Implications of Non-Decoupling UV-Physics

- Higgs Effective Field Theories 2017, Lumley Castle -

Claudius Krause

Instituto de Física Corpuscular Valencia, Universitat de València-CSIC

May 23, 2017

In collaboration with G. Buchalla, O. Catà, A. Celis, A. Pich, I. Rosell, J. Santos, and J. J. Sanz-Cillero

Where is the New Physics?

ATLAS & CMS [1606.02266]

- The LHC gave us the Higgs and nothing else.
- We use bottom-up EFTs.

chiral Lagrangian

- \rightarrow Fitting Wilson-coefficients
- \rightarrow Gain intuition with UV-models

Implications of Non-Decoupling UV-Physics

Part I: The Low-Energy Effective Field Theories [1307.5017,1412.6356]

Part II: The SM Singlet Extension [1608.03564]

Part III: Heavy Resonances [1609.06659,17xx.xxxx]

I: We distinguish 2 types of EFTs.

decoupling (linear) EFT: - SMEFT -

- LO: SM
- $\bullet\,$ Higgs is written as doublet ϕ
- expansion in canonical dimensions
- NLO is of dimension 6 Buchmüller/Wyler ['86 Nucl. Phys. B], Grzadkowski et al. [1008.4884]

I: We distinguish 2 types of EFTs.

decoupling (linear) EFT: - SMEFT -

- LO: SM
- $\bullet\,$ Higgs is written as doublet ϕ
- expansion in canonical dimensions
- NLO is of dimension 6 Buchmüller/Wyler ['86 Nucl. Phys. B], Grzadkowski et al. [1008.4884]

non-decoupling (nonlinear) EFT: $- ew \chi \mathcal{L} -$

- LO: Higgs-less chiral Lagrangian + generic scalar h
- written in terms of U and h
- expansion in loops (*L*) or chiral dimensions.
- NLO is of chiral order 4 Buchalla/Catà/CK [1307.5017]

I: We distinguish 2 types of EFTs.

decoupling (linear) EFT: - SMEFT -

LO: SM

- $\bullet\,$ Higgs is written as doublet ϕ
- expansion in canonical dimensions
- NLO is of dimension 6 Buchmüller/Wyler ['86 Nucl. Phys. B], Grzadkowski et al. [1008.4884]

non-decoupling (nonlinear) EFT: $- ew \chi \mathcal{L} -$

- LO: Higgs-less chiral Lagrangian + generic scalar h
- written in terms of U and h
- expansion in loops (*L*) or chiral dimensions.
- NLO is of chiral order 4 Buchalla/Catà/CK [1307.5017]

I: A graphical way to see the relation of SMEFT vs. $\text{ew}\chi\mathcal{L}$

I: A graphical way to see the relation of $\frac{\mathsf{SMEFT}}{\mathsf{SMEFT}} \textit{ vs. } \mathsf{ew} \chi \mathcal{L}$

I: A graphical way to see the relation of SMEFT vs. $\text{ew}\chi\mathcal{L}$

Implications of Non-Decoupling UV-Physics

Part I: The Low-Energy Effective Field Theories [1307.5017,1412.6356]

Part II: The SM Singlet Extension [1608.03564]

Part III: Heavy Resonances [1609.06659,17xx.xxxx]

II: An Example, the SM Singlet Extension

$$\mathcal{L}_{\mathsf{SM+S}} = \mathcal{L}_{\mathsf{SM}} + \partial^{\mu}S\partial_{\mu}S + \frac{\mu_2^2}{2}S^2 - \frac{\lambda_2}{4}S^4 - \frac{\lambda_3}{2}\phi^{\dagger}\phi S^2$$

S: real scalar singlet with Z₂ symmetry Schabinger/Wells [hep-ph/0509209], Patt/Wilczek [hep-ph/0605188], Robens/Stefaniak [1601.07880], Englert/Plehn/Zerwas/Zerwas [1106.3097], Buttazzo/Sala/Tesi [1505.05488]

In physical parameters: $m, v, M, \sin \chi$, and $\xi = \frac{v^2}{f^2} = \frac{v^2}{v^2 + v^2}$

$$V(h,H) = \frac{1}{2}m^{2}h^{2} + \frac{1}{2}M^{2}H^{2} - d_{1}h^{3} - d_{2}h^{2}H - d_{3}hH^{2} - d_{4}H^{3}$$
$$- z_{1}h^{4} - z_{2}h^{3}H - z_{3}h^{2}H^{2} - z_{4}hH^{3} - z_{5}H^{4}$$

$$d_i = d_i(m^2, M^2, v, \xi, \sin \chi), \qquad z_i = z_i(m^2, M^2, v, \xi, \sin \chi)$$

Integrate out H: solve equation of motion

$$H = H_0 + \frac{H_1}{M} + \frac{H_2}{M^2} + \dots$$

Claudius Krause (IFIC Valencia)

†_____

II: Case a), strong coupling, generates the chiral Lagrangian.

$$H = H_0 + \frac{H_1}{M} + \frac{H_2}{M^2} + \dots$$

$$\begin{split} H_0 &= H_0(h) = H_{0,2} \left(\frac{h}{\nu}\right)^2 + H_{0,3} \left(\frac{h}{\nu}\right)^3 + H_{0,4} \left(\frac{h}{\nu}\right)^4 + \dots \\ & (\text{closed-form solution to all orders in } h) \\ \rightarrow \text{ No } \frac{1}{M} \text{ suppression, but arbitrarily high canonical dimension} \\ \rightarrow \text{ Expansion in chiral dimensions} \rightarrow ew \chi \mathcal{L} \end{split}$$

LO: $\mathcal{L}_{LO} = \mathcal{L}_{kin} - V(h) + \mathcal{L}_{Yuk}(h)$ $+ rac{v^2}{4} \langle (D_{\mu} U)(D^{\mu} U^{\dagger}) \rangle (1 + F_U(h))$

NLO
$$(1/M^2)$$
:

 $\mathcal{O}_{D1}, \mathcal{O}_{D7}, \mathcal{O}_{D11}, \ldots$ of Buchalla/Catà/CK [1307.5017]

II: Case b), weak coupling, generates the SMEFT.

$$H = H_0 + \frac{H_1}{M} + \frac{H_2}{M^2} + \dots$$

$$H_0 = 0, \qquad H_1 = -\frac{\lambda_3 v_H}{2M} \phi^{\dagger} \phi$$

 \rightarrow Allways $\frac{1}{M}$ suppression

ightarrow Expansion in canonical dimensions ightarrow SMEFT

LO:

SM with renormalized couplings

NLO
$$(1/M^2)$$
:
 $\mathcal{L}_{\text{NLO}} = \frac{1}{4} \frac{\lambda_3^2}{\lambda_2 M^2} \partial^{\mu} (\phi^{\dagger} \phi) \partial_{\mu} (\phi^{\dagger} \phi)$

II: The physical picture helps to relate the two EFTs.

II: The physical picture helps to relate the two EFTs.

Implications of Non-Decoupling UV-Physics

Part I: The Low-Energy Effective Field Theories [1307.5017,1412.6356]

Part II: The SM Singlet Extension [1608.03564]

Part III: Heavy Resonances [1609.06659,17xx.xxxx]

\times III: Now, we add (Technicolor) Resonances.

\times III: Now, we add (Technicolor) Resonances.

- Electroweak resonances are still allowed by current phenomenology. Pich/Rosell/Sanz-Cillero [1310.3121]
- We assume scalar (0⁺⁺), pseudo-scalar (0⁻⁺), vector (1⁻⁻), and axial-vector (1⁺⁺) resonances.
 They can be singlets or triplets of SU(2), and singlets or octets of SU(3)_C.

$\xrightarrow{}$ III: The expansion is still organized by Chiral Dimensions.

 $\xrightarrow{}$ III: The expansion is still organized by Chiral Dimensions.

 \rightarrow We obtain the pattern of low-energy constants (LECs).

We find contributions to \mathcal{L}_{LO} and \mathcal{L}_{NLO} arising at $\mathcal{O}(v^2/M_R^2)$.

$\underbrace{ | III: The representation of the Spin-1 resonances is not unique. }$

Proca, R_{μ}	VS.	Anti-symmetric, $R_{\mu u}$			
$\mathcal{L}_{int}^{(P)} = \operatorname{Tr} R_{\mu} J^{\mu} + 2 \operatorname{Tr} \partial_{\mu} R_{\nu} J^{\mu u}$		$\mathcal{L}_{int}^{(A)} = \operatorname{Tr} R_{\mu u} J^{\mu u} + 2 \operatorname{Tr} R_{\mu u} \partial^{\mu} J^{ u}$			
ightarrow We obtain different LECs.					

\longrightarrow III: The representation of the Spin-1 resonances is not unique.

Proca, R_{μ}	VS.	Anti-symmetric, $R_{\mu u}$		
${\cal L}^{(P)}_{int}={ m Tr} {\cal R}_{\mu} J^{\mu}+2 { m Tr} \partial_{\mu} {\cal R}_{ u} J^{\mu u}$		$\mathcal{L}_{int}^{(A)} = \operatorname{Tr} R_{\mu u} J^{\mu u} + 2 \operatorname{Tr} R_{\mu u} \partial^{\mu} J^{\nu}$		
\rightarrow We obtain different LECs.				

They are related through a change of variables in the path integral,

$$\mathcal{L}_{Res}^{(P)} + \mathcal{L}_{non-Res}^{(P)} \iff \mathcal{L}_{Res}^{(A)} + \mathcal{L}_{non-Res}^{(A)},$$

but non-resonant, local terms are also modified.

Pich/Rosell/Santos/Sanz-Cillero [1609.06659]

\longrightarrow III: The representation of the Spin-1 resonances is not unique.

Proca, R_{μ}	VS.	Anti-symmetric, $R_{\mu u}$		
$\mathcal{L}^{(P)}_{int} = { m Tr} R_\mu J^\mu + 2 { m Tr} \partial_\mu R_ u J^{\mu u}$		$\mathcal{L}_{int}^{(A)} = \operatorname{Tr} R_{\mu u} J^{\mu u} + 2 \operatorname{Tr} R_{\mu u} \partial^{\mu} J^{ u}$		
\rightarrow We obtain different LECs.				

They are related through a change of variables in the path integral,

$$\mathcal{L}_{Res}^{(P)} + \mathcal{L}_{non-Res}^{(P)} \iff \mathcal{L}_{Res}^{(A)} + \mathcal{L}_{non-Res}^{(A)},$$

but non-resonant, local terms are also modified.

Pich/Rosell/Santos/Sanz-Cillero [1609.06659]

The total contributions to the LECs are the same. \rightarrow Proca *vs.* Anti-symmetric becomes a choice of convenience.

Summary

Summary

Summary

 I presented the two Higgs EFTs. I discussed the power counting of the <i>ew</i>χL. 	$ \begin{bmatrix} [\text{bosons}]_{\chi} = 0 \\ [g]_{\chi} = [y]_{\chi} = 1 \\ [\bar{\Psi}\Psi]_{\chi} = [\partial_{\mu}]_{\chi} = 1 \\ [1307.5017,1312.5624,1412.6356] \end{bmatrix} $
 I showed how the two EFTs are generated in the Standard Model Singlet Extension. I discussed how the EFTs are related in this example. 	[1608.03564]

- Like in QCD / ChPT, we add resonances.
- After integrating them out, we study the pattern of LECs.

Backup

Effective Lagrangian at leading order

Assumptions

Feruglio [hep-ph/9301281], Bagger et al. [hep-ph/9306256], Chivukula et al. [hep-ph/9312317], Wang/Wang [hep-ph/0605104], Grinstein/Trott[0704.1505], Contino[1005.4269], Alonso et al. [1212.3305], ...

- A new strong sector generates the 3 GBs of EWSB and the h at the scale f.
- The transverse gauge bosons and the fermions of the SM are weakly coupled.
- The pattern of symmetry breaking is $SU(2)_L imes SU(2)_R o SU(2)_{V=L+R}$
- → The GBs become the longitudinal components of the gauge bosons. In unitary gauge: $\frac{v^2}{4} \langle (D_{\mu}U)(D^{\mu}U^{\dagger}) \rangle = \frac{g^2v^2}{4}W_{\mu}^+W^{\mu-} + \frac{(g^2+g'^2)v^2}{8}Z_{\mu}Z^{\mu}$

$$\mathcal{L}_{\text{LO}} = \frac{v^2}{4} \langle (D_{\mu} U) (D^{\mu} U^{\dagger}) \rangle (1 + F_U(h)) + \frac{1}{2} (\partial_{\mu} h) (\partial^{\mu} h) - \mathcal{V}(h) + i \bar{\Psi}_f \not{D} \Psi_f - v (\bar{\Psi}_f Y_{j,f} U \Psi_f + \text{h.c.}) (\frac{h}{v})^j - \frac{1}{2} \langle G_{\mu\nu} G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu} W^{\mu\nu} \rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

There is a relation between the electroweak chiral Lagrangian and the κ framework.

Claudius Krause (IFIC Valencia)

tree:

There is a relation between the electroweak chiral Lagrangian and the κ framework.

There is a relation between the electroweak chiral Lagrangian and the κ framework.

Integrating out at the 1-loop level

decoupling case: $\delta m^2 \sim rac{M^2}{16\pi^2} o$ renormalization of m $\delta V(h)$ is further suppressed

Closed-form solution of $H_0(h)$

$$H = H_0 + \frac{H_1}{M} + \frac{H_2}{M^2} + \dots,$$

$$H_0(h) = H_{0,2} \left(\frac{h}{v}\right)^2 + H_{0,3} \left(\frac{h}{v}\right)^3 + H_{0,4} \left(\frac{h}{v}\right)^4 + \dots$$

$$H_0 = -\frac{v + (s^2c - c^2sW)h}{s^3 + Wc^3} + \sqrt{\frac{(v + (s^2c - c^2sW)h)^2}{(s^3 + Wc^3)^2}} - \frac{(sc^2 + cs^2W)h^2}{s^3 + Wc^3}$$

$$= -\frac{v}{2}(cs(c + sW))\frac{h^2}{v^2} - \frac{v}{2} (c^2s^2(cW - s)(c + sW))\frac{h^3}{v^3}$$

$$-\frac{v}{8} (c^2s^2(c + sW) (5c^3sW^2 + W (c^4 - 8c^2s^2 + s^4) + 5cs^3))\frac{h^4}{v^4} + \dots,$$

with $W = \sqrt{\xi/(1 - \xi)}.$