and from counterterms:

− ieRΓµ = 1PI = + + · · · .

(19.45)
From Eq. (19.16) we see that the counterterm gives Γµ = δ1γµ, which contributes only to
F1

(
p2
)
.

We calculated F2

(
p2
)

at 1-loop when we considered corrections to the magnetic moment
of the electron in Chapter 17. There we found a finite answer:
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SU(3)C × SU(2)L × U(1)Y, GQ and GL. We emphasize,
data fits to subsets of operators in the SMEFT formal-
ism can be justified by appealing to UV field content with
U(1)Y charges and non-trivial representations under SM
groups when only retaining tree level matching contribu-
tions. See Table V for details on cases that generate only
one operator at a time.

This conclusion is subject to the following qualifications.
First, the single operators obtained in tree level matchings
to the vectors in Tables II, III are limited to (Jµ

ψ)
† Jψ,µ op-

erator forms. Such operators at LHC contribute to contin-
uum parton production in a fashion dictated by the power
counting of the theory. Conversely, the precise measure-
ments made on a scattering through a SM resonance (with
mass M and width Γ) parametrically has a Γ/M suppres-
sion, compared to the leading resonant behavior, when
considering the interference with (Jµ

ψ)
† Jψ,µ operators.

Second, as yt ≃ 1, a flavor symmetry spurion breaking
proportional to only powers of Yu can induce operators of
class 3, 5 and 7 without significant numerical suppression.
This makes it difficult to justify “one at a time” data fits to
(Jµ
ψ)

† Jψ,µ SMEFT operators with up quark field content
(consistent with our assumptions). On the other hand,
one at a time data fits to (Jµ

ψ)
† Jψ,µ operators that only

have leptonic or down quark field content can be poten-
tially justified. In these cases the induced scalar currents
proportional to MFV like flavor breaking spurious are nu-
merically suppressed compared to pure up quark spurions
by at least yb/yt ∼ 10−2.

Finally, we also note that we never obtain only one op-
erator in such a tree level matching that involves the Higgs
field, in the cases of massive vector UV field content con-
sidered.

Arguments against orphaned vectors.

The vector fields listed in Tables I, II and III inducing
a single L6 SMEFT operator at tree level, carry at least
one non-trivial representation under the SM gauge sym-
metry and flavor symmetries.8 Non-trivial representations
and U(1)Y charges reduce the interactions for SM parti-
cles with new sector, which consequently minimizes the IR
SMEFT operator profile. However, such fields in general
do not indicate a stand alone UV complete scenario (where
the vector could be an “orphan”) for the following reasons.

(1) Landau poles and triviality. The β function of
the coupling of the vector fields to the fermion bi-linears
(denoted gV in Eqn. (11)) is determined by renormalizing
the fermion fields and vector field two point functions, and
subsequently extracting the β function for gV . We relate

8 In all cases but one, multiple non-trivial representations are
present. The one exceptional case is VXIII which is only an 8

under SU(3)eR .
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action term and δZ3 corresponds to the divergence present in
this three point interaction at one loop from the vector-fermion
coupling. The notation is such that F(N) ≡ C(N)

F − 1
2N with

C(N)
F = N2−1

2N . We have labeled several of the numerical factors
in the table with the group space (SU(3)C, SU(3)Fl, SU(2)L)
that generates them, with the subscript F l indicating a SU(3)
flavour group.

V V ψ ψ̄

ψ ψ̄

V

FIG. 1. Diagrams relevant for the renormalization of gV .

the bare (0) and renormalized (r) fields and couplings as

V (0)
µ =

√

ZV V (r)
µ , g(0)V = ZgV g(r)V µϵ, (13)

ψ(0)
i =

√

Zψi
ψ(r)
i , (14)

where Zx = 1 + δZx
for x = {V, gV , ψ̄,ψ}. We use a

renormalization scheme employing MS subtraction and
d = 4 − 2ϵ dimensions. The factor of µϵ is introduced
in gV to render the renormalized coupling dimensionless.
We use the standard result extracting the β function for
composite operators due to ϵ poles in dimensional regular-
ization [24]. The relevant diagrams are shown in Figure 1.
The β-function for the running of the coupling gV is given
by

βgV = 2 gV ϵ

(

−
δZ3

⟨O⟩
−

1

2
δZψ̄ −

1

2
δZψ −

1

2
δZV

)

, (15)

where the renormalization factors δZ ’s for the various vec-
tor field cases are presented in Table VI. The general ex-
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2) Unitary
To make the theory asymptotically free, self-interactions are demanded.6

expectation is that gV will have a positive � function –
indicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

 )
† J ,µ operator, with the exception

of color ¯

3 vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the e↵ect of a non-abelian interaction.
An oversimplified UV scenario a✏icted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ⇤L approximated by

⇤L ⇠ MV exp [gV/�gV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ⇤L are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 ! 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

�LV =
�

4
V†
µVµV†

⌫V⌫ + g0 @µVµV†
⌫V⌫ + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ✏µL ' pµ/MV
through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read

ML
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st� su

4M4
V

, (18)

ML
3,t = (g0)2Ft

st� ut

4M4
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, (19)
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If � = (g0)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML

4

with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading
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FIG. 2. 2 ! 2 vector scattering diagrams.

scaling in ⇠ s2/M4
V disappears. The full amplitudes then

grow as ⇠ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ⇠ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns o↵ the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.

Standard partial wave unitarity arguments [27–29] give
that the unitarity violation scale associated with the vector
field without a three point interaction is

⇤ . 0.2MV(Ft + Fu)
�1/4��1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is � ⇠ (16⇡)�1, is of little help - one still finds ⇤ ⇠ MV
due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial

representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as hS†Si = v02/2. We requires dim(V) + 1  dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy e↵ects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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expectation is that gV will have a positive � function –
indicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

 )
† J ,µ operator, with the exception

of color ¯

3 vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the e↵ect of a non-abelian interaction.
An oversimplified UV scenario a✏icted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ⇤L approximated by

⇤L ⇠ MV exp [gV/�gV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ⇤L are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 ! 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

�LV =
�

4
V†
µVµV†

⌫V⌫ + g0 @µVµV†
⌫V⌫ + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ✏µL ' pµ/MV
through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read

ML
3,s = (g0)2Fs
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4M4
V

, (18)
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3,t = (g0)2Ft
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, (19)
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3,u = (g0)2Fu
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4M4
V
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V
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V
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If � = (g0)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML

4

with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading
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FIG. 2. 2 ! 2 vector scattering diagrams.

scaling in ⇠ s2/M4
V disappears. The full amplitudes then

grow as ⇠ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ⇠ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns o↵ the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.

Standard partial wave unitarity arguments [27–29] give
that the unitarity violation scale associated with the vector
field without a three point interaction is

⇤ . 0.2MV(Ft + Fu)
�1/4��1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is � ⇠ (16⇡)�1, is of little help - one still finds ⇤ ⇠ MV
due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial

representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as hS†Si = v02/2. We requires dim(V) + 1  dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy e↵ects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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2) Unitary
To make the theory asymptotically free, self-interactions are demanded.6

expectation is that gV will have a positive � function –
indicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

 )
† J ,µ operator, with the exception

of color ¯

3 vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the e↵ect of a non-abelian interaction.
An oversimplified UV scenario a✏icted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ⇤L approximated by

⇤L ⇠ MV exp [gV/�gV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ⇤L are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 ! 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

�LV =
�

4
V†
µVµV†

⌫V⌫ + g0 @µVµV†
⌫V⌫ + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ✏µL ' pµ/MV
through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read

ML
3,s = (g0)2Fs

st� su

4M4
V

, (18)

ML
3,t = (g0)2Ft

st� ut

4M4
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, (19)
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If � = (g0)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML

4

with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading
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FIG. 2. 2 ! 2 vector scattering diagrams.

scaling in ⇠ s2/M4
V disappears. The full amplitudes then

grow as ⇠ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ⇠ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns o↵ the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.

Standard partial wave unitarity arguments [27–29] give
that the unitarity violation scale associated with the vector
field without a three point interaction is

⇤ . 0.2MV(Ft + Fu)
�1/4��1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is � ⇠ (16⇡)�1, is of little help - one still finds ⇤ ⇠ MV
due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial

representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as hS†Si = v02/2. We requires dim(V) + 1  dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy e↵ects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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expectation is that gV will have a positive � function –
indicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

 )
† J ,µ operator, with the exception

of color ¯

3 vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the e↵ect of a non-abelian interaction.
An oversimplified UV scenario a✏icted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ⇤L approximated by

⇤L ⇠ MV exp [gV/�gV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ⇤L are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 ! 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

�LV =
�

4
V†
µVµV†

⌫V⌫ + g0 @µVµV†
⌫V⌫ + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ✏µL ' pµ/MV
through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If � = (g0)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML

4

with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading
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FIG. 2. 2 ! 2 vector scattering diagrams.

scaling in ⇠ s2/M4
V disappears. The full amplitudes then

grow as ⇠ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ⇠ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns o↵ the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.

Standard partial wave unitarity arguments [27–29] give
that the unitarity violation scale associated with the vector
field without a three point interaction is

⇤ . 0.2MV(Ft + Fu)
�1/4��1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is � ⇠ (16⇡)�1, is of little help - one still finds ⇤ ⇠ MV
due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial

representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as hS†Si = v02/2. We requires dim(V) + 1  dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy e↵ects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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• For Y=0 vector, if                : E4 scaling disappears, alleviating to E2 scale 
• For U(1) charged vector,

6

pectation is that gV will have a positive β function – in-
dicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

ψ)
† Jψ,µ operator, with the exception

of color 3̄ vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the effect of a non-abelian interaction.
An oversimplified UV scenario afflicted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ΛL approximated by

ΛL ∼ MV exp [gV/βgV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ΛL are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 → 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

∆LV =
λ

4
V†
µVµV†

νVν + g′ ∂µVµV†
νVν + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ϵµL ≃ pµ/MV

through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read
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ML
3,u = (g′)2Fu
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If λ = (g′)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML

4

with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading
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FIG. 2. 2 → 2 vector scattering diagrams.

scaling in ∼ s2/M4
V disappears. The full amplitudes then

grow as ∼ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ∼ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns off the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.
Standard partial wave unitarity arguments [27–29] give

that the unitarity violation scale associated with the vector
field without a three point interaction is

Λ ! 0.2MV(Ft + Fu)
−1/4λ−1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is λ ∼ (16π)−1, is of little help - one still finds Λ ∼ MV

due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial
representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as ⟨S†S⟩ = v′2/2. We requires dim(V) + 1 ≤ dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy effects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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pectation is that gV will have a positive β function – in-
dicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

ψ)
† Jψ,µ operator, with the exception

of color 3̄ vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the effect of a non-abelian interaction.
An oversimplified UV scenario afflicted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ΛL approximated by

ΛL ∼ MV exp [gV/βgV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ΛL are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 → 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

∆LV =
λ

4
V†
µVµV†

νVν + g′ ∂µVµV†
νVν + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ϵµL ≃ pµ/MV

through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read
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, (18)
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If λ = (g′)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML

4

with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading
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scaling in ∼ s2/M4
V disappears. The full amplitudes then

grow as ∼ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ∼ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns off the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.
Standard partial wave unitarity arguments [27–29] give

that the unitarity violation scale associated with the vector
field without a three point interaction is

Λ ! 0.2MV(Ft + Fu)
−1/4λ−1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is λ ∼ (16π)−1, is of little help - one still finds Λ ∼ MV

due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial
representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as ⟨S†S⟩ = v′2/2. We requires dim(V) + 1 ≤ dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy effects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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pectation is that gV will have a positive β function – in-
dicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

ψ)
† Jψ,µ operator, with the exception

of color 3̄ vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the effect of a non-abelian interaction.
An oversimplified UV scenario afflicted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ΛL approximated by

ΛL ∼ MV exp [gV/βgV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ΛL are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 → 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

∆LV =
λ

4
V†
µVµV†

νVν + g′ ∂µVµV†
νVν + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ϵµL ≃ pµ/MV

through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If λ = (g′)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML
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with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2
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scaling in ∼ s2/M4
V disappears. The full amplitudes then

grow as ∼ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ∼ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns off the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.
Standard partial wave unitarity arguments [27–29] give

that the unitarity violation scale associated with the vector
field without a three point interaction is

Λ ! 0.2MV(Ft + Fu)
−1/4λ−1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is λ ∼ (16π)−1, is of little help - one still finds Λ ∼ MV

due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial
representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as ⟨S†S⟩ = v′2/2. We requires dim(V) + 1 ≤ dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy effects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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pectation is that gV will have a positive β function – in-
dicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

ψ)
† Jψ,µ operator, with the exception

of color 3̄ vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the effect of a non-abelian interaction.
An oversimplified UV scenario afflicted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ΛL approximated by

ΛL ∼ MV exp [gV/βgV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ΛL are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 → 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

∆LV =
λ

4
V†
µVµV†

νVν + g′ ∂µVµV†
νVν + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ϵµL ≃ pµ/MV

through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read
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, (18)
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If λ = (g′)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML
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with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading
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scaling in ∼ s2/M4
V disappears. The full amplitudes then

grow as ∼ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ∼ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns off the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.
Standard partial wave unitarity arguments [27–29] give

that the unitarity violation scale associated with the vector
field without a three point interaction is

Λ ! 0.2MV(Ft + Fu)
−1/4λ−1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is λ ∼ (16π)−1, is of little help - one still finds Λ ∼ MV

due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial
representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as ⟨S†S⟩ = v′2/2. We requires dim(V) + 1 ≤ dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy effects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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pectation is that gV will have a positive β function – in-
dicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

ψ)
† Jψ,µ operator, with the exception

of color 3̄ vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the effect of a non-abelian interaction.
An oversimplified UV scenario afflicted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ΛL approximated by

ΛL ∼ MV exp [gV/βgV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ΛL are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 → 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

∆LV =
λ

4
V†
µVµV†

νVν + g′ ∂µVµV†
νVν + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ϵµL ≃ pµ/MV

through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If λ = (g′)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML

4

with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading
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scaling in ∼ s2/M4
V disappears. The full amplitudes then

grow as ∼ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ∼ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns off the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.
Standard partial wave unitarity arguments [27–29] give

that the unitarity violation scale associated with the vector
field without a three point interaction is

Λ ! 0.2MV(Ft + Fu)
−1/4λ−1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is λ ∼ (16π)−1, is of little help - one still finds Λ ∼ MV

due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial
representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as ⟨S†S⟩ = v′2/2. We requires dim(V) + 1 ≤ dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy effects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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2) Unitary
To make the theory asymptotically free, self-interactions are demanded.6

expectation is that gV will have a positive � function –
indicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

 )
† J ,µ operator, with the exception

of color ¯

3 vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the e↵ect of a non-abelian interaction.
An oversimplified UV scenario a✏icted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ⇤L approximated by

⇤L ⇠ MV exp [gV/�gV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ⇤L are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 ! 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are
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The amplitudes at the leading order with the high-energy
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
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the amplitudes ML
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scaling in ⇠ s2/M4
V disappears. The full amplitudes then

grow as ⇠ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ⇠ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns o↵ the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.

Standard partial wave unitarity arguments [27–29] give
that the unitarity violation scale associated with the vector
field without a three point interaction is

⇤ . 0.2MV(Ft + Fu)
�1/4��1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is � ⇠ (16⇡)�1, is of little help - one still finds ⇤ ⇠ MV
due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial

representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as hS†Si = v02/2. We requires dim(V) + 1  dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy e↵ects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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expectation is that gV will have a positive � function –
indicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

 )
† J ,µ operator, with the exception

of color ¯

3 vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the e↵ect of a non-abelian interaction.
An oversimplified UV scenario a✏icted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ⇤L approximated by

⇤L ⇠ MV exp [gV/�gV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ⇤L are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 ! 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

�LV =
�

4
V†
µVµV†

⌫V⌫ + g0 @µVµV†
⌫V⌫ + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ✏µL ' pµ/MV
through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read
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4M4
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, (18)
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If � = (g0)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML

4

with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading
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scaling in ⇠ s2/M4
V disappears. The full amplitudes then

grow as ⇠ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ⇠ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns o↵ the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.

Standard partial wave unitarity arguments [27–29] give
that the unitarity violation scale associated with the vector
field without a three point interaction is

⇤ . 0.2MV(Ft + Fu)
�1/4��1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is � ⇠ (16⇡)�1, is of little help - one still finds ⇤ ⇠ MV
due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial

representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as hS†Si = v02/2. We requires dim(V) + 1  dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy e↵ects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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pectation is that gV will have a positive β function – in-
dicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

ψ)
† Jψ,µ operator, with the exception

of color 3̄ vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the effect of a non-abelian interaction.
An oversimplified UV scenario afflicted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ΛL approximated by

ΛL ∼ MV exp [gV/βgV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ΛL are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 → 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

∆LV =
λ

4
V†
µVµV†

νVν + g′ ∂µVµV†
νVν + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ϵµL ≃ pµ/MV

through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If λ = (g′)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML

4

with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading
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scaling in ∼ s2/M4
V disappears. The full amplitudes then

grow as ∼ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ∼ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns off the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.
Standard partial wave unitarity arguments [27–29] give

that the unitarity violation scale associated with the vector
field without a three point interaction is

Λ ! 0.2MV(Ft + Fu)
−1/4λ−1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is λ ∼ (16π)−1, is of little help - one still finds Λ ∼ MV

due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial
representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as ⟨S†S⟩ = v′2/2. We requires dim(V) + 1 ≤ dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy effects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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pectation is that gV will have a positive β function – in-
dicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

ψ)
† Jψ,µ operator, with the exception

of color 3̄ vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the effect of a non-abelian interaction.
An oversimplified UV scenario afflicted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ΛL approximated by

ΛL ∼ MV exp [gV/βgV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ΛL are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 → 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

∆LV =
λ

4
V†
µVµV†

νVν + g′ ∂µVµV†
νVν + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ϵµL ≃ pµ/MV

through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If λ = (g′)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML
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with an identical F factor respectively, through the Man-
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scaling in ∼ s2/M4
V disappears. The full amplitudes then

grow as ∼ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ∼ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns off the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.
Standard partial wave unitarity arguments [27–29] give

that the unitarity violation scale associated with the vector
field without a three point interaction is

Λ ! 0.2MV(Ft + Fu)
−1/4λ−1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is λ ∼ (16π)−1, is of little help - one still finds Λ ∼ MV

due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial
representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as ⟨S†S⟩ = v′2/2. We requires dim(V) + 1 ≤ dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy effects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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pectation is that gV will have a positive β function – in-
dicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

ψ)
† Jψ,µ operator, with the exception

of color 3̄ vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the effect of a non-abelian interaction.
An oversimplified UV scenario afflicted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ΛL approximated by

ΛL ∼ MV exp [gV/βgV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ΛL are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 → 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

∆LV =
λ

4
V†
µVµV†

νVν + g′ ∂µVµV†
νVν + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ϵµL ≃ pµ/MV

through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If λ = (g′)2 is accomplished by a global symmetry then
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scaling in ∼ s2/M4
V disappears. The full amplitudes then

grow as ∼ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ∼ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns off the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.
Standard partial wave unitarity arguments [27–29] give

that the unitarity violation scale associated with the vector
field without a three point interaction is

Λ ! 0.2MV(Ft + Fu)
−1/4λ−1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is λ ∼ (16π)−1, is of little help - one still finds Λ ∼ MV

due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial
representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as ⟨S†S⟩ = v′2/2. We requires dim(V) + 1 ≤ dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy effects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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pectation is that gV will have a positive β function – in-
dicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

ψ)
† Jψ,µ operator, with the exception

of color 3̄ vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the effect of a non-abelian interaction.
An oversimplified UV scenario afflicted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ΛL approximated by

ΛL ∼ MV exp [gV/βgV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ΛL are smaller than one loop matching ef-
fects.

(2) Unitarity and vector self-interactions. As in
QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 → 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are

∆LV =
λ

4
V†
µVµV†

νVν + g′ ∂µVµV†
νVν + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ϵµL ≃ pµ/MV

through a s-, t- and u- channel vector exchange and a
four-point contact interaction, respectively, read
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If λ = (g′)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML
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with an identical F factor respectively, through the Man-
delstam relation s+ t+u = 4M2

V . As a result, the leading
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FIG. 2. 2 → 2 vector scattering diagrams.

scaling in ∼ s2/M4
V disappears. The full amplitudes then

grow as ∼ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ∼ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns off the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.
Standard partial wave unitarity arguments [27–29] give

that the unitarity violation scale associated with the vector
field without a three point interaction is

Λ ! 0.2MV(Ft + Fu)
−1/4λ−1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is λ ∼ (16π)−1, is of little help - one still finds Λ ∼ MV

due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial
representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as ⟨S†S⟩ = v′2/2. We requires dim(V) + 1 ≤ dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy effects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].

3-point int. 
present only 
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pectation is that gV will have a positive β function – in-
dicating Landau poles [25], quantum triviality [26] and
a UV incompletion. This is indeed the case for all vector
fields inducing one (Jµ

ψ)
† Jψ,µ operator, with the exception

of color 3̄ vectors coupling to quark bi-linears; i.e. cases
V 3̄
X,XI. In this exceptional case, the SU(3)C vector-fermion

coupling mimics the effect of a non-abelian interaction.
An oversimplified UV scenario afflicted with an internal

inconsistency indicated by the presence of Landau poles
cannot formally generate a consistent IR limit. This indi-
cates that further new physics must be present below the
Landau pole scale ΛL approximated by

ΛL ∼ MV exp [gV/βgV ] . (16)

Although Landau poles clearly indicate an internal in-
consistency within a UV scenario, numerically corrections
suppressed by ΛL are smaller than one loop matching ef-
fects.
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QCD, the running of the coupling gV for the vector-fermion
interactions can (at times) be made asymptotically free by
introducing the self interactions of the vector field, with a
global symmetry relating the vector self-couplings to gV .
However, a more intractable problem is generated by O(1)
self interactions of orphan vector fields. The four point
vector self interaction is not forbidden by any symmetry.
Conversely the three point interaction can be forbidden by
the presence of a U(1)Y charge in the composite field. Con-
sider the 2 → 2 longitudinal vector scattering displayed in
Fig. 2 that is dictated by such a four-point and three-point
interactions at tree level. The relevant Lagrangian involv-
ing the vector self-interactions are
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λ

4
V†
µVµV†

νVν + g′ ∂µVµV†
νVν + . . . (17)

The amplitudes at the leading order with the high-energy
approximation for the vector polarization ϵµL ≃ pµ/MV
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Here abstract group structure constants Fs,t,u for three
channels have been introduced. For example, in the model

V(1)
IX : Fs = fABEfCDEf ijnfkln where A,B,C,D,E refer

to the flavor index and i, j, k, l, n denote the iso-spin index.
If λ = (g′)2 is accomplished by a global symmetry then

the amplitudes ML
3 will cancel with three terms in ML
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with an identical F factor respectively, through the Man-
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scaling in ∼ s2/M4
V disappears. The full amplitudes then

grow as ∼ s/M2
V . However, if the three-point interaction is

forbidden - for example due to the field carrying a U(1)Y
charge - then the amplitude cannot be so moderated in
its growth at high energies, and scales as ∼ (p2)2/M4

V . In
this manner, the presence of a U(1)Y charge forbidding
the scalar current simultaneously turns off the three-point
interaction that is required to moderate the high energy
scattering behavior of an orphaned vector field.
Standard partial wave unitarity arguments [27–29] give

that the unitarity violation scale associated with the vector
field without a three point interaction is

Λ ! 0.2MV(Ft + Fu)
−1/4λ−1/4, (22)

where Ft, an Fu are determined by a particular scatter-
ing cross section with fixed SM gauge and flavor indices
that the vector carries. A quick onset of unitarity viola-
tion follows from the expectation of a sizable four-point
interaction that is expected to emerge from a strongly in-
teracting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction,
that is λ ∼ (16π)−1, is of little help - one still finds Λ ∼ MV

due to the presence of a fourth root in Eqn. (22). Hence,
the UV strong sector should be simultaneously considered
when integrating out to define a consistent IR matching
onto the SMEFT. This would increase the low energy op-
erator profile of such a scenario in the SMEFT beyond
one operator generically due to non perturbative match-
ings, and a “one at a time” analysis invoking a tree level
matching would be logically incoherent.

(3) Siblings of massive vectors with non-trivial
representations. A massive vector field with non-trivial
representations under subgroups of G is also generically ac-
companied by more “sibling” fields. If the massive vector
gains a mass by a UV Higgs mechanism, the correspond-
ing sibling field includes at least a scalar (S) obtaining a
vacuum expectation value (vev). Define this expectation
value as ⟨S†S⟩ = v′2/2. We requires dim(V) + 1 ≤ dim(S)
so that all of the components of the vector become massive
in the presence of a scalar field obtaining a vev, through
eaten Goldstone components of S.9

One can use the global symmetry rotations on S to ro-
tate the new vev to a (uneaten) component of S, denoted
s. The interaction of s with H†H cannot be forbidden by
an explicit G breaking without violating our assumptions.
This would introduce highly constrained low energy effects

9 An additional non goldstone incomplete scalar multiplet is fa-
mously required when introducing a vev in this manner [30–32].
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into the SMEFT through the vev v′ leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ × GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)−
λ′

4
(S†S −

v′2

2
)2 + λSHS† S H† H.

(23)

Here the covariant derivative is Dµ = ∂µ + igVVaha with
ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v′ + s+ · · · ) /

√
2 + h′

a ρa where ρa corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v′ must be ar-
ranged to break the dim(V) h′

a generators. Simultaneously
v′ must not break the G subgroup, so ga⟨S⟩ = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

∆L6 = −
2λ2SH

λ′m2
s
QH✷ −

4

λ′
(Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = λ′ v′2/2.
In addition, L4 terms are induced that require a finite
redefinition of λ and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the λ′ → 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.
In order to avoid assuming a UV Higgs mechanism, we

can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
Ψ, so that the vector fields are Vµ ∼ ⟨Ψ̄γµ Ψ⟩ conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G′. The Ψ are charged under
G′ or a larger group H with H ⊃ G′.
We can consider G′ or the proper subgroup case where

G′ ⊂ H without loss of generality with the following ar-
guments. The Ψ belongs to SU(3), and N ∈ {3, 3̄,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the Ψ irreducible representations.
In the case where the Ψ belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⊗ P̄ the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N ∈ P⊗P multiple rep-
resentations result, for example in the case of P = 3, the 3̄
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
have a cut off scale proximate to the massive vectors mass
scale for the cases consistent with our assumptions.11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of Ψ carrying representations of
unequal dimension N ∈ P⊗R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N ∈ {3, 3̄,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate ⟨Ψ̄γµΨ⟩ with zero U(1)Y charge from the prod-
uct P⊗ P̄, R⊗ R̄. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.
For all of these reasons, orphaned vector fields with non-

trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M ≫ v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the Ψ are charged under U(1)Y .
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the η′ [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ∼ v. As such effects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v′ leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ × GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)−
λ′

4
(S†S −

v′2

2
)2 + λSHS† S H† H.

(23)

Here the covariant derivative is Dµ = ∂µ + igVVaha with
ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v′ + s+ · · · ) /

√
2 + h′

a ρa where ρa corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v′ must be ar-
ranged to break the dim(V) h′

a generators. Simultaneously
v′ must not break the G subgroup, so ga⟨S⟩ = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

∆L6 = −
2λ2SH

λ′m2
s
QH✷ −

4

λ′
(Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = λ′ v′2/2.
In addition, L4 terms are induced that require a finite
redefinition of λ and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the λ′ → 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.
In order to avoid assuming a UV Higgs mechanism, we

can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
Ψ, so that the vector fields are Vµ ∼ ⟨Ψ̄γµ Ψ⟩ conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G′. The Ψ are charged under
G′ or a larger group H with H ⊃ G′.
We can consider G′ or the proper subgroup case where

G′ ⊂ H without loss of generality with the following ar-
guments. The Ψ belongs to SU(3), and N ∈ {3, 3̄,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the Ψ irreducible representations.
In the case where the Ψ belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⊗ P̄ the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N ∈ P⊗P multiple rep-
resentations result, for example in the case of P = 3, the 3̄
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
have a cut off scale proximate to the massive vectors mass
scale for the cases consistent with our assumptions.11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of Ψ carrying representations of
unequal dimension N ∈ P⊗R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N ∈ {3, 3̄,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate ⟨Ψ̄γµΨ⟩ with zero U(1)Y charge from the prod-
uct P⊗ P̄, R⊗ R̄. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.
For all of these reasons, orphaned vector fields with non-

trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M ≫ v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the Ψ are charged under U(1)Y .
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the η′ [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ∼ v. As such effects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v′ leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ × GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)−
λ′

4
(S†S −

v′2

2
)2 + λSHS† S H† H.

(23)

Here the covariant derivative is Dµ = ∂µ + igVVaha with
ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v′ + s+ · · · ) /

√
2 + h′

a ρa where ρa corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v′ must be ar-
ranged to break the dim(V) h′

a generators. Simultaneously
v′ must not break the G subgroup, so ga⟨S⟩ = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

∆L6 = −
2λ2SH

λ′m2
s
QH✷ −

4

λ′
(Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = λ′ v′2/2.
In addition, L4 terms are induced that require a finite
redefinition of λ and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the λ′ → 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.
In order to avoid assuming a UV Higgs mechanism, we

can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
Ψ, so that the vector fields are Vµ ∼ ⟨Ψ̄γµ Ψ⟩ conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G′. The Ψ are charged under
G′ or a larger group H with H ⊃ G′.
We can consider G′ or the proper subgroup case where

G′ ⊂ H without loss of generality with the following ar-
guments. The Ψ belongs to SU(3), and N ∈ {3, 3̄,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the Ψ irreducible representations.
In the case where the Ψ belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⊗ P̄ the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N ∈ P⊗P multiple rep-
resentations result, for example in the case of P = 3, the 3̄
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
have a cut off scale proximate to the massive vectors mass
scale for the cases consistent with our assumptions.11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of Ψ carrying representations of
unequal dimension N ∈ P⊗R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N ∈ {3, 3̄,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate ⟨Ψ̄γµΨ⟩ with zero U(1)Y charge from the prod-
uct P⊗ P̄, R⊗ R̄. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.
For all of these reasons, orphaned vector fields with non-

trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M ≫ v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the Ψ are charged under U(1)Y .
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the η′ [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ∼ v. As such effects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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At least one sibling field (i.e. a singlet scalar acquiring the VEV) is needed. 

7

into the SMEFT through the vev v′ leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ × GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)−
λ′

4
(S†S −

v′2

2
)2 + λSHS† S H† H.

(23)

Here the covariant derivative is Dµ = ∂µ + igVVaha with
ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v′ + s+ · · · ) /

√
2 + h′

a ρa where ρa corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v′ must be ar-
ranged to break the dim(V) h′

a generators. Simultaneously
v′ must not break the G subgroup, so ga⟨S⟩ = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

∆L6 = −
2λ2SH

λ′m2
s
QH✷ −

4

λ′
(Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = λ′ v′2/2.
In addition, L4 terms are induced that require a finite
redefinition of λ and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the λ′ → 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.
In order to avoid assuming a UV Higgs mechanism, we

can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
Ψ, so that the vector fields are Vµ ∼ ⟨Ψ̄γµ Ψ⟩ conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G′. The Ψ are charged under
G′ or a larger group H with H ⊃ G′.
We can consider G′ or the proper subgroup case where

G′ ⊂ H without loss of generality with the following ar-
guments. The Ψ belongs to SU(3), and N ∈ {3, 3̄,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the Ψ irreducible representations.
In the case where the Ψ belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⊗ P̄ the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N ∈ P⊗P multiple rep-
resentations result, for example in the case of P = 3, the 3̄
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
have a cut off scale proximate to the massive vectors mass
scale for the cases consistent with our assumptions.11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of Ψ carrying representations of
unequal dimension N ∈ P⊗R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N ∈ {3, 3̄,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate ⟨Ψ̄γµΨ⟩ with zero U(1)Y charge from the prod-
uct P⊗ P̄, R⊗ R̄. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.
For all of these reasons, orphaned vector fields with non-

trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M ≫ v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the Ψ are charged under U(1)Y .
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the η′ [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ∼ v. As such effects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

leading to one extra operator are generated,

the	ones	induced	by	integra?ng	 
out	the	vector	field.	
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into the SMEFT through the vev v′ leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ × GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)−
λ′

4
(S†S −

v′2

2
)2 + λSHS† S H† H.

(23)

Here the covariant derivative is Dµ = ∂µ + igVVaha with
ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v′ + s+ · · · ) /

√
2 + h′

a ρa where ρa corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v′ must be ar-
ranged to break the dim(V) h′

a generators. Simultaneously
v′ must not break the G subgroup, so ga⟨S⟩ = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

∆L6 = −
2λ2SH

λ′m2
s
QH✷ −

4

λ′
(Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = λ′ v′2/2.
In addition, L4 terms are induced that require a finite
redefinition of λ and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the λ′ → 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.
In order to avoid assuming a UV Higgs mechanism, we

can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
Ψ, so that the vector fields are Vµ ∼ ⟨Ψ̄γµ Ψ⟩ conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G′. The Ψ are charged under
G′ or a larger group H with H ⊃ G′.
We can consider G′ or the proper subgroup case where

G′ ⊂ H without loss of generality with the following ar-
guments. The Ψ belongs to SU(3), and N ∈ {3, 3̄,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the Ψ irreducible representations.
In the case where the Ψ belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⊗ P̄ the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N ∈ P⊗P multiple rep-
resentations result, for example in the case of P = 3, the 3̄
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
have a cut off scale proximate to the massive vectors mass
scale for the cases consistent with our assumptions.11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of Ψ carrying representations of
unequal dimension N ∈ P⊗R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N ∈ {3, 3̄,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate ⟨Ψ̄γµΨ⟩ with zero U(1)Y charge from the prod-
uct P⊗ P̄, R⊗ R̄. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.
For all of these reasons, orphaned vector fields with non-

trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M ≫ v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the Ψ are charged under U(1)Y .
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the η′ [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ∼ v. As such effects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Consider a composite massive vector generated by a 
hypothetical UV strong sector, with spin-1/2 constituents Ψ, 

This composite field carries at least one non-trivial representation, 
denoted as      under one of the groups GQ , GL , SU(3)C or SU(2)L.

7

into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v′ leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ × GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)−
λ′

4
(S†S −

v′2

2
)2 + λSHS† S H† H.

(23)

Here the covariant derivative is Dµ = ∂µ + igVVaha with
ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v′ + s+ · · · ) /

√
2 + h′

a ρa where ρa corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v′ must be ar-
ranged to break the dim(V) h′

a generators. Simultaneously
v′ must not break the G subgroup, so ga⟨S⟩ = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

∆L6 = −
2λ2SH

λ′m2
s
QH✷ −

4

λ′
(Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = λ′ v′2/2.
In addition, L4 terms are induced that require a finite
redefinition of λ and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the λ′ → 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.
In order to avoid assuming a UV Higgs mechanism, we

can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
Ψ, so that the vector fields are Vµ ∼ ⟨Ψ̄γµ Ψ⟩ conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G′. The Ψ are charged under
G′ or a larger group H with H ⊃ G′.
We can consider G′ or the proper subgroup case where

G′ ⊂ H without loss of generality with the following ar-
guments. The Ψ belongs to SU(3), and N ∈ {3, 3̄,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the Ψ irreducible representations.
In the case where the Ψ belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⊗ P̄ the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N ∈ P⊗P multiple rep-
resentations result, for example in the case of P = 3, the 3̄
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
have a cut off scale proximate to the massive vectors mass
scale for the cases consistent with our assumptions.11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of Ψ carrying representations of
unequal dimension N ∈ P⊗R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N ∈ {3, 3̄,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate ⟨Ψ̄γµΨ⟩ with zero U(1)Y charge from the prod-
uct P⊗ P̄, R⊗ R̄. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.
For all of these reasons, orphaned vector fields with non-

trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M ≫ v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the Ψ are charged under U(1)Y .
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the η′ [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ∼ v. As such effects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Consider a composite massive vector generated by a 
hypothetical UV strong sector, with spin-1/2 constituents Ψ, 

This composite field carries at least one non-trivial representation, 
denoted as      under one of the groups GQ , GL , SU(3)C or SU(2)L.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Of our interest,
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v′ leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ × GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)−
λ′

4
(S†S −

v′2

2
)2 + λSHS† S H† H.

(23)

Here the covariant derivative is Dµ = ∂µ + igVVaha with
ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v′ + s+ · · · ) /

√
2 + h′

a ρa where ρa corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v′ must be ar-
ranged to break the dim(V) h′

a generators. Simultaneously
v′ must not break the G subgroup, so ga⟨S⟩ = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

∆L6 = −
2λ2SH

λ′m2
s
QH✷ −

4

λ′
(Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = λ′ v′2/2.
In addition, L4 terms are induced that require a finite
redefinition of λ and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the λ′ → 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.
In order to avoid assuming a UV Higgs mechanism, we

can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
Ψ, so that the vector fields are Vµ ∼ ⟨Ψ̄γµ Ψ⟩ conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G′. The Ψ are charged under
G′ or a larger group H with H ⊃ G′.
We can consider G′ or the proper subgroup case where

G′ ⊂ H without loss of generality with the following ar-
guments. The Ψ belongs to SU(3), and N ∈ {3, 3̄,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the Ψ irreducible representations.
In the case where the Ψ belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⊗ P̄ the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N ∈ P⊗P multiple rep-
resentations result, for example in the case of P = 3, the 3̄
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
have a cut off scale proximate to the massive vectors mass
scale for the cases consistent with our assumptions.11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of Ψ carrying representations of
unequal dimension N ∈ P⊗R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N ∈ {3, 3̄,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate ⟨Ψ̄γµΨ⟩ with zero U(1)Y charge from the prod-
uct P⊗ P̄, R⊗ R̄. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.
For all of these reasons, orphaned vector fields with non-

trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M ≫ v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the Ψ are charged under U(1)Y .
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the η′ [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ∼ v. As such effects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Consider a composite massive vector generated by a 
hypothetical UV strong sector, with spin-1/2 constituents Ψ, 

This composite field carries at least one non-trivial representation, 
denoted as      under one of the groups GQ , GL , SU(3)C or SU(2)L.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Of our interest,
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02
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Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.
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Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.
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Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider
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Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives
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in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v′ leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ × GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)−
λ′

4
(S†S −

v′2

2
)2 + λSHS† S H† H.

(23)

Here the covariant derivative is Dµ = ∂µ + igVVaha with
ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v′ + s+ · · · ) /

√
2 + h′

a ρa where ρa corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v′ must be ar-
ranged to break the dim(V) h′

a generators. Simultaneously
v′ must not break the G subgroup, so ga⟨S⟩ = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

∆L6 = −
2λ2SH

λ′m2
s
QH✷ −

4

λ′
(Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = λ′ v′2/2.
In addition, L4 terms are induced that require a finite
redefinition of λ and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the λ′ → 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.
In order to avoid assuming a UV Higgs mechanism, we

can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
Ψ, so that the vector fields are Vµ ∼ ⟨Ψ̄γµ Ψ⟩ conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G′. The Ψ are charged under
G′ or a larger group H with H ⊃ G′.
We can consider G′ or the proper subgroup case where

G′ ⊂ H without loss of generality with the following ar-
guments. The Ψ belongs to SU(3), and N ∈ {3, 3̄,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the Ψ irreducible representations.
In the case where the Ψ belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⊗ P̄ the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N ∈ P⊗P multiple rep-
resentations result, for example in the case of P = 3, the 3̄
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
have a cut off scale proximate to the massive vectors mass
scale for the cases consistent with our assumptions.11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of Ψ carrying representations of
unequal dimension N ∈ P⊗R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N ∈ {3, 3̄,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate ⟨Ψ̄γµΨ⟩ with zero U(1)Y charge from the prod-
uct P⊗ P̄, R⊗ R̄. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.
For all of these reasons, orphaned vector fields with non-

trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M ≫ v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the Ψ are charged under U(1)Y .
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the η′ [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ∼ v. As such effects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Consider a composite massive vector generated by a 
hypothetical UV strong sector, with spin-1/2 constituents Ψ, 

This composite field carries at least one non-trivial representation, 
denoted as      under one of the groups GQ , GL , SU(3)C or SU(2)L.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Of our interest,
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Ψ belongs to SU(2) Ψ belongs to SU(3)
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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Option 2: Compositeness
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into the SMEFT through the vev v′ leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ × GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)−
λ′

4
(S†S −

v′2

2
)2 + λSHS† S H† H.

(23)

Here the covariant derivative is Dµ = ∂µ + igVVaha with
ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v′ + s+ · · · ) /

√
2 + h′

a ρa where ρa corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v′ must be ar-
ranged to break the dim(V) h′

a generators. Simultaneously
v′ must not break the G subgroup, so ga⟨S⟩ = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

∆L6 = −
2λ2SH

λ′m2
s
QH✷ −

4

λ′
(Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = λ′ v′2/2.
In addition, L4 terms are induced that require a finite
redefinition of λ and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the λ′ → 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.
In order to avoid assuming a UV Higgs mechanism, we

can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
Ψ, so that the vector fields are Vµ ∼ ⟨Ψ̄γµ Ψ⟩ conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G′. The Ψ are charged under
G′ or a larger group H with H ⊃ G′.
We can consider G′ or the proper subgroup case where

G′ ⊂ H without loss of generality with the following ar-
guments. The Ψ belongs to SU(3), and N ∈ {3, 3̄,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the Ψ irreducible representations.
In the case where the Ψ belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⊗ P̄ the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N ∈ P⊗P multiple rep-
resentations result, for example in the case of P = 3, the 3̄
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
have a cut off scale proximate to the massive vectors mass
scale for the cases consistent with our assumptions.11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of Ψ carrying representations of
unequal dimension N ∈ P⊗R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N ∈ {3, 3̄,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate ⟨Ψ̄γµΨ⟩ with zero U(1)Y charge from the prod-
uct P⊗ P̄, R⊗ R̄. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.
For all of these reasons, orphaned vector fields with non-

trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M ≫ v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the Ψ are charged under U(1)Y .
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the η′ [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ∼ v. As such effects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Consider a composite massive vector generated by a 
hypothetical UV strong sector, with spin-1/2 constituents Ψ, 

This composite field carries at least one non-trivial representation, 
denoted as      under one of the groups GQ , GL , SU(3)C or SU(2)L.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Of our interest,
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v′ leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ × GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)−
λ′

4
(S†S −

v′2

2
)2 + λSHS† S H† H.

(23)

Here the covariant derivative is Dµ = ∂µ + igVVaha with
ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v′ + s+ · · · ) /

√
2 + h′

a ρa where ρa corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v′ must be ar-
ranged to break the dim(V) h′

a generators. Simultaneously
v′ must not break the G subgroup, so ga⟨S⟩ = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

∆L6 = −
2λ2SH

λ′m2
s
QH✷ −

4

λ′
(Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = λ′ v′2/2.
In addition, L4 terms are induced that require a finite
redefinition of λ and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the λ′ → 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.
In order to avoid assuming a UV Higgs mechanism, we

can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
Ψ, so that the vector fields are Vµ ∼ ⟨Ψ̄γµ Ψ⟩ conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G′. The Ψ are charged under
G′ or a larger group H with H ⊃ G′.
We can consider G′ or the proper subgroup case where

G′ ⊂ H without loss of generality with the following ar-
guments. The Ψ belongs to SU(3), and N ∈ {3, 3̄,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the Ψ irreducible representations.
In the case where the Ψ belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⊗ P̄ the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N ∈ P⊗P multiple rep-
resentations result, for example in the case of P = 3, the 3̄
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
have a cut off scale proximate to the massive vectors mass
scale for the cases consistent with our assumptions.11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of Ψ carrying representations of
unequal dimension N ∈ P⊗R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N ∈ {3, 3̄,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate ⟨Ψ̄γµΨ⟩ with zero U(1)Y charge from the prod-
uct P⊗ P̄, R⊗ R̄. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.
For all of these reasons, orphaned vector fields with non-

trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M ≫ v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the Ψ are charged under U(1)Y .
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the η′ [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ∼ v. As such effects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Consider a composite massive vector generated by a 
hypothetical UV strong sector, with spin-1/2 constituents Ψ, 

This composite field carries at least one non-trivial representation, 
denoted as      under one of the groups GQ , GL , SU(3)C or SU(2)L.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Consequently, a number of operators are induced when integrated out.

Of our interest,
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.

Ψ belongs to SU(2) Ψ belongs to SU(3)
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider

LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
a with

ha an abstract group generator that defines the non-trivial
representations that the V multiplet carries. S is expanded
as S = (· · · , v0 + s+ · · · ) /p2 + h0

a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
after UV symmetry breaking gives

�L6 = �2�2
SH

�0m2
s

QH2 � 4

�0 (Vµ Vµ)2 + · · · (24)

in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
consider
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ha an abstract group generator that defines the non-trivial
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as S = (· · · , v0 + s+ · · · ) /p2 + h0
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ranged to break the dim(V) h0
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the generators of G are denoted ga.10 Integrating out s
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in addition to the operators induced by integrating out
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In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.
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L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
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can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
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scale for the cases consistent with our assumptions.
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unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯
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R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
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11 This is a generic expectation if the  are charged under U(1)Y.
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these contributions.
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in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯
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R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes
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into the SMEFT through the vev v0 leading to the vector
mass matrix. A vacuum misalignment [33] is assumed to
make the vector mass matrix is symmetric under G in this
work. This results in the Higgs portal coupling not being
suppressed by a GQ ⇥ GL breaking spurion. Concretely
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LSH = (DµS)† (DµS)� �0

4
(S†S � v02

2
)2 + �SHS† S H† H.

(23)

Here the covariant derivative is Dµ = @µ + igVVah
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a ⇢a where ⇢a corre-
sponds to the goldstone components of the S multiplet
that are eaten to generate the vector mass, and the · · ·
fill out the full dimension of S. The vev v0 must be ar-
ranged to break the dim(V) h0

a generators. Simultaneously
v0 must not break the G subgroup, so gahSi = 0, where
the generators of G are denoted ga.10 Integrating out s
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in addition to the operators induced by integrating out
the vector field. Here the scalar mass is m2

s = �0 v02/2.
In addition, L4 terms are induced that require a finite
redefinition of � and v in the SM to rearrange LSM back
into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
the spectrum.

In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
representation under one of the groups GQ,GL, SU(3)C or
SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
G0 or a larger group H with H � G0.

We can consider G0 or the proper subgroup case where
G0 ⇢ H without loss of generality with the following ar-
guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
est. The non-trivial representations in N can be generated
from tensor products of the  irreducible representations.
In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
that there will be uneaten goldstone bosons, or additional massive
vectors in the spectrum. Here we are considering an exceptional
minimal spectrum when examining the one operator question.

a mass proximate to a color octet vector, which induces a
number of operators in L6 when integrated out. Similarly,
a flavor singlet sibling under a flavor group is also expected
for flavor octets. Interestingly, the flavor 8 vector fields we
considered all have zero U(1)Y charges, so their flavor sin-
glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus

have a cut o↵ scale proximate to the massive vectors mass

scale for the cases consistent with our assumptions.

11 Next
we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯

P, R⌦ ¯

R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
Q + Lint

Q , (25)

11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
13 Here we are referring to the dominant component of the mass of

the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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into standard from. Note the sizable vector four point
interaction, that is enhanced in the �0 ! 0 limit, indicating
unitarity violation when the UV Higgs is integrated out of
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In order to avoid assuming a UV Higgs mechanism, we
can consider a composite massive vector generated by a
hypothetical UV strong sector, with spin-1/2 constituents
 , so that the vector fields are Vµ ⇠ h ̄�µ i conden-
sates. This composite field carries at least one non-trivial
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SU(2)L to reduce the SMEFT operator profile to one op-
erator. Denote this non-trivial representation as N, and
the corresponding group as G0. The  are charged under
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We can consider G0 or the proper subgroup case where
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guments. The  belongs to SU(3), and N 2 {3,¯3,6,8},
or SU(2) with N = {2,3} for the vector fields of inter-
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In the case where the  belongs to SU(3) we denote the
irreducible representations as P,R, which need not have
the same dimension. When N is generated by P⌦ ¯

P the
singlet representation is also generated in the tensor prod-
uct. A color singlet sibling under SU(3)C is expected with

10 In general one expects the symmetry breaking pattern to be such
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minimal spectrum when examining the one operator question.
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number of operators in L6 when integrated out. Similarly,
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glet siblings with the same U(1)Y charge are not forbidden
by the flavor symmetry to have the coupling with the cor-
responding quark bi-linear and also with the JH,µ of van-
ishing U(1)Y charge, inducing more than one operator in
L6 when integrated out. When N 2 P⌦P multiple rep-
resentations result, for example in the case of P = 3, the ¯3
and 6 fields are simultaneously present. Such fields (VX,XI)
can induce the same operator when integrated out. On the
other hand, these fields necessarily carry U(1)Y, and thus
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scale for the cases consistent with our assumptions.
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we consider the cases when the non-trivial representation
is generated by bi-linears of  carrying representations of
unequal dimension N 2 P⌦R. By inspection of the the
tensor products of SU(3) with triality 0 and 1 [38] it is pos-
sible to generate each N 2 {3,¯3,6,8} for SU(3) in such a
manner. However, for each P and R one can also form a
condensate h ̄�µ i with zero U(1)Y charge from the prod-
uct P⌦ ¯
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R. Two more pure singlet spin one bound
states proximate in mass to MV are expected in the spec-
trum, unless forbidden by another symmetry.12 Restrict-
ing the discussion for non-trivial SU(2) representations to
the vector cases that do not carry U(1)Y and induce one
operator at tree level, we are left with the field V1

IX. Fur-
ther, V1

IX has a large flavor breaking spurion proportional
to the top Yukawa generating more operators at tree level
when integrated out, see Table V.

For all of these reasons, orphaned vector fields with non-
trivial representations of the SM symmetry groups demand
siblings and a “good UV home”.

B. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of
the massive fermion(s) (denoted M with M � v) must be
introduced in some manner. As discussed in the previous
section, a chiral fermion with a UV Higgs mechanism in-
duces more operators at tree level when integrating out the
UV scalar field. In this section, we confine the discussion
to general vector like fermions. The general Lagrangian
associated with a pair of heavy vector-like quark (VLQ)
denoted by QL,QR that are flavor singlets includes

LQ = L0
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11 This is a generic expectation if the  are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted

in analogy to the ⌘0 [34].
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the fermion from the new sector. In addition, there will be mass
contributions and splitting proportional to ⇠ v. As such e↵ects
do not act to reduce the IR SMEFT operator profile, we neglect
these contributions.
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Table 7
Tree level L6 operators induced in the SMEFT with massive quarks integrated out.

Case SU(2)L U(1)Y JQ
L Q uH Q dH Q (1)

Hq Q (3)
Hq

Q(1)
I 1 − 1

3 Q̄ L H
√ √ √

Q(3)
I 3 − 1

3 σ I Q̄ L H
√ √ √ √

Q(1)
II 1 2

3 Q̄ L H∗ √ √ √

Q(3)
II 3 2

3 σ I Q̄ L H∗ √ √ √ √

Case SU(2)L U(1)Y JQ
R Q uH Q dH Q Hu Q Hd Q Hud

QIII 2 1
6 ūR H T √ √ √ √ √

QIV 2 1
6 d̄R H† √ √ √ √ √

QV 2 7
6 ūR H† √ √

QVI 2 − 5
6 d̄R H T √ √

Table 8
Tree level L6 operators induced in the SMEFT with massive quarks integrated out 
in some sample cases with flavor quantum numbers, see Refs. [34–36] for more 
discussion on the phenomenology of these fields.

Case SU(2)L U(1)Y GQ JQ
R Q uH Q dH Q Hu Q Hd

QVII 2 1
6 (3,1,1) ūR H T √ √

QVIII 2 1
6 (1,3,1) d̄R H† √ √

for the SU(2)L singlet and doublets and

L0
Q = Tr

[
Q̄L i /DQL + Q̄R i /DQR

]
− MTr

[
Q̄LQR + Q̄RQL

]
(27)

for the 3 of SU(2)L. The interaction term Lint
Q for the VLQs to the 

SM fermions through the Higgs doublet is defined as

Lint
Q = JQ

L QR + JQ
R QL + h.c. (28)

The requirement that the action be stationary under variations of 
the heavy VLQ fields Q̄L, Q̄R results in two coupled EOMs:

i /DQL − MQR + ( JQ
R γ 0)† = 0, (29)

i /DQR − MQL + ( JQ
L γ 0)† = 0. (30)

Mathematically, the coupled Eqns. (29) and (30) can be solved it-
eratively. Taking the limit of large M , one can expand the classical 
solutions schematically as

QR = ( JQ
R γ 0)†

M
+ i /D

M2 ( JQ
L γ 0)† + · · · , (31)

QL = ( JQ
L γ 0)†

M
+ i /D

M2 ( JQ
R γ 0)† + · · · . (32)

When substituted back into Eqn. (25) the effect of the leading term 
in these solutions vanishes due to chirality.

We generically find that multiple operators are induced at tree 
level when integrating out a vector like fermion. The cases where 
the vector like quark do not carry flavor quantum numbers are 
shown in Table 7. In the cases that the VLQs carry flavor quantum 
numbers, previously discussed in Refs. [34–36], multiple operators 
are again obtained. We show some sample cases of this type in 
Table 8. Multiple operators at tree level are also obtained in the 
case of integrating out vector like leptons, see Table 9.

3.3. Spin 0 states

Unlike the cases of massive vectors and spin-1/2 fields, a mas-
sive scalar can couple into the SM through a number of interac-
tions and naively generate many operators in the IR SMEFT match-
ing limit. However, the examples (SA , SB and SC in Table 10) 
discussed in Refs. [8,38] show that only one operator Q H , can be 

Table 9
Tree level L6 operators induced in the SMEFT with massive leptons integrated out.

Case SU(2)L U(1)Y JL
L Q (1)

Hl Q (3)
Hl Q eH Q (1)

He

L(1)
I 1 −1 L̄L H

√ √ √

L(3)
I 3 −1 σ I L̄L H

√ √ √

Case SU(2)L U(1)Y JL
R Q (1)

Hl Q (3)
Hl Q eH Q (1)

He

LIII 2 − 1
2 ēR H† √ √

LIV 2 − 3
2 ēR H T √ √

Table 10
L6 operators obtained at tree level when flavor and color singlet scalars are inte-
grated out. #S indicates a dimensionfull coupling.

Case SU(2)L U(1)Y Couplings Q H Q H✷
SA 2 1/2 V (H,SA)

√
SB 4 3/2 (H3)† SB + h.c.

√
SC 4 1/2 H†SC H† H + h.c.

√
S1

I 1 0 (#S SI + (SI)
†SI)H† H

√ √
S3

I 3 0 #S SIσ H† H , (SI)
†SI H† H

√ √
S1

II 1 −1 #S SII H T H , (SII)
†SII H† H

√ √
S3

II 3 −1 #S SIIσ H T H , (SII)
†SII H† H

√ √

obtained if an explicit scale is introduced without a dynamical ori-
gin to give the scalar a mass. For instance, SA couples through 
linear and bilinear interactions in the full multi-scalar potential, 
denoted V (H, SA) in Table 10. To reduce the operator profile of 
SA to one operator, it is assumed that SA has a discrete or addi-
tional U(1) symmetry. Such a symmetry forbids a large number of 
four-fermion operators at tree level, and also a number of linear S
interactions in the scalar potential that otherwise generate Q H✷ . 
Similarly, SB,C also have minimal one operator profiles containing 
only Q H . However, this again follows from the UV scale being in-
troduced without a dynamical origin. In all these cases, a hierarchy 
problem in the UV sector is also introduced.

Table 10 also lists the cases of flavor singlet scalar fields that 
couple to through the S2 H† H interaction and in addition have 
an independent SH† H interaction via a dimensionfull coupling. In 
these cases, the operators Q H and Q H✷ are simultaneously pro-
duced in tree level matchings.

As in the case of massive vectors and fermions, scalars can carry 
non-trivial representations under GQ or GL to isolate the coupling 
to a single fermion bi-linear. These states have been studied pre-
viously in Refs. [39–43]. To avoid an explicit breaking of GQ or GL
in this coupling, all of these states carry at least two non-trivial 
representations under the flavor (GQ or GL) or gauge (SU(3)C or 
SU(2)L) groups. For instance, consider integrating out “di-quark” 
states of this form discussed in Ref. [41] at tree level. A scalar cur-
rent operator of the form ψ̄1Lψ2R ψ̄2Rψ1L is directly obtained. This 
operator can be projected into the Warsaw basis via Fierz transfor-
mation,

(ψ̄1Lψ4R)(ψ̄3Rψ2L) = −1
2
(ψ̄1Lγµψ2L)(ψ̄3Rγ µψ4R). (33)

As the “di-quark” scalars are in non-trivial representations under 
SU(2)L and/or SU(3)C groups, the index associated with these sym-
metries are not contracted between the fermions in each vector 
current, cf. the right hand side of Eqn. (33). When reducing to the 
Warsaw basis one uses the SU(3) and SU(2) relations

T A
ij T A

kl = 1
2
δilδ jk − 1

6
δi jδkl, (34)

σ I
jk σ I

mn = 2δ jn δmk − δ jk δmn. (35)

Concretely, performing this mapping for the “di-quark” scalars that 
couple to ūR Q L and d̄R Q L induce the operators Q (1,8)

qu and Q (1,8)
qd
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Table 7
Tree level L6 operators induced in the SMEFT with massive quarks integrated out.

Case SU(2)L U(1)Y JQ
L Q uH Q dH Q (1)

Hq Q (3)
Hq

Q(1)
I 1 − 1

3 Q̄ L H
√ √ √

Q(3)
I 3 − 1

3 σ I Q̄ L H
√ √ √ √

Q(1)
II 1 2

3 Q̄ L H∗ √ √ √

Q(3)
II 3 2

3 σ I Q̄ L H∗ √ √ √ √

Case SU(2)L U(1)Y JQ
R Q uH Q dH Q Hu Q Hd Q Hud

QIII 2 1
6 ūR H T √ √ √ √ √

QIV 2 1
6 d̄R H† √ √ √ √ √

QV 2 7
6 ūR H† √ √

QVI 2 − 5
6 d̄R H T √ √

Table 8
Tree level L6 operators induced in the SMEFT with massive quarks integrated out 
in some sample cases with flavor quantum numbers, see Refs. [34–36] for more 
discussion on the phenomenology of these fields.

Case SU(2)L U(1)Y GQ JQ
R Q uH Q dH Q Hu Q Hd

QVII 2 1
6 (3,1,1) ūR H T √ √

QVIII 2 1
6 (1,3,1) d̄R H† √ √

for the SU(2)L singlet and doublets and

L0
Q = Tr

[
Q̄L i /DQL + Q̄R i /DQR

]
− MTr

[
Q̄LQR + Q̄RQL

]
(27)

for the 3 of SU(2)L. The interaction term Lint
Q for the VLQs to the 

SM fermions through the Higgs doublet is defined as

Lint
Q = JQ

L QR + JQ
R QL + h.c. (28)

The requirement that the action be stationary under variations of 
the heavy VLQ fields Q̄L, Q̄R results in two coupled EOMs:

i /DQL − MQR + ( JQ
R γ 0)† = 0, (29)

i /DQR − MQL + ( JQ
L γ 0)† = 0. (30)

Mathematically, the coupled Eqns. (29) and (30) can be solved it-
eratively. Taking the limit of large M , one can expand the classical 
solutions schematically as

QR = ( JQ
R γ 0)†

M
+ i /D

M2 ( JQ
L γ 0)† + · · · , (31)

QL = ( JQ
L γ 0)†

M
+ i /D

M2 ( JQ
R γ 0)† + · · · . (32)

When substituted back into Eqn. (25) the effect of the leading term 
in these solutions vanishes due to chirality.

We generically find that multiple operators are induced at tree 
level when integrating out a vector like fermion. The cases where 
the vector like quark do not carry flavor quantum numbers are 
shown in Table 7. In the cases that the VLQs carry flavor quantum 
numbers, previously discussed in Refs. [34–36], multiple operators 
are again obtained. We show some sample cases of this type in 
Table 8. Multiple operators at tree level are also obtained in the 
case of integrating out vector like leptons, see Table 9.

3.3. Spin 0 states

Unlike the cases of massive vectors and spin-1/2 fields, a mas-
sive scalar can couple into the SM through a number of interac-
tions and naively generate many operators in the IR SMEFT match-
ing limit. However, the examples (SA , SB and SC in Table 10) 
discussed in Refs. [8,38] show that only one operator Q H , can be 

Table 9
Tree level L6 operators induced in the SMEFT with massive leptons integrated out.

Case SU(2)L U(1)Y JL
L Q (1)

Hl Q (3)
Hl Q eH Q (1)

He

L(1)
I 1 −1 L̄L H

√ √ √

L(3)
I 3 −1 σ I L̄L H

√ √ √

Case SU(2)L U(1)Y JL
R Q (1)

Hl Q (3)
Hl Q eH Q (1)

He

LIII 2 − 1
2 ēR H† √ √

LIV 2 − 3
2 ēR H T √ √

Table 10
L6 operators obtained at tree level when flavor and color singlet scalars are inte-
grated out. #S indicates a dimensionfull coupling.

Case SU(2)L U(1)Y Couplings Q H Q H✷
SA 2 1/2 V (H,SA)

√
SB 4 3/2 (H3)† SB + h.c.

√
SC 4 1/2 H†SC H† H + h.c.

√
S1

I 1 0 (#S SI + (SI)
†SI)H† H

√ √
S3

I 3 0 #S SIσ H† H , (SI)
†SI H† H

√ √
S1

II 1 −1 #S SII H T H , (SII)
†SII H† H

√ √
S3

II 3 −1 #S SIIσ H T H , (SII)
†SII H† H

√ √

obtained if an explicit scale is introduced without a dynamical ori-
gin to give the scalar a mass. For instance, SA couples through 
linear and bilinear interactions in the full multi-scalar potential, 
denoted V (H, SA) in Table 10. To reduce the operator profile of 
SA to one operator, it is assumed that SA has a discrete or addi-
tional U(1) symmetry. Such a symmetry forbids a large number of 
four-fermion operators at tree level, and also a number of linear S
interactions in the scalar potential that otherwise generate Q H✷ . 
Similarly, SB,C also have minimal one operator profiles containing 
only Q H . However, this again follows from the UV scale being in-
troduced without a dynamical origin. In all these cases, a hierarchy 
problem in the UV sector is also introduced.

Table 10 also lists the cases of flavor singlet scalar fields that 
couple to through the S2 H† H interaction and in addition have 
an independent SH† H interaction via a dimensionfull coupling. In 
these cases, the operators Q H and Q H✷ are simultaneously pro-
duced in tree level matchings.

As in the case of massive vectors and fermions, scalars can carry 
non-trivial representations under GQ or GL to isolate the coupling 
to a single fermion bi-linear. These states have been studied pre-
viously in Refs. [39–43]. To avoid an explicit breaking of GQ or GL
in this coupling, all of these states carry at least two non-trivial 
representations under the flavor (GQ or GL) or gauge (SU(3)C or 
SU(2)L) groups. For instance, consider integrating out “di-quark” 
states of this form discussed in Ref. [41] at tree level. A scalar cur-
rent operator of the form ψ̄1Lψ2R ψ̄2Rψ1L is directly obtained. This 
operator can be projected into the Warsaw basis via Fierz transfor-
mation,

(ψ̄1Lψ4R)(ψ̄3Rψ2L) = −1
2
(ψ̄1Lγµψ2L)(ψ̄3Rγ µψ4R). (33)

As the “di-quark” scalars are in non-trivial representations under 
SU(2)L and/or SU(3)C groups, the index associated with these sym-
metries are not contracted between the fermions in each vector 
current, cf. the right hand side of Eqn. (33). When reducing to the 
Warsaw basis one uses the SU(3) and SU(2) relations

T A
ij T A

kl = 1
2
δilδ jk − 1

6
δi jδkl, (34)

σ I
jk σ I

mn = 2δ jn δmk − δ jk δmn. (35)

Concretely, performing this mapping for the “di-quark” scalars that 
couple to ūR Q L and d̄R Q L induce the operators Q (1,8)

qu and Q (1,8)
qd
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Table 7
Tree level L6 operators induced in the SMEFT with massive quarks integrated out.

Case SU(2)L U(1)Y JQ
L Q uH Q dH Q (1)

Hq Q (3)
Hq

Q(1)
I 1 − 1

3 Q̄ L H
√ √ √

Q(3)
I 3 − 1

3 σ I Q̄ L H
√ √ √ √

Q(1)
II 1 2

3 Q̄ L H∗ √ √ √

Q(3)
II 3 2

3 σ I Q̄ L H∗ √ √ √ √

Case SU(2)L U(1)Y JQ
R Q uH Q dH Q Hu Q Hd Q Hud

QIII 2 1
6 ūR H T √ √ √ √ √

QIV 2 1
6 d̄R H† √ √ √ √ √

QV 2 7
6 ūR H† √ √

QVI 2 − 5
6 d̄R H T √ √

Table 8
Tree level L6 operators induced in the SMEFT with massive quarks integrated out 
in some sample cases with flavor quantum numbers, see Refs. [34–36] for more 
discussion on the phenomenology of these fields.

Case SU(2)L U(1)Y GQ JQ
R Q uH Q dH Q Hu Q Hd

QVII 2 1
6 (3,1,1) ūR H T √ √

QVIII 2 1
6 (1,3,1) d̄R H† √ √

for the SU(2)L singlet and doublets and

L0
Q = Tr

[
Q̄L i /DQL + Q̄R i /DQR

]
− MTr

[
Q̄LQR + Q̄RQL

]
(27)

for the 3 of SU(2)L. The interaction term Lint
Q for the VLQs to the 

SM fermions through the Higgs doublet is defined as

Lint
Q = JQ

L QR + JQ
R QL + h.c. (28)

The requirement that the action be stationary under variations of 
the heavy VLQ fields Q̄L, Q̄R results in two coupled EOMs:

i /DQL − MQR + ( JQ
R γ 0)† = 0, (29)

i /DQR − MQL + ( JQ
L γ 0)† = 0. (30)

Mathematically, the coupled Eqns. (29) and (30) can be solved it-
eratively. Taking the limit of large M , one can expand the classical 
solutions schematically as

QR = ( JQ
R γ 0)†

M
+ i /D

M2 ( JQ
L γ 0)† + · · · , (31)

QL = ( JQ
L γ 0)†

M
+ i /D

M2 ( JQ
R γ 0)† + · · · . (32)

When substituted back into Eqn. (25) the effect of the leading term 
in these solutions vanishes due to chirality.

We generically find that multiple operators are induced at tree 
level when integrating out a vector like fermion. The cases where 
the vector like quark do not carry flavor quantum numbers are 
shown in Table 7. In the cases that the VLQs carry flavor quantum 
numbers, previously discussed in Refs. [34–36], multiple operators 
are again obtained. We show some sample cases of this type in 
Table 8. Multiple operators at tree level are also obtained in the 
case of integrating out vector like leptons, see Table 9.

3.3. Spin 0 states

Unlike the cases of massive vectors and spin-1/2 fields, a mas-
sive scalar can couple into the SM through a number of interac-
tions and naively generate many operators in the IR SMEFT match-
ing limit. However, the examples (SA , SB and SC in Table 10) 
discussed in Refs. [8,38] show that only one operator Q H , can be 

Table 9
Tree level L6 operators induced in the SMEFT with massive leptons integrated out.

Case SU(2)L U(1)Y JL
L Q (1)

Hl Q (3)
Hl Q eH Q (1)

He

L(1)
I 1 −1 L̄L H

√ √ √

L(3)
I 3 −1 σ I L̄L H

√ √ √

Case SU(2)L U(1)Y JL
R Q (1)

Hl Q (3)
Hl Q eH Q (1)

He

LIII 2 − 1
2 ēR H† √ √

LIV 2 − 3
2 ēR H T √ √

Table 10
L6 operators obtained at tree level when flavor and color singlet scalars are inte-
grated out. #S indicates a dimensionfull coupling.

Case SU(2)L U(1)Y Couplings Q H Q H✷
SA 2 1/2 V (H,SA)

√
SB 4 3/2 (H3)† SB + h.c.

√
SC 4 1/2 H†SC H† H + h.c.

√
S1

I 1 0 (#S SI + (SI)
†SI)H† H

√ √
S3

I 3 0 #S SIσ H† H , (SI)
†SI H† H

√ √
S1

II 1 −1 #S SII H T H , (SII)
†SII H† H

√ √
S3

II 3 −1 #S SIIσ H T H , (SII)
†SII H† H

√ √

obtained if an explicit scale is introduced without a dynamical ori-
gin to give the scalar a mass. For instance, SA couples through 
linear and bilinear interactions in the full multi-scalar potential, 
denoted V (H, SA) in Table 10. To reduce the operator profile of 
SA to one operator, it is assumed that SA has a discrete or addi-
tional U(1) symmetry. Such a symmetry forbids a large number of 
four-fermion operators at tree level, and also a number of linear S
interactions in the scalar potential that otherwise generate Q H✷ . 
Similarly, SB,C also have minimal one operator profiles containing 
only Q H . However, this again follows from the UV scale being in-
troduced without a dynamical origin. In all these cases, a hierarchy 
problem in the UV sector is also introduced.

Table 10 also lists the cases of flavor singlet scalar fields that 
couple to through the S2 H† H interaction and in addition have 
an independent SH† H interaction via a dimensionfull coupling. In 
these cases, the operators Q H and Q H✷ are simultaneously pro-
duced in tree level matchings.

As in the case of massive vectors and fermions, scalars can carry 
non-trivial representations under GQ or GL to isolate the coupling 
to a single fermion bi-linear. These states have been studied pre-
viously in Refs. [39–43]. To avoid an explicit breaking of GQ or GL
in this coupling, all of these states carry at least two non-trivial 
representations under the flavor (GQ or GL) or gauge (SU(3)C or 
SU(2)L) groups. For instance, consider integrating out “di-quark” 
states of this form discussed in Ref. [41] at tree level. A scalar cur-
rent operator of the form ψ̄1Lψ2R ψ̄2Rψ1L is directly obtained. This 
operator can be projected into the Warsaw basis via Fierz transfor-
mation,

(ψ̄1Lψ4R)(ψ̄3Rψ2L) = −1
2
(ψ̄1Lγµψ2L)(ψ̄3Rγ µψ4R). (33)

As the “di-quark” scalars are in non-trivial representations under 
SU(2)L and/or SU(3)C groups, the index associated with these sym-
metries are not contracted between the fermions in each vector 
current, cf. the right hand side of Eqn. (33). When reducing to the 
Warsaw basis one uses the SU(3) and SU(2) relations

T A
ij T A

kl = 1
2
δilδ jk − 1

6
δi jδkl, (34)

σ I
jk σ I

mn = 2δ jn δmk − δ jk δmn. (35)

Concretely, performing this mapping for the “di-quark” scalars that 
couple to ūR Q L and d̄R Q L induce the operators Q (1,8)

qu and Q (1,8)
qd
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As the bi-linear of scalar and its self-conjugate is always singlet, so a 
massive scalar can couple into the SM through a number of interactions
                                               generate many operators in the matching
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For example, the scalar fields which are either singlet or triplet under SU(2)

9

C. Spin 0 states

Unlike the cases of massive vectors and spin-1/2 fields,
a massive scalar can couple into the SM through a number
of interactions and naively generate many operators in the
IR SMEFT matching limit. However, the examples (SA,
SB and SC in Table XI) discussed in Refs. [8, 39] show that
only one operator QH , can be obtained if an explicit scale
is introduced without a dynamical origin to give the scalar
a mass. For instance, SA couples through linear and bilin-
ear interactions in the full multi-scalar potential, denoted
V (H,SA) in Table XI. To reduce the operator profile of
SA to one operator, it is assumed that SA has a discrete
or additional U(1) symmetry. Such a symmetry forbids a
large number of four-fermion operators at tree level, and
also a number of linear S interactions in the scalar po-
tential that otherwise generate QH2. Similarly, SB,C also
have minimal one operator profiles containing only QH .
However, this again follows from the UV scale being in-
troduced without a dynamical origin. In all these cases, a
hierarchy problem in the UV sector is also introduced.

Table XI also lists the cases of flavor singlet scalar fields
that couple to through the S2H†H interaction and in addi-
tion have an independent SH†H interaction via a dimen-
sionfull coupling. In these cases, the operators QH and
QH2 are simultaneously produced in tree level matchings.

As in the case of massive vectors and fermions, scalars
can carry non-trivial representations under GQ or GL to
isolate the coupling to a single fermion bi-linear. These
states have been studied previously in Refs. [40–44]. To
avoid an explicit breaking of GQ or GL in this coupling,
all of these states carry at least two non-trivial represen-
tations under the flavor (GQ or GL) or gauge (SU(3)C
or SU(2)L) groups. For instance, consider integrating
out “di-quark” states of this form discussed in Ref. [42]
at tree level. A scalar current operator of the form
 ̄1L 2R ̄2R 1L is directly obtained. This operator can be
projected into the Warsaw basis via Fierz transformation,

( ̄1L 4R)( ̄3R 2L) = �1

2
( ̄1L�µ 2L)( ̄3R�

µ 4R). (33)

As the “di-quark” scalars are in non-trivial representations
under SU(2)L and/or SU(3)C groups, the index associ-
ated with these symmetries are not contracted between
the fermions in each vector current, c.f. the right hand
side of Eqn. (33). When reducing to the Warsaw basis one
uses the SU(3) and SU(2) relations

TA
ij T

A
kl =

1

2
�il�jk � 1

6
�ij�kl, (34)

�I
jk �

I
mn = 2�jn �mk � �jk �mn. (35)

Concretely, performing this mapping for the “di-quark”
scalars that couple to ūRQL and d̄RQL induce the op-

erators Q
(1,8)
qu and Q

(1,8)
qd respectively. Similarly, the “di-

quark” scalars coupling to QLQL generate Q
(1,3)
qq . On the

other hand, exceptional cases that can generate only one
operator do exist in “di-quark” scalars that couple to right
handed SU(2)L bi-linears of the same fermion field i.e. to

Case SU(2)L U(1)Y Couplings QH QH2

SA 2 1/2 V (H,SA)
p

SB 4 3/2 (H3)† SB + h.c.
p

SC 4 1/2 H†SCH
†H + h.c.

p

Case SU(2)L U(1)Y Couplings QH QH2

S1
I 1 0 (⇤SSI + S†

I SI)H
†H

p p

S3
I 3 0 ⇤SSI�H

†H, S†
I SIH

†H
p p

S1
II 1 �1 ⇤S SII H

TH, S†
IISIIH

†H
p p

S3
II 3 �1 ⇤SSII�H

TH, S†
IISIIH

†H
p p

TABLE XI. L6 operators obtained at tree level when flavor
and colour singlet scalars are integrated out. ⇤S indicates a
dimensionfull coupling.

Case SU(3)C SU(2)L U(1)Y GQ Couples to Op

SIII 3 1 -4/3 (3,1,1) uR uR Quu

SIV 6̄ 1 -4/3 (6̄,1,1) uR uR Quu

SV 3 1 2/3 (1,3,1) dR dR Qdd

SVI 6̄ 1 2/3 (1,6̄,1) dR dR Qdd

Case SU(3)C SU(2)L U(1)Y GL Couples to Op

SVII 1 1 2 (1,6̄) eR eR Qee

TABLE XII. The cases where a single L6 operator is generated
at tree level for di↵erent scalar representations that are not
singlets under the flavor group, without the insertion of spurion
Yukawa fields, from Ref. [42].

pairs of uR, dR and eR. These scalars can induce the sin-
gle operator Quu, Qee, Qdd that are defined in the Warsaw
basis, see the examples in Table XII.

In spite of only QH being induced at tree level in cases
SA,B,C and only one of the operators Quu, Qdd and Qee

obtained at tree level in the cases SIII - SVII, the argu-
ments based on the mass scale generation from a UV Higgs
mechanism with an associated extra scalar degree of free-
dom still hold. The heavy scalar (S) can be embedded
in a larger scalar multiplet S 0 that develops a vev, or not
so embedded, when a UV Higgs mechanism is invoked to
introduce a new scale ⇤ � v. Due to the fact that any
field obtaining a vev with its self conjugate forms a sin-
glet under G this leads to QH2 (as shown in Eqn. (24)) in
either case, in addition to any matchings of S integrated
out at tree level.

Alternatively, if a strong sector is present and the “di-
quark” scalar is composite, then the arguments in favor
of “sibling” fields imply an extended spectrum that gener-
ically contains singlet composite states. Additionally, in
the presence of a confining strong sector, both spin-0 and
spin-1 composite states are expected to be embedded in
a spin tower [46]. In addition, some form of dimensional
transmutation can be used to generate a scale. This can
take place in the context of weaker couplings using the
Coleman-Weinberg (CW) mechanism [45], or in the case
with stronger couplings with a mechanism similar to the
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For example, the scalar fields which are either singlet or triplet under SU(2)

9

C. Spin 0 states

Unlike the cases of massive vectors and spin-1/2 fields,
a massive scalar can couple into the SM through a number
of interactions and naively generate many operators in the
IR SMEFT matching limit. However, the examples (SA,
SB and SC in Table XI) discussed in Refs. [8, 39] show that
only one operator QH , can be obtained if an explicit scale
is introduced without a dynamical origin to give the scalar
a mass. For instance, SA couples through linear and bilin-
ear interactions in the full multi-scalar potential, denoted
V (H,SA) in Table XI. To reduce the operator profile of
SA to one operator, it is assumed that SA has a discrete
or additional U(1) symmetry. Such a symmetry forbids a
large number of four-fermion operators at tree level, and
also a number of linear S interactions in the scalar po-
tential that otherwise generate QH2. Similarly, SB,C also
have minimal one operator profiles containing only QH .
However, this again follows from the UV scale being in-
troduced without a dynamical origin. In all these cases, a
hierarchy problem in the UV sector is also introduced.

Table XI also lists the cases of flavor singlet scalar fields
that couple to through the S2H†H interaction and in addi-
tion have an independent SH†H interaction via a dimen-
sionfull coupling. In these cases, the operators QH and
QH2 are simultaneously produced in tree level matchings.

As in the case of massive vectors and fermions, scalars
can carry non-trivial representations under GQ or GL to
isolate the coupling to a single fermion bi-linear. These
states have been studied previously in Refs. [40–44]. To
avoid an explicit breaking of GQ or GL in this coupling,
all of these states carry at least two non-trivial represen-
tations under the flavor (GQ or GL) or gauge (SU(3)C
or SU(2)L) groups. For instance, consider integrating
out “di-quark” states of this form discussed in Ref. [42]
at tree level. A scalar current operator of the form
 ̄1L 2R ̄2R 1L is directly obtained. This operator can be
projected into the Warsaw basis via Fierz transformation,

( ̄1L 4R)( ̄3R 2L) = �1

2
( ̄1L�µ 2L)( ̄3R�

µ 4R). (33)

As the “di-quark” scalars are in non-trivial representations
under SU(2)L and/or SU(3)C groups, the index associ-
ated with these symmetries are not contracted between
the fermions in each vector current, c.f. the right hand
side of Eqn. (33). When reducing to the Warsaw basis one
uses the SU(3) and SU(2) relations

TA
ij T

A
kl =

1

2
�il�jk � 1

6
�ij�kl, (34)

�I
jk �

I
mn = 2�jn �mk � �jk �mn. (35)

Concretely, performing this mapping for the “di-quark”
scalars that couple to ūRQL and d̄RQL induce the op-

erators Q
(1,8)
qu and Q

(1,8)
qd respectively. Similarly, the “di-

quark” scalars coupling to QLQL generate Q
(1,3)
qq . On the

other hand, exceptional cases that can generate only one
operator do exist in “di-quark” scalars that couple to right
handed SU(2)L bi-linears of the same fermion field i.e. to

Case SU(2)L U(1)Y Couplings QH QH2

SA 2 1/2 V (H,SA)
p

SB 4 3/2 (H3)† SB + h.c.
p

SC 4 1/2 H†SCH
†H + h.c.

p

Case SU(2)L U(1)Y Couplings QH QH2

S1
I 1 0 (⇤SSI + S†

I SI)H
†H

p p

S3
I 3 0 ⇤SSI�H

†H, S†
I SIH

†H
p p

S1
II 1 �1 ⇤S SII H

TH, S†
IISIIH

†H
p p

S3
II 3 �1 ⇤SSII�H

TH, S†
IISIIH

†H
p p

TABLE XI. L6 operators obtained at tree level when flavor
and colour singlet scalars are integrated out. ⇤S indicates a
dimensionfull coupling.

Case SU(3)C SU(2)L U(1)Y GQ Couples to Op

SIII 3 1 -4/3 (3,1,1) uR uR Quu

SIV 6̄ 1 -4/3 (6̄,1,1) uR uR Quu

SV 3 1 2/3 (1,3,1) dR dR Qdd

SVI 6̄ 1 2/3 (1,6̄,1) dR dR Qdd

Case SU(3)C SU(2)L U(1)Y GL Couples to Op

SVII 1 1 2 (1,6̄) eR eR Qee

TABLE XII. The cases where a single L6 operator is generated
at tree level for di↵erent scalar representations that are not
singlets under the flavor group, without the insertion of spurion
Yukawa fields, from Ref. [42].

pairs of uR, dR and eR. These scalars can induce the sin-
gle operator Quu, Qee, Qdd that are defined in the Warsaw
basis, see the examples in Table XII.

In spite of only QH being induced at tree level in cases
SA,B,C and only one of the operators Quu, Qdd and Qee

obtained at tree level in the cases SIII - SVII, the argu-
ments based on the mass scale generation from a UV Higgs
mechanism with an associated extra scalar degree of free-
dom still hold. The heavy scalar (S) can be embedded
in a larger scalar multiplet S 0 that develops a vev, or not
so embedded, when a UV Higgs mechanism is invoked to
introduce a new scale ⇤ � v. Due to the fact that any
field obtaining a vev with its self conjugate forms a sin-
glet under G this leads to QH2 (as shown in Eqn. (24)) in
either case, in addition to any matchings of S integrated
out at tree level.

Alternatively, if a strong sector is present and the “di-
quark” scalar is composite, then the arguments in favor
of “sibling” fields imply an extended spectrum that gener-
ically contains singlet composite states. Additionally, in
the presence of a confining strong sector, both spin-0 and
spin-1 composite states are expected to be embedded in
a spin tower [46]. In addition, some form of dimensional
transmutation can be used to generate a scale. This can
take place in the context of weaker couplings using the
Coleman-Weinberg (CW) mechanism [45], or in the case
with stronger couplings with a mechanism similar to the
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Several exceptional cases 9

C. Spin 0 states

Unlike the cases of massive vectors and spin-1/2 fields,
a massive scalar can couple into the SM through a number
of interactions and naively generate many operators in the
IR SMEFT matching limit. However, the examples (SA,
SB and SC in Table XI) discussed in Refs. [8, 39] show that
only one operator QH , can be obtained if an explicit scale
is introduced without a dynamical origin to give the scalar
a mass. For instance, SA couples through linear and bilin-
ear interactions in the full multi-scalar potential, denoted
V (H,SA) in Table XI. To reduce the operator profile of
SA to one operator, it is assumed that SA has a discrete
or additional U(1) symmetry. Such a symmetry forbids a
large number of four-fermion operators at tree level, and
also a number of linear S interactions in the scalar po-
tential that otherwise generate QH2. Similarly, SB,C also
have minimal one operator profiles containing only QH .
However, this again follows from the UV scale being in-
troduced without a dynamical origin. In all these cases, a
hierarchy problem in the UV sector is also introduced.

Table XI also lists the cases of flavor singlet scalar fields
that couple to through the S2H†H interaction and in addi-
tion have an independent SH†H interaction via a dimen-
sionfull coupling. In these cases, the operators QH and
QH2 are simultaneously produced in tree level matchings.

As in the case of massive vectors and fermions, scalars
can carry non-trivial representations under GQ or GL to
isolate the coupling to a single fermion bi-linear. These
states have been studied previously in Refs. [40–44]. To
avoid an explicit breaking of GQ or GL in this coupling,
all of these states carry at least two non-trivial represen-
tations under the flavor (GQ or GL) or gauge (SU(3)C
or SU(2)L) groups. For instance, consider integrating
out “di-quark” states of this form discussed in Ref. [42]
at tree level. A scalar current operator of the form
 ̄1L 2R ̄2R 1L is directly obtained. This operator can be
projected into the Warsaw basis via Fierz transformation,

( ̄1L 4R)( ̄3R 2L) = �1

2
( ̄1L�µ 2L)( ̄3R�

µ 4R). (33)

As the “di-quark” scalars are in non-trivial representations
under SU(2)L and/or SU(3)C groups, the index associ-
ated with these symmetries are not contracted between
the fermions in each vector current, c.f. the right hand
side of Eqn. (33). When reducing to the Warsaw basis one
uses the SU(3) and SU(2) relations

TA
ij T

A
kl =

1

2
�il�jk � 1

6
�ij�kl, (34)

�I
jk �

I
mn = 2�jn �mk � �jk �mn. (35)

Concretely, performing this mapping for the “di-quark”
scalars that couple to ūRQL and d̄RQL induce the op-

erators Q
(1,8)
qu and Q

(1,8)
qd respectively. Similarly, the “di-

quark” scalars coupling to QLQL generate Q
(1,3)
qq . On the

other hand, exceptional cases that can generate only one
operator do exist in “di-quark” scalars that couple to right
handed SU(2)L bi-linears of the same fermion field i.e. to

Case SU(2)L U(1)Y Couplings QH QH2

SA 2 1/2 V (H,SA)
p

SB 4 3/2 (H3)† SB + h.c.
p

SC 4 1/2 H†SCH
†H + h.c.

p

Case SU(2)L U(1)Y Couplings QH QH2

S1
I 1 0 (⇤SSI + (SI)

†SI)H
†H

p p

S3
I 3 0 ⇤SSI�H

†H, (SI)
†SIH

†H
p p

S1
II 1 �1 ⇤S SII H

TH, (SII)
†SIIH

†H
p p

S3
II 3 �1 ⇤SSII�H

TH, (SII)
†SIIH

†H
p p

TABLE XI. L6 operators obtained at tree level when flavor
and colour singlet scalars are integrated out. ⇤S indicates a
dimensionfull coupling.

Case SU(3)C SU(2)L U(1)Y GQ Couples to Op

SIII 3 1 -4/3 (3,1,1) uR uR Quu

SIV 6̄ 1 -4/3 (6̄,1,1) uR uR Quu

SV 3 1 2/3 (1,3,1) dR dR Qdd

SVI 6̄ 1 2/3 (1,6̄,1) dR dR Qdd

Case SU(3)C SU(2)L U(1)Y GL Couples to Op

SVII 1 1 2 (1,6̄) eR eR Qee

TABLE XII. The cases where a single L6 operator is generated
at tree level for di↵erent scalar representations that are not
singlets under the flavor group, without the insertion of spurion
Yukawa fields, from Ref. [42].

pairs of uR, dR and eR. These scalars can induce the sin-
gle operator Quu, Qee, Qdd that are defined in the Warsaw
basis, see the examples in Table XII.

In spite of only QH being induced at tree level in cases
SA,B,C and only one of the operators Quu, Qdd and Qee

obtained at tree level in the cases SIII - SVII, the argu-
ments based on the mass scale generation from a UV Higgs
mechanism with an associated extra scalar degree of free-
dom still hold. The heavy scalar (S) can be embedded
in a larger scalar multiplet S 0 that develops a vev, or not
so embedded, when a UV Higgs mechanism is invoked to
introduce a new scale ⇤ � v. Due to the fact that any
field obtaining a vev with its self conjugate forms a sin-
glet under G this leads to QH2 (as shown in Eqn. (24)) in
either case, in addition to any matchings of S integrated
out at tree level.

Alternatively, if a strong sector is present and the “di-
quark” scalar is composite, then the arguments in favor
of “sibling” fields imply an extended spectrum that gener-
ically contains singlet composite states. Additionally, in
the presence of a confining strong sector, both spin-0 and
spin-1 composite states are expected to be embedded in
a spin tower [46]. In addition, some form of dimensional
transmutation can be used to generate a scale. This can
take place in the context of weaker couplings using the
Coleman-Weinberg (CW) mechanism [45], or in the case
with stronger couplings with a mechanism similar to the

Henning, Lu, Murayama, JHEP 1601 (2016) 023 
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Several exceptional cases 9

C. Spin 0 states

Unlike the cases of massive vectors and spin-1/2 fields,
a massive scalar can couple into the SM through a number
of interactions and naively generate many operators in the
IR SMEFT matching limit. However, the examples (SA,
SB and SC in Table XI) discussed in Refs. [8, 39] show that
only one operator QH , can be obtained if an explicit scale
is introduced without a dynamical origin to give the scalar
a mass. For instance, SA couples through linear and bilin-
ear interactions in the full multi-scalar potential, denoted
V (H,SA) in Table XI. To reduce the operator profile of
SA to one operator, it is assumed that SA has a discrete
or additional U(1) symmetry. Such a symmetry forbids a
large number of four-fermion operators at tree level, and
also a number of linear S interactions in the scalar po-
tential that otherwise generate QH2. Similarly, SB,C also
have minimal one operator profiles containing only QH .
However, this again follows from the UV scale being in-
troduced without a dynamical origin. In all these cases, a
hierarchy problem in the UV sector is also introduced.

Table XI also lists the cases of flavor singlet scalar fields
that couple to through the S2H†H interaction and in addi-
tion have an independent SH†H interaction via a dimen-
sionfull coupling. In these cases, the operators QH and
QH2 are simultaneously produced in tree level matchings.

As in the case of massive vectors and fermions, scalars
can carry non-trivial representations under GQ or GL to
isolate the coupling to a single fermion bi-linear. These
states have been studied previously in Refs. [40–44]. To
avoid an explicit breaking of GQ or GL in this coupling,
all of these states carry at least two non-trivial represen-
tations under the flavor (GQ or GL) or gauge (SU(3)C
or SU(2)L) groups. For instance, consider integrating
out “di-quark” states of this form discussed in Ref. [42]
at tree level. A scalar current operator of the form
 ̄1L 2R ̄2R 1L is directly obtained. This operator can be
projected into the Warsaw basis via Fierz transformation,

( ̄1L 4R)( ̄3R 2L) = �1

2
( ̄1L�µ 2L)( ̄3R�

µ 4R). (33)

As the “di-quark” scalars are in non-trivial representations
under SU(2)L and/or SU(3)C groups, the index associ-
ated with these symmetries are not contracted between
the fermions in each vector current, c.f. the right hand
side of Eqn. (33). When reducing to the Warsaw basis one
uses the SU(3) and SU(2) relations

TA
ij T

A
kl =

1

2
�il�jk � 1

6
�ij�kl, (34)

�I
jk �

I
mn = 2�jn �mk � �jk �mn. (35)

Concretely, performing this mapping for the “di-quark”
scalars that couple to ūRQL and d̄RQL induce the op-

erators Q
(1,8)
qu and Q

(1,8)
qd respectively. Similarly, the “di-

quark” scalars coupling to QLQL generate Q
(1,3)
qq . On the

other hand, exceptional cases that can generate only one
operator do exist in “di-quark” scalars that couple to right
handed SU(2)L bi-linears of the same fermion field i.e. to

Case SU(2)L U(1)Y Couplings QH QH2

SA 2 1/2 V (H,SA)
p

SB 4 3/2 (H3)† SB + h.c.
p

SC 4 1/2 H†SCH
†H + h.c.

p

Case SU(2)L U(1)Y Couplings QH QH2

S1
I 1 0 (⇤SSI + (SI)

†SI)H
†H

p p

S3
I 3 0 ⇤SSI�H

†H, (SI)
†SIH

†H
p p

S1
II 1 �1 ⇤S SII H

TH, (SII)
†SIIH

†H
p p

S3
II 3 �1 ⇤SSII�H

TH, (SII)
†SIIH

†H
p p

TABLE XI. L6 operators obtained at tree level when flavor
and colour singlet scalars are integrated out. ⇤S indicates a
dimensionfull coupling.

Case SU(3)C SU(2)L U(1)Y GQ Couples to Op

SIII 3 1 -4/3 (3,1,1) uR uR Quu

SIV 6̄ 1 -4/3 (6̄,1,1) uR uR Quu

SV 3 1 2/3 (1,3,1) dR dR Qdd

SVI 6̄ 1 2/3 (1,6̄,1) dR dR Qdd

Case SU(3)C SU(2)L U(1)Y GL Couples to Op

SVII 1 1 2 (1,6̄) eR eR Qee

TABLE XII. The cases where a single L6 operator is generated
at tree level for di↵erent scalar representations that are not
singlets under the flavor group, without the insertion of spurion
Yukawa fields, from Ref. [42].

pairs of uR, dR and eR. These scalars can induce the sin-
gle operator Quu, Qee, Qdd that are defined in the Warsaw
basis, see the examples in Table XII.

In spite of only QH being induced at tree level in cases
SA,B,C and only one of the operators Quu, Qdd and Qee

obtained at tree level in the cases SIII - SVII, the argu-
ments based on the mass scale generation from a UV Higgs
mechanism with an associated extra scalar degree of free-
dom still hold. The heavy scalar (S) can be embedded
in a larger scalar multiplet S 0 that develops a vev, or not
so embedded, when a UV Higgs mechanism is invoked to
introduce a new scale ⇤ � v. Due to the fact that any
field obtaining a vev with its self conjugate forms a sin-
glet under G this leads to QH2 (as shown in Eqn. (24)) in
either case, in addition to any matchings of S integrated
out at tree level.

Alternatively, if a strong sector is present and the “di-
quark” scalar is composite, then the arguments in favor
of “sibling” fields imply an extended spectrum that gener-
ically contains singlet composite states. Additionally, in
the presence of a confining strong sector, both spin-0 and
spin-1 composite states are expected to be embedded in
a spin tower [46]. In addition, some form of dimensional
transmutation can be used to generate a scale. This can
take place in the context of weaker couplings using the
Coleman-Weinberg (CW) mechanism [45], or in the case
with stronger couplings with a mechanism similar to the

Henning, Lu, Murayama, JHEP 1601 (2016) 023 

           Only one dim-6 operator QH , can be obtained if an explicit scale is 
introduced without a dynamical origin to give the scalar a mass.
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Figure 8: Constraints on parameters that contribute to anomalous Z couplings scaled by 10

2,
and their scaled ±1� confidence regions. Fig. (a): Individual bounds on the Wilson coefficients
(scaled by v̄2T ), when the other parameters are profiled away in the Warsaw basis. Fig (b): The
same constraints when all other parameters are profiled away subject to the cut constraints
discussed in the text. Fig. (c): the case where only one parameter is assumed to be present in
the global fit at a time. Fig. (d) The constraints found on the �X parameters. All results are
shown for �SMEFT = {0, 0.3%, 1%} for the blue, green and brown lines respectively. Note
that the shaded green region is the same size for all plots, corresponding to % level constraints,
to make the comparison between cases clear.– 26 –

“one operator at a time”
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(scaled by v̄2T ), when the other parameters are profiled away in the Warsaw basis. Fig (b): The
same constraints when all other parameters are profiled away subject to the cut constraints
discussed in the text. Fig. (c): the case where only one parameter is assumed to be present in
the global fit at a time. Fig. (d) The constraints found on the �X parameters. All results are
shown for �SMEFT = {0, 0.3%, 1%} for the blue, green and brown lines respectively. Note
that the shaded green region is the same size for all plots, corresponding to % level constraints,
to make the comparison between cases clear.– 26 –

multiple operators

• The resulting constraints can be relaxed by orders of magnitude,  
compared to a “one operator at a time” analysis. 
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• Global	data	analyses	in	the	SMEFT	can	and	should	accommodates	this	fact. 

• The	number	of	operators	induced	in	matching	is	operator	basis	dependent.	However,	
the	conditions	uncovered	on	the	UV	field	content	to	reduce	the	operator	profile	are	
still	meaningful.	
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Figure 1. SM EFT as a bridge to connect UV models and weak scale precision observables.

models that do not respect the electroweak gauge symmetry, and hence, violate unitarity.

As a result, future precision programs can show spuriously high sensitivity to the κ. The

SM EFT of eq. (1.1), on the other hand, parameterizes new physics in directions that

respect the SM gauge invariance and are therefore free from unitarity violations.1

In an EFT framework, the connection of UV models2 with low-energy observables is

accomplished through a three-step procedure schematically described in figure 1.3 First,

the UV model is matched onto the SM EFT at a high-energy scale Λ. This matching is

performed order-by-order in a loop expansion. At each loop order, ci(Λ) is determined

such that the S-matrix elements in the EFT and the UV model are the same at the RG

scale µ = Λ. Next, the ci(Λ) are run down to the weak scale ci(mW ) according to the RG

equations of the SM EFT. The leading order solution to these RG equations is determined

by the anomalous dimension matrix γij . Finally, we use the effective Lagrangian at µ = mW

to compute weak scale observables in terms of the ci(mW ) and SM parameters of LSM. We

refer to this third step as mapping the Wilson coefficients onto observables.

In the rest of this paper we consider each of these three steps — matching, running,

and mapping — in detail for the SM EFT. In the SM EFT, the main challenge presented at

each step is complexity: truncating the expansion in (1.1) at dimension-six operators leaves

us with O(102) independent deformations of the Standard Model.4 This large number of

1Equation (1.1) is a linear-realization of EW gauge symmetry. An EFT constructed as a non-linear

realization of EW gauge symmetry is, of course, perfectly acceptable.
2In this work we take “UV model” to generically mean the SM supplemented with new states that couple

to the SM. In particular, the UV model does not need to be UV complete; it may itself be an effective

theory of some other, unknown description.
3For an introduction to the basic techniques of effective field theories see, for example, [15–17].
4This counting excludes flavor. With flavor, this number jumps to O(103).
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Figure 1. SM EFT as a bridge to connect UV models and weak scale precision observables.
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The structure of this paper is as follows. Following a

brief comment on the dimension-5 operator and Fermi the-
ory in Section II, we provide in Section III.A a comprehen-
sive discussion on the SMEFT matching at tree level onto
L6 when a massive spin-1 state present in a UV physics
sector is integrated out. We focus this discussion on the
“one operator induced at tree level” question consistent
with the assumed (approximate) G symmetry. We demon-
strate why such a simple UV sector cannot be a complete
scenario if a mechanism to generate the heavy state’s mass
is demanded. We then discuss the spin-1/2 case, drawing
a similar conclusions in Section III.B. In Section III.C we
examine the case of integrating out a scalar field focused
on the “one operator” question. We show how the scalar
case is more subtle, but still argues for more operators
when UV complete scenarios are demanded. Section IV
contains our conclusions.

II. TWO EXCEPTIONAL EFT CASES

When considering the one operator question, we note
that a few historical accidents in EFTs can be mislead-
ing. First of all, L5 and Ld with d ≥ 6 are distinct when
considering this question. Due to the charges of the SM
field content, only one operator (with flavor indices) can
be constructed in L5. The operator that results [17, 18],

L5 =
cij
2

(

L̄c
iH̃

⋆
)(

H̃† Lj

)

+ h.c. (2)

is the well known example where one operator at a par-
ticular mass dimension does result when integrating out
UV physics.4 The interplay of global U(1)L number viola-
tion and the constraints of the SM field’s representations
leading to one operator in L5 is an exception that is not re-
peated at higher orders in the SMEFT operator expansion
[6–10].
Historically, Fermi theory has frequently been used as

a prototypical EFT to build intuition. This can be un-
fortunate, as Fermi theory is atypical and has a number
of non-trivial accidental features that are not generic. In
Fermi theory, the four-fermion operator

Q ℓℓ
µµee

=
(

L̄µ γ
µPLLµ

) (

L̄e γµPLLe

)

, (3)

is generated when the W boson is integrated out. This ef-
fective operator is used in the process µ− → e−+ν̄e+νµ to
infer the Fermi constant, GF . The UV sector in the case of
Fermi theory is the SM which does induce a series of other
operators at tree level, in addition to the operator Qℓℓ.
These four-fermion operators are due to the Higgs field
and the Z boson. However, the highly suppressed Yukawa
couplings of the SM Higgs to light fermions leads to an

4 Here and below our notation with a c superscript indicates a charge
conjugate representation of a SM field.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ

µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γµ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄L γ

µ QL

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄Lσ

I γµ QL

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ

µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ

µ uR

V(1,8)
VII 1,8 1 -1 (3̄,3,1) (1,1) d̄R γµ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄L γ

µ QL

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄Lσ

I γµ QL

V(3̄,6)
X 3̄,6 2 -1/6 (1,3,3) (1,1) d̄R γ

µ Qc
L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ

µ Qc
L

TABLE I. Vector representations [21, 22] consistent with our
assumptions. The first three rows are the same field sub-
classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix TA (for both
color and flavor 8’s) is present but suppressed in the coupling
to some fermion bi-linears. σI is the Pauli matrix. The table
largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8
and 3⊗ 3 = 6⊕ 3̄.

exceptional situation numerically in terms of the operator
profiles. The small Yukawa couplings are not formally the
consequence of a fine tuning, as they are protected by the
full chiral symmetry of the SM. More discussion on the
accidents in Fermi theory, and how it is commonly misun-
derstood, can be found in Ref. [19].

Arguably, there is some theoretical evidence based on
the structure and particle content of the SM in the direc-
tion of embedding this model into SU(5) or SU(10), see
for example the arguments in Ref. [20]. This could be in-
terpreted as a hint to an underlying theory, similar to the
chiral structure of the SM being a low energy hint of its
UV structure. However, the problems of TeV scale grand
unified theories are very well known. In this work we make
a more phenomenologically motivated choice and assume
approximate G symmetry (and CP symmetry).

III. G SYMMETRIC TREE LEVEL MATCHINGS

A. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in
the manner assumed are given by Table I [21–23]. The re-
quirement of linear couplings of mass dimension less than
four, together with Lorentz symmetry and invariance un-
der the full SM gauge group constrains the possible quan-
tum numbers of UV field content. Fields with other repre-
sentations that give SMEFT matchings respecting G are
possible, if these conditions are relaxed. Our notation is
that Qc, Lc are the right handed conjugate doublet fields
of the SM fermions. The global flavor symmetry in the

generated when the W boson is integrated out

been taken to a minimal form, with a field and v̄2T independent Wilson coefficient. Many of

our results build upon the discussion in Ref.[16]. For example, the canonically normalized

SMEFT Lagrangian parameters are denoted with bar superscripts, as defined in Ref.[16]. The

SM Lagrangian parameters and theoretical predictions for observables in the SM will have no

superscript (no hat and no bar) and if we stop at the leading order of the SM value we will add

: (...)SM to specify it. In the following Sections we will use the shorthand notation s2
θ̂
= sin2 θ̂,

c2
θ̂
= cos2 θ̂.7 The canonically normalized gauge fields introduce the gauge couplings given by

g1,2 = ḡ1,2(1+CH(B,W ) v̄
2
T ). For completeness, we summarize the relation between the SMEFT

Lagrangian parameters and the measured input parameters in this Section.

2.1.1 GF

We define the local effective interaction for muon decay as

LGF
= −

4ĜF√
2

(ν̄µ γ
µPLµ) (ē γµPLνe) . (2.3)

The parameter ĜF is fixed by measuring the muon lifetime in the SM EFT,

−
4ĜF√

2
= −

2

v̄2T
+

(
C ll
µeeµ

+ C ll
eµµe

)
− 2

(

C(3)
Hl
ee

+ C(3)
Hl
µµ

)

. (2.4)

In the limit of U(3)5 flavour symmetry, this expression simplifies to

ĜF =
1√
2 v̄2T

−
1√
2
Cll +

√
2C(3)

Hl . (2.5)

We identify ĜF with the measured value of the Fermi constant in the U(3)5 limit as ĜF in

this paper. Our notation is such that a 1/Λ2 is implicit in each of the Wilson coefficients, and

that v̄T is the vev in the SMEFT given by

v̄T =

(
1 +

3CH v2

8λ

)
v. (2.6)

Here λ is the coefficient of (H†H)2 in the SM, with a normalization defined in the Appendix.

CH is the Wilson coefficient of the (H†H)3 operator, and v is the SM vev in the limit CH → 0.

Many expressions that follow have explicit dependence on v̄T , which is related to ĜF via Eqn

2.5 as

v̄2T =
1

√
2ĜF

+
δGF

ĜF

, when, δGF =
1

√
2 ĜF

(√
2C(3)

Hl −
Cll√
2

)
. (2.7)

In what follows we use δGF , but note that the flavour dependence of this parameter is trivial

to re-introduce, and this shift can be considered to be implicitly flavour dependent.

7See the Appendix for a discussion of the notational conventions.
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ing. First of all, L5 and Ld with d ≥ 6 are distinct when
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is the well known example where one operator at a par-
ticular mass dimension does result when integrating out
UV physics.4 The interplay of global U(1)L number viola-
tion and the constraints of the SM field’s representations
leading to one operator in L5 is an exception that is not re-
peated at higher orders in the SMEFT operator expansion
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Historically, Fermi theory has frequently been used as
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fortunate, as Fermi theory is atypical and has a number
of non-trivial accidental features that are not generic. In
Fermi theory, the four-fermion operator
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=
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) (
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, (3)

is generated when the W boson is integrated out. This ef-
fective operator is used in the process µ− → e−+ν̄e+νµ to
infer the Fermi constant, GF . The UV sector in the case of
Fermi theory is the SM which does induce a series of other
operators at tree level, in addition to the operator Qℓℓ.
These four-fermion operators are due to the Higgs field
and the Z boson. However, the highly suppressed Yukawa
couplings of the SM Higgs to light fermions leads to an

4 Here and below our notation with a c superscript indicates a charge
conjugate representation of a SM field.
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µPLµ) (ē γµPLνe) . (2.3)
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2ĜF

+
δGF

ĜF
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and 3⊗ 3 = 6⊕ 3̄.

exceptional situation numerically in terms of the operator
profiles. The small Yukawa couplings are not formally the
consequence of a fine tuning, as they are protected by the
full chiral symmetry of the SM. More discussion on the
accidents in Fermi theory, and how it is commonly misun-
derstood, can be found in Ref. [19].

Arguably, there is some theoretical evidence based on
the structure and particle content of the SM in the direc-
tion of embedding this model into SU(5) or SU(10), see
for example the arguments in Ref. [20]. This could be in-
terpreted as a hint to an underlying theory, similar to the
chiral structure of the SM being a low energy hint of its
UV structure. However, the problems of TeV scale grand
unified theories are very well known. In this work we make
a more phenomenologically motivated choice and assume
approximate G symmetry (and CP symmetry).

III. G SYMMETRIC TREE LEVEL MATCHINGS

A. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in
the manner assumed are given by Table I [21–23]. The re-
quirement of linear couplings of mass dimension less than
four, together with Lorentz symmetry and invariance un-
der the full SM gauge group constrains the possible quan-
tum numbers of UV field content. Fields with other repre-
sentations that give SMEFT matchings respecting G are
possible, if these conditions are relaxed. Our notation is
that Qc, Lc are the right handed conjugate doublet fields
of the SM fermions. The global flavor symmetry in the

generated when the W boson is integrated out

been taken to a minimal form, with a field and v̄2T independent Wilson coefficient. Many of

our results build upon the discussion in Ref.[16]. For example, the canonically normalized

SMEFT Lagrangian parameters are denoted with bar superscripts, as defined in Ref.[16]. The

SM Lagrangian parameters and theoretical predictions for observables in the SM will have no

superscript (no hat and no bar) and if we stop at the leading order of the SM value we will add

: (...)SM to specify it. In the following Sections we will use the shorthand notation s2
θ̂
= sin2 θ̂,

c2
θ̂
= cos2 θ̂.7 The canonically normalized gauge fields introduce the gauge couplings given by

g1,2 = ḡ1,2(1+CH(B,W ) v̄
2
T ). For completeness, we summarize the relation between the SMEFT

Lagrangian parameters and the measured input parameters in this Section.

2.1.1 GF

We define the local effective interaction for muon decay as

LGF
= −

4ĜF√
2

(ν̄µ γ
µPLµ) (ē γµPLνe) . (2.3)

The parameter ĜF is fixed by measuring the muon lifetime in the SM EFT,

−
4ĜF√

2
= −

2

v̄2T
+

(
C ll
µeeµ

+ C ll
eµµe

)
− 2

(

C(3)
Hl
ee

+ C(3)
Hl
µµ

)

. (2.4)

In the limit of U(3)5 flavour symmetry, this expression simplifies to

ĜF =
1√
2 v̄2T

−
1√
2
Cll +

√
2C(3)

Hl . (2.5)

We identify ĜF with the measured value of the Fermi constant in the U(3)5 limit as ĜF in

this paper. Our notation is such that a 1/Λ2 is implicit in each of the Wilson coefficients, and

that v̄T is the vev in the SMEFT given by

v̄T =

(
1 +

3CH v2

8λ

)
v. (2.6)

Here λ is the coefficient of (H†H)2 in the SM, with a normalization defined in the Appendix.

CH is the Wilson coefficient of the (H†H)3 operator, and v is the SM vev in the limit CH → 0.

Many expressions that follow have explicit dependence on v̄T , which is related to ĜF via Eqn

2.5 as

v̄2T =
1

√
2ĜF

+
δGF

ĜF

, when, δGF =
1

√
2 ĜF

(√
2C(3)

Hl −
Cll√
2

)
. (2.7)

In what follows we use δGF , but note that the flavour dependence of this parameter is trivial

to re-introduce, and this shift can be considered to be implicitly flavour dependent.

7See the Appendix for a discussion of the notational conventions.
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The structure of this paper is as follows. Following a

brief comment on the dimension-5 operator and Fermi the-
ory in Section II, we provide in Section III.A a comprehen-
sive discussion on the SMEFT matching at tree level onto
L6 when a massive spin-1 state present in a UV physics
sector is integrated out. We focus this discussion on the
“one operator induced at tree level” question consistent
with the assumed (approximate) G symmetry. We demon-
strate why such a simple UV sector cannot be a complete
scenario if a mechanism to generate the heavy state’s mass
is demanded. We then discuss the spin-1/2 case, drawing
a similar conclusions in Section III.B. In Section III.C we
examine the case of integrating out a scalar field focused
on the “one operator” question. We show how the scalar
case is more subtle, but still argues for more operators
when UV complete scenarios are demanded. Section IV
contains our conclusions.

II. TWO EXCEPTIONAL EFT CASES

When considering the one operator question, we note
that a few historical accidents in EFTs can be mislead-
ing. First of all, L5 and Ld with d ≥ 6 are distinct when
considering this question. Due to the charges of the SM
field content, only one operator (with flavor indices) can
be constructed in L5. The operator that results [17, 18],

L5 =
cij
2

(

L̄c
iH̃

⋆
)(

H̃† Lj

)

+ h.c. (2)

is the well known example where one operator at a par-
ticular mass dimension does result when integrating out
UV physics.4 The interplay of global U(1)L number viola-
tion and the constraints of the SM field’s representations
leading to one operator in L5 is an exception that is not re-
peated at higher orders in the SMEFT operator expansion
[6–10].
Historically, Fermi theory has frequently been used as

a prototypical EFT to build intuition. This can be un-
fortunate, as Fermi theory is atypical and has a number
of non-trivial accidental features that are not generic. In
Fermi theory, the four-fermion operator

Q ℓℓ
µµee

=
(

L̄µ γ
µPLLµ

) (

L̄e γµPLLe

)

, (3)

is generated when the W boson is integrated out. This ef-
fective operator is used in the process µ− → e−+ν̄e+νµ to
infer the Fermi constant, GF . The UV sector in the case of
Fermi theory is the SM which does induce a series of other
operators at tree level, in addition to the operator Qℓℓ.
These four-fermion operators are due to the Higgs field
and the Z boson. However, the highly suppressed Yukawa
couplings of the SM Higgs to light fermions leads to an

4 Here and below our notation with a c superscript indicates a charge
conjugate representation of a SM field.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ

µ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γµ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄L γ

µ QL

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄Lσ

I γµ QL

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ

µ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ

µ uR

V(1,8)
VII 1,8 1 -1 (3̄,3,1) (1,1) d̄R γµ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄L γ

µ QL

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄Lσ

I γµ QL

V(3̄,6)
X 3̄,6 2 -1/6 (1,3,3) (1,1) d̄R γ

µ Qc
L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ

µ Qc
L

TABLE I. Vector representations [21, 22] consistent with our
assumptions. The first three rows are the same field sub-
classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix TA (for both
color and flavor 8’s) is present but suppressed in the coupling
to some fermion bi-linears. σI is the Pauli matrix. The table
largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8
and 3⊗ 3 = 6⊕ 3̄.

exceptional situation numerically in terms of the operator
profiles. The small Yukawa couplings are not formally the
consequence of a fine tuning, as they are protected by the
full chiral symmetry of the SM. More discussion on the
accidents in Fermi theory, and how it is commonly misun-
derstood, can be found in Ref. [19].

Arguably, there is some theoretical evidence based on
the structure and particle content of the SM in the direc-
tion of embedding this model into SU(5) or SU(10), see
for example the arguments in Ref. [20]. This could be in-
terpreted as a hint to an underlying theory, similar to the
chiral structure of the SM being a low energy hint of its
UV structure. However, the problems of TeV scale grand
unified theories are very well known. In this work we make
a more phenomenologically motivated choice and assume
approximate G symmetry (and CP symmetry).

III. G SYMMETRIC TREE LEVEL MATCHINGS

A. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in
the manner assumed are given by Table I [21–23]. The re-
quirement of linear couplings of mass dimension less than
four, together with Lorentz symmetry and invariance un-
der the full SM gauge group constrains the possible quan-
tum numbers of UV field content. Fields with other repre-
sentations that give SMEFT matchings respecting G are
possible, if these conditions are relaxed. Our notation is
that Qc, Lc are the right handed conjugate doublet fields
of the SM fermions. The global flavor symmetry in the

generated when the W boson is integrated out

been taken to a minimal form, with a field and v̄2T independent Wilson coefficient. Many of

our results build upon the discussion in Ref.[16]. For example, the canonically normalized

SMEFT Lagrangian parameters are denoted with bar superscripts, as defined in Ref.[16]. The

SM Lagrangian parameters and theoretical predictions for observables in the SM will have no

superscript (no hat and no bar) and if we stop at the leading order of the SM value we will add

: (...)SM to specify it. In the following Sections we will use the shorthand notation s2
θ̂
= sin2 θ̂,

c2
θ̂
= cos2 θ̂.7 The canonically normalized gauge fields introduce the gauge couplings given by

g1,2 = ḡ1,2(1+CH(B,W ) v̄
2
T ). For completeness, we summarize the relation between the SMEFT

Lagrangian parameters and the measured input parameters in this Section.

2.1.1 GF

We define the local effective interaction for muon decay as

LGF
= −

4ĜF√
2

(ν̄µ γ
µPLµ) (ē γµPLνe) . (2.3)

The parameter ĜF is fixed by measuring the muon lifetime in the SM EFT,

−
4ĜF√

2
= −

2

v̄2T
+

(
C ll
µeeµ

+ C ll
eµµe

)
− 2

(

C(3)
Hl
ee

+ C(3)
Hl
µµ

)

. (2.4)

In the limit of U(3)5 flavour symmetry, this expression simplifies to

ĜF =
1√
2 v̄2T

−
1√
2
Cll +

√
2C(3)

Hl . (2.5)

We identify ĜF with the measured value of the Fermi constant in the U(3)5 limit as ĜF in

this paper. Our notation is such that a 1/Λ2 is implicit in each of the Wilson coefficients, and

that v̄T is the vev in the SMEFT given by

v̄T =

(
1 +

3CH v2

8λ

)
v. (2.6)

Here λ is the coefficient of (H†H)2 in the SM, with a normalization defined in the Appendix.

CH is the Wilson coefficient of the (H†H)3 operator, and v is the SM vev in the limit CH → 0.

Many expressions that follow have explicit dependence on v̄T , which is related to ĜF via Eqn

2.5 as

v̄2T =
1

√
2ĜF

+
δGF

ĜF

, when, δGF =
1

√
2 ĜF

(√
2C(3)

Hl −
Cll√
2

)
. (2.7)

In what follows we use δGF , but note that the flavour dependence of this parameter is trivial

to re-introduce, and this shift can be considered to be implicitly flavour dependent.

7See the Appendix for a discussion of the notational conventions.
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