Indirect bounds from EW physics

Marco Ciuchini • EWPO: SM & NP fit • Higgs couplings in EFT • The dim-6 effective Lagrangian • Future prospects

based on work done with:

J. de Blas, E. Franco, S. Mishima, M. Pierini, L. Reina, L. Silvestrini & the HEP*fit* crew JHEP 08 (2013) 106, 12 (2016) 135

+ update in preparation

special thanks to Jorge & Luca

Spontaneous breaking of $SU(2)_{L} \otimes U(1)_{y}$ via Higgs doublet vev & renormalizability imply: 1) tree-level relations in EW sector 2) calculable loop corrections \Rightarrow EWPO are potentially very sensitive to the NP scale $\mathscr{L} = \mathscr{L}_{SM} + \mathscr{L}_{5}/\Lambda + \mathscr{L}_{6}/\Lambda^{2} + ...$ actual NP scale sensitivity depends on the experimental precision and SM theoretical uncertainty

EW fits

- choose the SM input parameters: G_F , α , M_Z , M_H , m_t , $\alpha_s(M_Z)$, $\Delta \alpha_{had}^{(5)}$
- use latest experimental data and state-of-the-art computation of EWPO
- parametrize possible NP effects: modified couplings, additional loop contributions, D=6 operators
- perform a fit to experimental data:
 - → ZFITTER (Akhundov, Arbuzov, S. & T. Riemann) On-shell ren., frequentist analysis
 - → GAPP (Erler) MSbar ren., frequentist analysis
 - → Gfitter (Baak, Cúth, Haller, Hoecker, Kogler, Mönig, Schott,
 - Stelzer) MSbar ren., frequentist analysis
 - → Our analysis, using the **HEP**fit public code On-shell ren., Bayesian analysis

webpage with docs & releases: http://hepfit.roma1.infn.it developer repository: https://github.com/silvest/HEPfit

HEPfit: a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models.

Higgs Physics HEPfit can be used to study Higgs couplings and analyze data on signal strengths.

Precision Electroweak Electroweak precision observables are included in HEPfit

Flavour Physics The Flavour Physics menu in HEPfit includes both quark and lepton flavour dynamics.

BSM Physics

Dynamics beyond the Standard Model can be studied by adding models in HEPfit.

Open source, community-developed C++ code

	Ref.	Measurement	Posterior	Prediction	1D Pull	nD Pull	
$lpha_s(M_Z) \ \Delta lpha_{ m had}^{(5)}(M_Z)$	$\begin{bmatrix} 10 \end{bmatrix}$ $\begin{bmatrix} 13 \end{bmatrix}$	$\begin{array}{c} 0.1179 \pm 0.0012 \\ 0.02750 \pm 0.00033 \end{array}$	PDG $_{1180} \pm 0.0011$ Burkhardt et al $_{025}$	0.1185 ± 0.0028 0.02743 ± 0.00038		Г	Turut
M_Z [GeV]	[14]	91.1875 ± 0.0021	LEP1.1879 ± 0.0020				Inpui
$m_t \; [\text{GeV}]$	[15]	173.34 ± 0.76	TeVI+7LHC±0.73	176.6 ± 2.5		L	pur unierer s
$m_H [\text{GeV}]$	[16]	125.09 ± 0.24	$LHC125.09 \pm 0.24$				
$M_W \; [\text{GeV}]$	[17]	80.385 ± 0.015	TeV:+3LEP2 0.0061				
$\Gamma_W \; [\text{GeV}]$	[18]	2.085 ± 0.042	TeV + LEP2 0.00064				
$\sin^2 heta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$	[14]	0.2324 ± 0.0012	$LEP_{31464} \pm 0.000087$				
$P_{ au}^{\mathrm{pol}} = \mathcal{A}_{\ell}$	[14]	0.1465 ± 0.0033	LEP 14748 ± 0.00068	0.14752 ± 0.00069			
$\Gamma_Z [{\rm GeV}]$	[14]	2.4952 ± 0.0023					
σ_h^0 [nb]	[14]	41.540 ± 0.037	$LEP^{1.4903 \pm 0.0058}$				
R^0_ℓ	[14]	20.767 ± 0.025					
$A_{ m FB}^{0,\ell}$	[14]	0.0171 ± 0.0010					
\mathcal{A}_{ℓ} (SLD)	[14]	0.1513 ± 0.0021					
\mathcal{A}_{c}	[14]	0.670 ± 0.027					
\mathcal{A}_b	[14]	0.923 ± 0.020					
$A^{0,c}_{ m FB}$	[14]	0.0707 ± 0.0035	LEP:+ SLD: 0.00037				
$A_{ m FB}^{0,b}$	[14]	0.0992 ± 0.0016					
R_c^0	[14]	0.1721 ± 0.0030					
R_b^0	[14]	0.21629 ± 0.00066					
$\sin^2 heta^{ee}_{ ext{eff}}$	[19]	0.23248 ± 0.00052	CDF				
$\sin^2 heta^{\mu\mu}_{ m eff}$	[20]	0.2315 ± 0.0010	CDF		0.07		
$\sin^2 heta^{ee}_{ m eff}$	[21]	0.23146 ± 0.00047	DO				· mine
$\sin^2 heta^{ee,\mu\mu}_{ m eff}$	[22]	0.2308 ± 0.0012	$ATLAS^{\pm 0.000087}$				
$\sin^2 heta^{\mu\mu}_{ m eff}$	[23]	0.2287 ± 0.0032	CMS				Dr
$\sin^2 heta^{\mu\mu}_{ m eff}$	[24]	0.2314 ± 0.0011	LHCb				\

	Ref.	Measurement	Posterior 🔫	Prediction	1D P	ull nD Pull	
$\alpha_s(M_Z)$	[10]	0.1179 ± 0.0012	0.1180 ± 0.0011	0.1185 ± 0.0028	-0.2	Result of the	7
$\Delta \alpha_{\rm had}^{(5)}(M_Z)$	[13]	0.02750 ± 0.00033	0.02747 ± 0.00025	0.02743 ± 0.00038	0.04	alobal fit	
M_Z [GeV]	[14]	91.1875 ± 0.0021	91.1879 ± 0.0020	91.199 ± 0.011	- \	9.000.11	
$m_t [{ m GeV}]$	[15]	173.34 ± 0.76	173.61 ± 0.73	176.6 ± 2.5		3	
$m_H [{ m GeV}]$	[16]	125.09 ± 0.24	125.09 ± 0.24	102.8 ± 26.3			
M_W [GeV]	[17]	80.385 ± 0.015	80.3644 ± 0.0061	80.3604 ± 0.0066	1.5	fit not using	
$\Gamma_W \; [\text{GeV}]$	[18]	2.085 ± 0.042	2.08872 ± 0.00064	2.08873 ± 0.00064	-0.2	the correspon	nding
$\sin^2 \theta_{\rm eff}^{ m lept}(Q_{ m FB}^{ m had})$) [14]	0.2324 ± 0.0012	0.231464 ± 0.000087	0.231435 ± 0.000090	0.8	measurement	
$P_{\tau}^{\mathrm{pol}} = \mathcal{A}_{\ell}$	[14]	0.1465 ± 0.0033	0.14748 ± 0.00068	0.14752 ± 0.00069	-0.4		
$\Gamma_Z \ [\text{GeV}]$	[14]	2.4952 ± 0.0023	2.49420 ± 0.00063	2.49405 ± 0.00068	0.5		
$\sigma_h^0 \; [{ m nb}]$	[14]	41.540 ± 0.037	41.4903 ± 0.0058	41.4912 ± 0.0062			
R^0_ℓ	[14]	20.767 ± 0.025	20.7485 ± 0.0070	20.7472 ± 0.0076			
$A_{ m FB}^{0,\ell}$	[14]	0.0171 ± 0.0010	0.01631 ± 0.00015	0.01628 ± 0.00015	0.8		
\mathcal{A}_{ℓ} (SLD)	$\left[14\right]$	0.1513 ± 0.0021	0.14748 ± 0.00068	0.14765 ± 0.00076	1.7		
\mathcal{A}_{c}	[14]	0.670 ± 0.027	0.66810 ± 0.00030	0.66817 ± 0.00033	0.0		
\mathcal{A}_b	[14]	0.923 ± 0.020	0.934650 ± 0.000058	0.934663 ± 0.000064	-0.6		
$A_{ m FB}^{0,c}$	[14]	0.0707 ± 0.0035	0.07390 ± 0.00037	0.07399 ± 0.00042	-0.9		
$A_{ m FB}^{0,b}$	[14]	0.0992 ± 0.0016	0.10338 ± 0.00048	0.10350 ± 0.00054	-2.6		
R_c^0	[14]	0.1721 ± 0.0030	0.172228 ± 0.000023	0.172229 ± 0.000023	-0.0		
R_b^0	[14]	0.21629 ± 0.00066	0.215790 ± 0.000028	0.215788 ± 0.000028	0.7		
$\sin^2 heta^{ee}_{ ext{eff}}$	[19]	0.23248 ± 0.00052			2.1		
$\sin^2 heta^{\mu\mu}_{ m eff}$	[20]	0.2315 ± 0.0010				7	r nor 1
$\sin^2 heta^{ee}_{ ext{eff}}$	[21]	0.23146 ± 0.00047	$0.231/6/ \pm 0.00087$	$0.231/35 \pm 0.00000$			":wull"
$\sin^2 heta^{ee,\mu\mu}_{ m eff}$	[22]	0.2308 ± 0.0012	0.401404 - 0.000007	0.201400 ± 0.000090			selli.
$\sin^2 heta^{\mu\mu}_{ m eff}$	[23]	0.2287 ± 0.0032					$b_{I_{-}}$
$\sin^2 heta^{\mu\mu}_{ m eff}$	[24]	0.2314 ± 0.0011					•

	Ref.	Measurement	Posterior	Prediction	1D Pull	nD Pull	Difference
$\alpha_s(M_Z)$	[10]	0.1179 ± 0.0012	0.1180 ± 0.0011	0.1185 ± 0.0028	-0.2		between
$\Delta \alpha_{\rm had}^{(5)}(M_Z)$	[13]	0.02750 ± 0.00033	0.02747 ± 0.00025	0.02743 ± 0.00038	0.04		measurement
M_Z [GeV]	[14]	91.1875 ± 0.0021	91.1879 ± 0.0020	91.199 ± 0.011	-1.0		and prediction
$m_t \; [{ m GeV}]$	[15]	173.34 ± 0.76	173.61 ± 0.73	176.6 ± 2.5	-1.3		in units of σ ,
$m_H \; [\text{GeV}]$	[16]	125.09 ± 0.24	125.09 ± 0.24	102.8 ± 26.3	0.8		taking all
$M_W \; [{ m GeV}]$	[17]	80.385 ± 0.015	80.3644 ± 0.0061	80.3604 ± 0.0066	1.5		into account
$\Gamma_W \; [\text{GeV}]$	[18]	2.085 ± 0.042	2.08872 ± 0.00064	2.08873 ± 0.00064	-0.2	`	、
$\sin^2 heta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$) [14]	0.2324 ± 0.0012	0.231464 ± 0.000087	0.231435 ± 0.000090	0.8		Difference
$P_{ au}^{\mathrm{pol}} \!=\! \mathcal{A}_{\ell}$	[14]	0.1465 ± 0.0033	0.14748 ± 0.00068	0.14752 ± 0.00069	-0.4		between
$\Gamma_Z [\text{GeV}]$	[14]	2.4952 ± 0.0023	2.49420 ± 0.00063	2.49405 ± 0.00068	0.5		measurement
σ_h^0 [nb]	[14]	41.540 ± 0.037	41.4903 ± 0.0058	41.4912 ± 0.0062	1.3	0.7	and prediction
R^0_ℓ	[14]	20.767 ± 0.025	20.7485 ± 0.0070	20.7472 ± 0.0076	0.8		in units of σ ,
$A_{ m FB}^{0,\ell}$	[14]	0.0171 ± 0.0010	0.01631 ± 0.00015	0.01628 ± 0.00015	0.8		neglecting
\mathcal{A}_{ℓ} (SLD)	[14]	0.1513 ± 0.0021	0.14748 ± 0.00068	0.14765 ± 0.00076	1.7		correlations
\mathcal{A}_{c}	[14]	0.670 ± 0.027	0.66810 ± 0.00030	0.66817 ± 0.00033	0.02		
\mathcal{A}_b	[14]	0.923 ± 0.020	0.934650 ± 0.000058	0.934663 ± 0.000064	-0.6		Connelated
$A_{ m FB}^{0,c}$	[14]	0.0707 ± 0.0035	0.07390 ± 0.00037	0.07399 ± 0.00042	-0.9	1.5	Correlated
$A_{\rm FB}^{0,b}$	[14]	0.0992 ± 0.0016	0.10338 ± 0.00048	0.10350 ± 0.00054	-2.6		Observables
R_c^0	[14]	0.1721 ± 0.0030	0.172228 ± 0.000023	0.172229 ± 0.000023	-0.05	-	
R_b^0	[14]	0.21629 ± 0.00066	0.215790 ± 0.000028	0.215788 ± 0.000028	0.7		
$\sin^2 heta^{ee}_{ m eff}$	[19]	0.23248 ± 0.00052			2.1		a
$\sin^2 heta^{\mu\mu}_{ m eff}$	[20]	0.2315 ± 0.0010			0.07		ryour
$\sin^2 heta^{ee}_{ ext{eff}}$	[21]	0.23146 ± 0.00047	0.921464 ± 0.000097	0.921425 ± 0.000000	0.1		mille
$\sin^2 heta^{ee,\mu\mu}_{ m eff}$	[22]	0.2308 ± 0.0012	0.231404 ± 0.000087	0.231433 ± 0.000090	-0.5		
$\sin^2 heta_{ m eff}^{\mu\mu}$	[23]	0.2287 ± 0.0032			-0.8		Dr
$\sin^2 heta_{ m eff}^{\mu\mu}$	[24]	0.2314 ± 0.0011			-0.1		I
							Page 7

	Prediction	$lpha_s$	$\Delta lpha_{ m had}^{(5)}$	M_Z	m_t
$M_W \; [\text{GeV}]$	80.3618 ± 0.0080	± 0.0008	± 0.0060	± 0.0026	± 0.0046
$\Gamma_W \; [{ m GeV}]$	2.08849 ± 0.00079	± 0.00048	± 0.00047	± 0.00021	± 0.00036
$\Gamma_Z \ [\text{GeV}]$	2.49403 ± 0.00073	± 0.00059	± 0.00031	± 0.00021	± 0.00017
$\sigma_h^0 \; [{ m nb}]$	41.4910 ± 0.0062	± 0.0059	± 0.0005	± 0.0020	± 0.0005
$\sin^2 heta_{ m eff}^{ m lept}$	0.23148 ± 0.00012	± 0.00000	± 0.00012	± 0.00002	± 0.00002
$P_{\tau}^{\mathrm{pol}} = \mathcal{A}_{\ell}$	0.14731 ± 0.00093	± 0.00003	± 0.00091	± 0.00012	± 0.00019
\mathcal{A}_{c}	0.66802 ± 0.00041	± 0.00001	± 0.00040	± 0.00005	± 0.00008
\mathcal{A}_b	0.934643 ± 0.000076	± 0.000003	± 0.000075	± 0.000010	± 0.000005
$A_{ m FB}^{0,\ell}$	0.01627 ± 0.00021	± 0.00001	± 0.00020	± 0.00003	± 0.00004
$A_{ m FB}^{ar 0,c}$	0.07381 ± 0.00052	± 0.00002	± 0.00050	± 0.00007	± 0.00010
$A_{ m FB}^{0,b}$	0.10326 ± 0.00067	± 0.00002	± 0.00065	± 0.00008	± 0.00013
R^0_ℓ	20.7478 ± 0.0077	± 0.0074	± 0.0020	± 0.0003	± 0.0003
R_c^0	0.172222 ± 0.000026	± 0.000023	± 0.000007	± 0.000001	± 0.000009
R_b^0	0.215800 ± 0.000030	± 0.000013	± 0.000004	± 0.000000	± 0.000026

Parametric error budget for theoretical predictions (no fit)

Impact of m_H, m_t, M_W, sin²\theta & \Gamma_Z

Recent changes

Marco Ciuchini

EWPO beyond the SM

-0.34

-0.32

Marco Ciuchini

HEFT – 22 May 2017 – Lumley Castle – UK

Page 12

-0.24 1.00

Modified Zbb couplings

Higgs physics: signal strenghts

Theoretical predictions:

$$\mu = \sum_{i} w_{i} r_{i} \qquad r_{i} = \frac{[\sigma \times BR]_{i}}{[\sigma_{\rm SM} \times BR_{\rm SM}]_{i}} \qquad w_{i} = \frac{\epsilon_{i} [\sigma_{\rm SM} \times BR_{SM}]_{i}}{\sum_{j} \epsilon_{j} [\sigma_{\rm SM} \times BR_{SM}]_{j}}$$
Bechtle et al.

- σ 's from LHC H cross section WG and BR's from Contino et al (14)
- \bullet no theoretical uncertainties attached to $\sigma 's$ and BR's
- SM efficiencies and K factors used

Experimental constraints:

- hγγ: ATLAS(1408.7084), CMS(1407.0558)
- hττ: ATLAS(1501.04943), CMS (1401.5041)
- hZZ: ATLAS (1408.5191), CMS (1412.8662)

an example: ATLAS hvy data card

<pre>####################################</pre>
<pre># arXiv 1408.7084 ####################################</pre>
<pre>####################################</pre>
<pre># Name Definition weights mu -err_mu +err_mu # weights are given as ggH fraction, ttH fraction, VBF fraction, WH fraction, ZH fraction ####################################</pre>
<pre># weights are given as ggH fraction, ttH fraction, VBF fraction, WH fraction, ZH fraction ####################################</pre>
2H fraction

CATEGORIES ggH ttH VBF WH ZH
MEASUREMENT CentralLowpT 0.923 0.001 0.04 0.015 0.01 0.624 -0.398 0.425
MEASUREMENT CentralHighpT 0.733 0.013 0.157 0.055 0.034 1.619 -0.831 1.003
MEASUREMENT ForwLowpT 0.917 0.001 0.041 0.019 0.012 2.034 -0.526 0.57
MEASUREMENT ForHighpT 0.719 0.009 0.162 0.064 0.039 1.729 -1.18 1.343
MEASUREMENT VBFloose 0.419 0.001 0.565 0.006 0.004 1.327 -0.773 0.915
MEASUREMENT VBFtight 0.19 0.01 0.805 0.002 0.001 0.682 -0.508 0.667
MEASUREMENT VHhad 0.459 0.013 0.032 0.303 0.188 0.227 -1.388 1.674
MEASUREMENT VHETmiss 0.023 0.095 0.003 0.369 0.51 3.51 -2.417 3.304
MEASUREMENT VH1 0.005 0.033 0.002 0.898 0.063 0.408 -1.056 1.427
MEASUREMENT ttHhad 0.073 0.841 0.01 0.007 0.013 -0.842 -1.25 3.229
MEASUREMENT tthlept 0.01 0.803 0.002 0.081 0.023 2.423 -2.068 3.212

- hWW: ATLAS (1412.2641, 1506.06641), CMS (1312.1129)
- hbb: ATLAS(1409.6212, 1503.05066), CMS (1310.3687, 1408.1682), CDF (1301.6668), D0 (1303.0823)

+ updates from Moriond '17 to be included

Higgs coupling analysis

In extensions of the SM for which:

Giudice et al.; Barbieri et al.; Contino et al.; Azatov et al.

- there is only one Higgs boson h below the cutoff $\Lambda=4\pi v/\sqrt{|1-\kappa_v^2|}$
- there is an approximate custodial symmetry
- corrections are flavour diagonal and universal

$$\mathcal{L}_{\text{eff}} = \frac{v^2}{4} \text{tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left(1 + 2\kappa_V \frac{h}{v} + \dots \right) - m_i \bar{f}_L^i \left(1 + 2\kappa_f \frac{h}{v} + \dots \right) f_R^i$$

· κ_v rescales the hVV couplings (=1 in SM) \rightarrow oblique corrections: · κ_f rescales the hff couplings (=1 in SM)

$$S = rac{1}{12\pi}(1-\kappa_V^2)\ln\left(rac{\Lambda^2}{m_h^2}
ight)
onumber T = -rac{3}{16\pi c_W^2}(1-\kappa_V^2)\ln\left(rac{\Lambda^2}{m_h^2}
ight)$$

Barbieri et al., PRD 76 (2007) 115008

Page 15

Marco Ciuchini

Lepton Photon 2015 – Ljubljana (SI) – 17-22 August 2015

EWPO constraints on κ_V and $\Lambda_{\text{preliminary}}$

EWPO

	Result	95% Prob.
κ_V	1.02 ± 0.02	[0.98, 1.07]

$$\Lambda = 4\pi v / \sqrt{|1 - \kappa_v^2|}$$

 $\Lambda > 13$ TeV for $\kappa_v < 1$ > 9 TeV for $\kappa_v > 1$ @95% prob.

Implication for composite Higgs models (k_v < 1): additional contributions to oblique corrections are needed to comply with the EWPO constraints

Grojean et al.; Azatov et al.; Pich et al.

HEFT – 22 May 2017 – Lumley Castle – UK

Page 18

Testing the assumptions

> Custodial symmetry ($\kappa_v \rightarrow \kappa_w, \kappa_z$)

		Higgs			
	Result	95% Prob.	Correla	ation M	atrix
κ_W	1.00 ± 0.05	[0.89, 1.10]	1.00		
κ_Z	1.07 ± 0.11	[0.85, 1.27]	-0.17	1.00	
κ_f	1.01 ± 0.11	[0.80, 1.22]	0.41	-0.14	1.00

Flavour universality

	Result	95% Prob.	Correlation Matrix
κ_V	0.97 ± 0.08	[0.80, 1.13]	1.00
κ_ℓ	1.01 ± 0.14	[0.73, 1.30]	$0.54\ 1.00$
κ_u	0.97 ± 0.13	[0.73, 1.25]	$0.42 \ 0.41 \ 1.00$
κ_d	0.91 ± 0.21	[0.48, 1.35]	$0.81 \ 0.61 \ 0.77 \ 1.00$

Higgs + EWPO

	Result	95% Prob.	Correlation Matrix
κ_V	1.02 ± 0.02	[0.98, 1.06]	1.00
κ_ℓ	1.07 ± 0.12	[0.82, 1.32]	$0.15 \ 1.00$
κ_u	1.01 ± 0.12	[0.79, 1.27]	$0.10 \ 0.24 \ 1.00$
κ_d	1.01 ± 0.13	[0.76, 1.30]	$0.31 \ 0.38 \ 0.78 \ 1.00$

1.05

1.1

Kγ

0.95

Marco Ciuchini

Higgs

SMEFT & the NP scale

 $SU(2) \times U(1)$ -invariant EFT with dim-6 NP operators:

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_{i} rac{\mathcal{O}_{i}}{\Lambda^{2}} \mathcal{O}_{i}$$

Buchmuller & Wyler; Grzadkowski et al; Aguilar-Saavedra; del Aguila et al; Barbieri & Strumia; del Aguila & de Blas; Contino et al; Alonso et al

The full operator basis:

2499 operators

 Considering only flavour-diagonal and family-universal contributions: 59 operators

Including only CP-even terms with at least one Higgs field: 27 operators

- Contributing to the observables EWPO + Higgs: EWPO:
- **17 operators**10 operators

Operator basis

Grzadkowski et al

bosonic

$$\mathcal{O}_{HG} = (H^{\dagger}H)G^{A}_{\mu\nu}G^{A\mu\nu}$$
$$\mathcal{O}_{HW} = (H^{\dagger}H)W^{I}_{\mu\nu}W^{I\mu\nu}$$
$$\mathcal{O}_{HB} = (H^{\dagger}H)B_{\mu\nu}B^{\mu\nu}$$
$$\mathcal{O}_{HWB} = (H^{\dagger}\tau^{I}H)W^{I}_{\mu\nu}B^{\mu\nu}$$
$$\mathcal{O}_{HD} = (H^{\dagger}D^{\mu}H)^{*}(H^{\dagger}D_{\mu}H)$$

 $\mathcal{O}_{H\square} = (H^{\dagger}H)\square(H^{\dagger}H)$

- corrections to hVV production & decays
- oblique corrections
- corrections to WWZ, $WW\gamma$

four-fermion

 $G_{\rm F}$ extraction from μ decay

single-fermionic-current

$$\begin{aligned} \mathcal{O}_{HL}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{L}\gamma^{\mu}L) \\ \mathcal{O}_{HL}^{(3)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\overline{L}\tau^{I}\gamma^{\mu}L) \\ \mathcal{O}_{He} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{e}_{R}\gamma^{\mu}e_{R}) \\ \mathcal{O}_{HQ}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q) \\ \mathcal{O}_{HQ}^{(3)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{Q}\tau^{I}\gamma^{\mu}Q) \\ \mathcal{O}_{Hu} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{u}_{R}\gamma^{\mu}u_{R}) \\ \mathcal{O}_{Hd} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{d}_{R}\gamma^{\mu}d_{R}) \end{aligned}$$

corrections to hff

corrections to Vff single-fermionic-scalar $\mathcal{O}_{eH} = (H^{\dagger}H)(\bar{L}e_RH)$ $\mathcal{O}_{LL}^{pqrs} = (\overline{L}^p \gamma_\mu L^q) (\overline{L}^r \gamma^\mu L^s)$ $\mathcal{O}_{uH} = (H^{\dagger}H)(\bar{Q}\,u_R\widetilde{H})$ corrections to Y's & hff $\mathcal{O}_{dH} = (H^{\dagger}H)(\bar{Q}\,d_RH)$

HEFT – 22 May 2017 – Lumley Castle – UK

Marco Ciuchini

Future Prospects: EWPO

	Current	HL-LHC	ILC	F	CCee	CepC
	Data				(Run)	
$\alpha_s(M_Z)$	$0.1179 {\pm} 0.0012$					
$\Delta \alpha_{\rm had}^{(5)}(M_Z)$	$0.02750 {\pm} 0.00033$					
M_Z [GeV]	$91.1875 {\pm} 0.0021$			± 0.0001	(FCCee-Z)	± 0.0005
$m_t [{ m GeV}]$	$173.34{\pm}0.76$	± 0.6	± 0.017	± 0.014	$(\text{FCCee-}t\bar{t})$	
$m_H [{\rm GeV}]$	$125.09 {\pm} 0.24$	± 0.05	± 0.015	± 0.007	(FCCee-HZ)	± 0.0059
M_W [GeV]	$80.385 {\pm} 0.015$	± 0.011	± 0.0024	± 0.001	(FCCee-WW)	± 0.003
$\Gamma_W \; [\text{GeV}]$	$2.085{\pm}0.042$			± 0.005	(FCCee-WW)	
$\Gamma_Z [{\rm GeV}]$	$2.4952{\pm}0.0023$			± 0.0001	(FCCee-Z)	± 0.0005
$\sigma_h^0 \; [{ m nb}]$	$41.540{\pm}0.037$			± 0.025	(FCCee-Z)	
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$	$0.2324{\pm}0.0012$			± 0.0001	(FCCee-Z)	± 0.000023
$P_{ au}^{\mathrm{pol}}$	$0.1465{\pm}0.0033$			± 0.0002	(FCCee-Z)	
\mathcal{A}_ℓ	$0.1513 {\pm} 0.0021$			± 0.000021	(FCCee-Z [pol])	
\mathcal{A}_{c}	$0.670 {\pm} 0.027$			± 0.01	(FCCee-Z [pol])	
\mathcal{A}_b	$0.923{\pm}0.020$			± 0.007	(FCCee-Z [pol])	
$A_{ m FB}^{0,\ell}$	$0.0171 {\pm} 0.0010$			± 0.0001	(FCCee-Z)	± 0.0010
$A^{0,c}_{ m FB}$	$0.0707 {\pm} 0.0035$			± 0.0003	(FCCee-Z)	
$A_{ m FB}^{0,b}$	$0.0992{\pm}0.0016$			± 0.0001	(FCCee-Z)	± 0.00014
R^0_ℓ	$20.767 {\pm} 0.025$			± 0.001	(FCCee-Z)	± 0.007
R_c^0	$0.1721{\pm}0.0030$			± 0.0003	(FCCee-Z)	
R_b^0	$0.21629{\pm}0.00066$			± 0.00006	(FCCee-Z)	± 0.00018

Future Prospects: Higgs & theory

	Current	HL-LHC			Ι	LC			FCCee	CepC
				Phase	1		Phase 2			
			250	500	1000	250	500	1000		
$H \rightarrow b \bar{b}$	$\gtrsim 23\%$	5-36%	1.2%	1.8 - 28%	0.3- $6%$	0.56%	$0.37 ext{-}16\%$	0.3- $3.8%$	$0.2 ext{-} 0.6\%$	0.57%
$H \to c \bar{c}$			8.3%	6.2- $13%$	3.1%	3.9%	3.5- $7.2%$	2%	1.2%	2.2%
$H \to gg$			7%	4.1 - 11%	2.3%	3.3%	2.3- $6%$	1.4%	1.4%	1.6%
$H \to WW$	$\gtrsim 15\%$	4 - 11%	6.4%	2.4 - 9.2%	1.6%	3%	1.3- $5.1%$	1%	0.9%	1.5%
$H \to \tau \tau$	$\gtrsim 25\%$	5-15%	4.2%	5.4- $9%$	3.1%	2%	3-5%	2%	0.7%	1.2%
$H \rightarrow ZZ$	$\gtrsim 24\%$	4-17%	19%	8.2- $25%$	4.1%	8.8%	4.6- $14%$	2.6%	3.1%	4.3%
$H\to\gamma\gamma$	$\gtrsim 20\%$	428%	38%	20-38%	7%	16%	13- $19%$	5.4%	3.0%	9%
$H \to Z\gamma$		10-27%								
$H ightarrow \mu \mu$		14-23%			31%			20%	13%	17%
									- Freita	is et al
		Current	Fut	ture	Current	ILC	с FCC-е	e CepC	1307 3	R962.
Observabl	е	Th. Error	Th.	Error 1	Exp. Error				Freito	IS,
M_W [MeV	7]	4		1	15	3 - 4	4 1	3	1406.0	5980,
$\sin^2 heta_{ m eff}^{ m lept}$ [10^{-5}]	4.5	1	.5	16		0.6	2.3	1604.0	0406
$\Gamma_Z [\text{MeV}]$		0.5	0	.2	2.3		0.1	0.5		
$R_b^0 \ [10^{-5}]$		15	1	.0	66		6	17	P. Jan 1512 (0†, 15544
$\delta \alpha_{s}(M_{z}) = 2 \times 10^{-4} (LQCD), \delta \Delta \alpha^{(5)}_{had} = 5 \times 10^{-5} (R) [\delta \alpha(M_{z}) = 3 \times 10^{-5} (A_{FB}^{\mu\mu})]$						^{μμ})]				
Marco Ciuchi	ni		HEFT	T - 22 May	2017 – Luml	ey Castle	– UK			Page 24

Future Prospects: Λ from EWPO & μ_i

Conclusions & Outlook

EW fit is more important than ever: SM is complete, EWPO and Higgs data are complementary. Agreement with 2-loop SM \rightarrow strong contraints on NP ($\Lambda > \sim 10$ TeV for $|C_i|=1$)

Future e^+e^- experimental programs would substantially improve the NP sensitivity of the fit: $\ge 10x$ reduction of the uncertainty on S,T,U, and the Higgs couplings, ~4x improvement on the sensitivity to the NP scale

Reducing the parametric & theoretical uncertainties at the level required by future experiments is the challenge for the forthcoming years

BACKUP SLIDES

EWPO: M_W , Γ_W and 13 Z-pole observables (LEP2/Tevatron) (LEP/SLD)

Pseudo-observables can be written in terms of Δr and effective Zff couplings

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{4\pi\alpha}{\sqrt{2}G_\mu M_Z^2}} \left(1 + \Delta r \right) \right)$$

LEP EWWG; ZFITTER; Chetyrkin et al; Baikov et al; Czarnecki & Kühn; Harlander et al; Bardin et al

$$\begin{split} \mathcal{L} &= \frac{e}{2s_W c_W} Z_\mu \sum_f \bar{f} \left(g_V^f \gamma_\mu - g_A^f \gamma_\mu \gamma_5 \right) f \,, \\ &= \frac{e}{2s_W c_W} Z_\mu \sum_f \bar{f} \left[g_R^f \gamma_\mu (1 + \gamma_5) + g_L^f \gamma_\mu (1 - \gamma_5) \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f \gamma^\mu \gamma_5 \right] f \,, \\ &= \frac{e}{2s_W c_W} \sqrt{\rho_Z^f} Z_\mu \sum_f \bar{f} \left[(I_3^f - 2Q_f \kappa_Z^f s_W^2) \gamma^\mu - I_3^f$$

Marco Ciuchini

The 7 SM Input Parameters

- ► G_µ=1.1663787 10⁻⁵ GeV⁻², α=1/137.035999074 (PDG)
- $M_{z} = 91.1875 \pm 0.0021 \text{ GeV}$ (LEP)
- $> m_h = (125.09 \pm 0.24) GeV (ATLAS+CMS, 1503.07589)$
- ► $\alpha_s(M_z^2)=0.1185\pm0.0005$ (PDG excluding EWPO)
- $\Delta \alpha_{had}^{5} (M_{z}^{2}) = 0.02750 \pm 0.00033 \text{ (Burkhardt & Pietrzyk; see also Davier et al, Hagiwara et al, Jegerlehner) }$
- m₊ = 173.34 ± 0.76 GeV (TeVatron+LHC, 1403.4427) newer results from ATLAS (m₊ = 172.99 ± 0.91 GeV), CMS (m₊ = 172.38 ± 0.66 GeV) & TeVatron (m₊ = 174.34 ± 0.63 GeV) have not been included yet

EW PRECISION OBSERVABLES IN THE SM

۲	Theory status:
	• Γ_W : Only EW one loop D.Y. Bardin, P.K. Khristova, O. Fedorenko, Nucl. Phys B197 (1982) 1-44 D.Y. Bardin, S. Riemann, T. Riemann, Z. Phys C32 (1986) 121-125
	M _W : Full EW 2-loop + leading 3-loop & some 4-loop M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev D69 (2004) 053006
	• $\sin^2 \theta_{\rm Eff}^f$ (light ferm): Full EW 2-loop + leading higher order M. Awramik, M. Czakon, A. Freitas, JHEP 0611 (2006) 048 M. Awramik, M. Czakon, A. Freitas, B.A. Kniebl, Nucl. Phys. B813 (2009) 174-187
2014	• Γ_Z^f : Full fermionic EW 2-loop A. Freitas, JHEP 1404 (2014) 070
2016	• $\sin^2 heta^b_{ m Eff}$: First calculation of 2-loop bosonic corrections

Experimental vs Theoretical uncertainties:

	$M_{ m W}$	$\Gamma_{\rm Z}$	$\sigma_{ m had}^0$	$R_{\rm b}$	$\sin^2 \theta_{\rm eff}^{\ell}$
Exp. error	15 MeV	2.3 MeV	37 pb	6.6×10^{-4}	1.6×10^{-4}
Theory error	4 MeV	0.5 MeV	6 pb	$1.5 imes 10^{-4}$	$0.5 imes 10^{-4}$

A. Freitas, PoS(LL2014)050 [arXiv: 1406.6980]

W mass combination: $M_W = 80.379 \pm 0.012 \; {
m GeV}$

Minor effect on the global SM EW fit

	Posterior	Posterior
$\alpha_s(M_Z)$	0.1181 ± 0.0009	0.1180 ± 0.0009
$\Delta lpha_{ m had}^{(5)}(M_Z)$	$0.02740{\pm}0.00025$	$0.02740 {\pm} 0.00024$
$M_Z [{ m GeV}]$	$91.1879 {\pm} 0.0021$	$91.1879 {\pm} 0.0021$
$m_t \; [{ m GeV}]$	$173.62{\pm}0.73$	173.64 ± 0.72
$m_H \; [{ m GeV}]$	$125.09 {\pm} 0.24$	$125.09 {\pm} 0.24$
$M_W \; [{ m GeV}]$	80.366 ± 0.006	$80.366 {\pm} 0.006$
Γ_W [GeV]	2.0889 ± 0.0006	$2.0889 {\pm} 0.0006$
$\sin^2 heta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$	0.231440 ± 0.000086	0.231437 ± 0.000083
$P^{ m pol}_{ au}\!=\!\mathcal{A}_\ell$	$0.14767 {\pm} 0.00067$	0.14769 ± 0.00065
Γ_{Z} [GeV]	2.4943 ± 0.0006	$2.4943{\pm}0.0006$
σ_h^0 [nb]	$41.490 {\pm} 0.005$	$41.490 {\pm} 0.005$
R_{ℓ}^{0}	$20.749 {\pm} 0.006$	$20.749 {\pm} 0.006$
$oldsymbol{A}_{ extsf{FB}}^{ec{0},\ell}$	$0.01635{\pm}0.00015$	0.01636 ± 0.00015
\mathcal{A}_{ℓ} (SLD)	$0.14767 {\pm} 0.00067$	0.1476 <mark>9±</mark> 0.00065
\mathcal{A}_{c}	$0.6682{\pm}0.0003$	$0.6682{\pm}0.0003$
\mathcal{A}_b	$0.93479 {\pm} 0.00006$	0.93480 ± 0.00005
$A_{ m FB}^{0,c}$	$0.07400{\pm}0.00037$	0.07401 ± 0.00036
$A_{ m FB}^{ar 0, ar b}$	$0.10353{\pm}0.00048$	$0.10354 {\pm} 0.00046$
$R_c^{\tilde{0}}$	$0.17223{\pm}0.00002$	$0.17223{\pm}0.00002$
$R_b^{reve{0}}$	$0.21579 {\pm} 0.00003$	$0.21579 {\pm} 0.00003$
	M _W LEP2+Tevatron	M _W LEP2+Tevatron+AT

Top mass and Higgs mass prediction:

Marco Ciuchini

HEFT – 22 May 2017 – Lumley Castle – UK

Page 33

1. oblique NP: S, T, U

Assume that the dominant NP contributions come through the gauge boson self-energies

$$egin{aligned} S &= -16\pi\Pi'_{30}(0) = 16\pi\left[\Pi^{
m NP'}_{33}(0) - \Pi^{
m NP'}_{3Q}(0)
ight] \ T &= rac{4\pi}{s^2_W c^2_W M^2_Z}\left[\Pi^{
m NP}_{11}(0) - \Pi^{
m NP}_{33}(0)
ight] egin{aligned} \delta M_W, \, \delta \Gamma_W \ \delta \Gamma_Z \propto -10 \ \delta \Gamma_Z \propto -10 \ \mathrm{others} \propto S \end{aligned}$$

Kennedy & Lynn (89); Peskin & Takeuchi (90,92)

$$\delta M_W, \, \delta \Gamma_W \propto -S + 2c_W^2 T + rac{(c_W^2 - s_W^2) U}{2s_W^2} \ \delta \Gamma_Z \propto -10(3 - 8s_W^2) S + (63 - 126s_W^2 - 40s_W^4) T$$
others $\propto S - 4c_W^2 s_W^2 T$

Marco Ciuchini

HEFT – 22 May 2017 – Lumley Castle – UK

Page 34

Constraints on $\delta\epsilon_{1,2,3,b}$

$$egin{aligned} \epsilon_1 &= \Delta
ho' \ \epsilon_2 &= c_0^2 \Delta
ho' + rac{s_0^2}{c_0^2 - s_0^2} \Delta r_W - 2 s_0^2 \Delta \kappa' \ \epsilon_3 &= c_0^2 \Delta
ho' + (c_0^2 - s_0^2) \Delta \kappa' \ ext{and } \epsilon_b \end{aligned}$$

$$s_W^2 c_W^2 = \frac{\pi \alpha (M_Z^2)}{\sqrt{2} G_\mu M_Z^2 (1 - \Delta r_W)}$$
$$\sqrt{\operatorname{Re} \rho_Z^e} = 1 + \frac{\Delta \rho'}{2}$$
$$\sin^2 \theta_{\text{eff}}^e = (1 + \Delta \kappa') s_0^2$$

$$\delta \epsilon_i = \epsilon_i - \epsilon_i^{
m SM}$$

Marco Ciuchini

Lepton Photon 2015 – Ljubljana (SI) – 17-22 August 2015

2. constraints on δg_{v}^{b} , δg_{a}^{b} (δg_{p}^{b} , δg_{l}^{b})

longstanding pull in A_{FR}^{0,b} may be due to a non-standard Zbb vertex Bamert et al. ; Haber&Logan; Choudhury et al. ; Kumar et al. ; Batell, Gori & Wang; ...

$$g_L^b = (g_L^b)_{\rm SM} + \delta g_L^b, \quad g_R^b = (g_R^b)_{\rm SM} + \delta g_R^b$$
$$\left(\delta g_V^b = \delta g_L^b + \delta g_R^b, \quad \delta g_A^b = \delta g_L^b - \delta g_R^b\right)$$

Marco Ciuchini

HEFT – 22 May 2017 – Lumley Castle – UK

1.00

1.00

m₊ & SM Vacuum Stability

The measurement of the top mass is crucial for testing the stability of the SM vacuum. Degrassi et al.(12); Buttazzo et al.(13) $m_t^{\text{pole}} < 171.53 \pm 0.42 \text{ GeV}$ Tevatron/LHC pole(?) mass: $173.34 \pm 0.76 \text{ GeV}$

Pole from MSbar: $171.2 \pm 2.4 \text{ GeV}$

from EW fit: $176.6 \pm 2.5 \text{ GeV}$

Marco Ciuchini

Lepton Photon 2015 – Ljubljana (SI) – 17-22 August 2015

Dimension six SMEFT (EWPD):

Higgs Couplings Analysis

$$\mu = \sum_{i} w_{i} r_{i} \text{ where}$$

$$w_{i} = \frac{[\sigma \times \text{Br}]_{i}}{[\sigma_{\text{SM}} \times \text{Br}_{\text{SM}}]_{i}}$$

$$r_{i} = \frac{\epsilon_{i}[\sigma_{\text{SM}} \times \text{Br}_{\text{SM}}]_{i}}{\sum_{j} \epsilon_{j}^{\text{SM}} [\sigma_{\text{SM}} \times \text{Br}_{\text{SM}}]_{j}}$$

$$\sigma_{i} = \sigma_{i}^{\text{SM}} + \delta\sigma_{i}$$

$$\Gamma_{j} = \Gamma_{j}^{\text{SM}} + \delta\Gamma_{j}$$

 $\sigma_i^{\rm SM}, \Gamma_j^{\rm SM} \to {\rm YR} \text{ of HXSWG}$ $\delta \sigma_i \to {\rm FR+Madgraph+Kfactors}$ $\delta \Gamma_j \to {\rm eHdecay}$

 $h\gamma\gamma$: ATLAS(1408.7084), CMS(1407.0558) $h\tau\tau$: ATLAS(1501.04943), CMS(1401.5041) hZZ: ATLAS(1408.5191), CMS(1412.8662) hWW: ATLAS(1412.2641,1506.06641), CMS(1312.1129) hbb: ATLAS(1409.6212, 1503.05066), CMS(1310.3687, 1408.1682), CDF (1301.6668), D0 (1303.0823)

Constraints on C_i / Λ^2 and Λ

Switching on <u>one operator at a time</u>:

bounds on c//1- [1	ev -] @957	% prob.		Only EW	Only Higgs	EW + Higgs	
Operator	Only EW	Only Higgs	EW + Higgs	Operator	$ C_i = 1$	$ C_i =1$	$ C_i = 1$
${\cal O}_{HG} = egin{pmatrix} H^\dagger H \end{pmatrix} G^A_{\mu u} G^{A\mu u}$		[-0.005, 0.009]	$\left[-0.005, 0.009 ight]$	$\mathcal{O}_{HG} = egin{pmatrix} H^\dagger H \end{pmatrix} G^A_{\mu u} G^{A\mu u}$		12	12
${\cal O}_{HW} \left(H^{\dagger} H ight) W^{a}_{\mu u} W^{a\mu u}$	—	[-0.033, 0.015]	[-0.033, 0.015]	$\mathcal{O}_{HW} = egin{pmatrix} H^\dagger H \end{pmatrix} W^a_{\mu u} W^{a\mu u}$		5.9	5.9
${\cal O}_{HB} = egin{pmatrix} (H^\dagger H) \dot{B}_{\mu u} B^{\mu u} \end{pmatrix}$	—	[-0.009, 0.004]	$\left[-0.009, 0.004\right]$	$\mathcal{O}_{HB} = egin{pmatrix} (H^\dagger H) B_{\mu u} B^{\mu u} \end{pmatrix}$		12	12
${\cal O}_{HWB} \left(H^\dagger \sigma_a H ight) W^a_{\mu u} B^{\mu u}$	[-0.010, 0.004]	[-0.008, 0.017]	[-0.007, 0.005]	$\mathcal{O}_{HWB} \left(H^{\dagger} \sigma_{a} H ight) W^{a}_{\mu u} B^{\mu u}$	11	8.2	12
${\cal O}_{HD} \qquad \left H^{\dagger} D_{\mu} H ight ^2$	[-0.032, 0.006]	[-1.38, 1.35]	$\left[-0.032, 0.005 ight]$	$\mathcal{O}_{HD} \qquad \left H^{\dagger} D_{\mu} H ight ^2$	5.9	0.9	6.0
$\mathcal{O}_{H\square} \qquad \left(H^{\dagger} H ight) \square \left(H^{\dagger} H ight)$		[-1.12, 1.72]	[-1.12, 1.72]	$\mathcal{O}_{H\square} \qquad ig(H^\dagger H ig) \square ig(H^\dagger H ig)$		0.8	0.8
${\cal O}_{Hl}^{(1)} = (H^\dagger i \stackrel{\leftrightarrow}{D}_{\!$	[-0.006, 0.011]	_	[-0.006,0.011]	$\mathcal{O}_{Hl}^{(1)} = (H^\dagger i \stackrel{\leftrightarrow}{D_\mu} H) \left(\overline{l_L} \gamma^\mu l_L ight)$	10	—	10
${\cal O}_{Hl}^{(3)} ~~(H^\dagger i \overleftrightarrow{D}_{\!$	[-0.013, 0.006]	[-0.64, 0.49]	[-0.013, 0.006]	${\cal O}_{Hl}^{(3)} ~~(H^\dagger i \overleftrightarrow{D}^a_\mu H) \left(\overline{l_L} \gamma^\mu \sigma_a l_L ight)$	9.4	1.3	9.7
${\cal O}_{He}^{} = (H^{\dagger}i D_{\mu} H) \left(\overline{e_R} \gamma^{\mu} e_R ight)$	[-0.017, 0.006]		[-0.017, 0.006]	${\cal O}_{He} ~~(H^\dagger i D_\mu H) \left(\overline{e_R} \gamma^\mu e_R ight)$	8.2	—	8.2
${\cal O}^{(1)}_{Hq} (H^\dagger i \stackrel{\leftrightarrow}{D_\mu} H) \left(\overline{q_L} \gamma^\mu q_L ight)$	[-0.025,0.046]	[-4.3, 1.3]	$\left[-0.026, 0.046\right]$	${\cal O}_{Hq}^{(1)} = (H^\dagger i \overleftrightarrow{D}_{\!\mu} H) \left(\overline{q_L} \gamma^\mu q_L ight)$	5.0	0.5	5.0
${\cal O}^{(3)}_{Hq} ~~ (H^\dagger i \overset{\leftrightarrow}{D_\mu^a} H) \left(\overline{q_L} \gamma^\mu \sigma_a q_L ight) ~~$	[-0.011, 0.016]	[-0.35, 0.18]	$\left[-0.011, 0.015\right]$	$\mathcal{O}_{Hq}^{(3)} ~~ (H^\dagger i \overleftrightarrow{D}^a_\mu H) \left(\overline{q_L} \gamma^\mu \sigma_a q_L ight)$	8.6	1.8	8.7
${\cal O}_{Hu} ~~(H^\dagger i \stackrel{\leftrightarrow}{D_\mu} H) \left(\overline{u_R} \gamma^\mu u_R ight)$	[-0.069, 0.088]	[-1.9, 2.2]	[-0.068, 0.088]	${\cal O}_{Hu} (H^\dagger i \overleftrightarrow{D}_{\!$	3.5	0.7	3.5
${\cal O}_{Hd} (H^\dagger i \stackrel{\leftrightarrow}{D_\mu} H) \left(\overline{d_R} \gamma^\mu d_R ight)$	[-0.16,0.058]	[-6.2, 7]	[-0.160, 0.055]	${\cal O}_{Hd} \left(H^\dagger i \overleftrightarrow{D_\mu} H ight) \left(\overline{d_R} \gamma^\mu d_R ight)$	2.7	0.4	2.6
$\mathcal{O}_{eH} = ig(H^\dagger Hig) ig(\overline{l_L} H e_Rig)$		[-0.053, 0.027]	[-0.053, 0.027]	$\mathcal{O}_{eH} = \left(H^{\dagger} H ight) \left(\overline{l_L} H e_R ight)$	—	4.7	4.7
${\cal O}_{oldsymbol{u}oldsymbol{H}} = \left(H^\dagger H ight) \left(\overline{q_L} ilde{H} oldsymbol{u}_R ight)$		[-0.350, 0.510]	[-0.350, 0.510]	$\mathcal{O}_{uH} = ig(H^\dagger H ig) ig(\overline{q_L} ilde{H} u_R ig)$		1.5	1.5
${\cal O}_{dH} = \left(H^{\dagger} H ight) \left(\overline{q_L} H d_R ight)$	—	[-0.036, 0.086]	[-0.036, 0.086]	$\mathcal{O}_{dH} = ig(H^\dagger H ig) ig(\overline{q_L} H d_R ig)$		3.7	3.7
${\cal O}_{ll} = (ar l \gamma_\mu l) (ar l \gamma^\mu l)$	[-0.010, 0.023]	$\left[-0.970, 1.26\right]$	[-0.010, 0.022]	$\mathcal{O}_{ll} ~~(ar{l}\gamma_\mu l)(ar{l}\gamma^\mu l)$	7.1	0.9	7.1

1A2 FT 11-21 00E9/

NP scale for $|C_i| = 1$ in the multi-TeV region,

EWPO more constraining than Higgs data at present

Marco Ciuchini

HEFT – 22 May 2017 – Lumley Castle – UK

preliminary

lower bounds on Λ [TeV] @95% prob.

"Correlated" NP contributions

Рнтт	Q	0	0	0	0	0		0		0	0	0	0	\bigcirc	0	0	0
Рнүү	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0		0		0	0	0	0	0	0	\bigcirc	0
Иньь	0	0	0	0	0	0		0		0	0	0	0	0	0	0	0
PHZZ	\bigcirc	0	0	0	0	0		0			0	0		0	0	0	0
PHWW	\bigcirc	0	0	0	0	0		0		0	0	0	0	0	0	0	0
ΓW				0	0			0			0						0
MW				\bigcirc	\bigcirc			\bigcirc									\bigcirc
Ac				0	0			0		0	0	0					0
Ab				0	0			0		0	0		0				0
A ^c FB				Q	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	0	0					\bigcirc
А ^Ь _{FB}				\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	0		0				\bigcirc
Rc				0	0			0		0	0	0	0				0
Rb				0	0			0		0	0	0	0				0
Ą				\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc								\bigcirc
$sin2\theta_{eff}$				0	0		\bigcirc	\bigcirc	\bigcirc								\bigcirc
P _T ^{Pol}				0	\bigcirc		\bigcirc	\bigcirc	\bigcirc								\bigcirc
AFB				0	\bigcirc		0	0	\bigcirc								\bigcirc
Rj				\bigcirc	0		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc				\bigcirc
σ _H				0	0		\bigcirc	0	\bigcirc	0	0	0	0				0
Γ _Z				\bigcirc	\bigcirc		Ō	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc				Ο
	C _{HG}	CHW	C _{HB}	CHWB	CHD	C _{Hbox}	C _{HL1}	C _{HL3}	G _{He}	C _{HQ1}	C _{HQ3}	G _{Hu}	GHd	ReC _{eH}	ReC _{uH}	ReCdH	\mathbf{G}_{LL}

FCC-ee run	Z pole	WW threshold	HZ	$tar{t}$ threshold	Above $t\bar{t}$ threshold
$\sqrt{s} \; [\text{GeV}]$	90	160	240	350	> 350
$\mathcal{L} \; [\mathrm{ab}^{-1}/\mathrm{year}]$	88	15	3.5	1.0	1.0
Years of operation	$0.3\ /\ 2.5$	1	3	0.5	3
Events	$10^{12}/10^{13}$	10^{8}	$2 imes 10^6$	$2.1 imes10^5$	$7.5 imes10^4$

Physics at the FCC-ee:

• <u>Physics at the CEPC:</u>

CEPC run	Z pole	$HZ \ { m threshold}$
$\sqrt{s} \; [{ m GeV}] \ \int {\cal L} \; [{ m fb}^{-1}]$	$\begin{array}{c} 90 \\ \mathbf{>150} \end{array}$	$240\ 5 imes 10^3$
Events	10^{10}	$> 10^{6}$

