A global view on the Higgs self-coupling

Stefano Di Vita (DESY) HEFT @ Durham 2017/05/22

Based on DV, Grojean, Panico, Riembau, Vantalon [1704.01953]

Precision single-Higgs physics @ LHC

*Hypothesis: h is produced on-shell (σ_i) and then decays (BR^f)

Stefano Di Vita (DESY)

Precision single-Higgs physics @ LHC

***Hypothesis**: h is produced on-shell (σ_i) and then decays (BR^f)

Stefano Di Vita (DESY)

Constraining BSM deformations

Assume New Physics is heavy & EW symmetry is linearly realized \rightarrow SMEFT

Potentially new BSM-effects in h physics could have been already tested in the vacuum

Modifications in $h \rightarrow Zff$ related to $Z \rightarrow ff$

Already constrained at LEP

Constraining BSM deformations

Assume: New Physics is **heavy** & EW symmetry is **linearly realized** \rightarrow SMEFT

There are others deformations away from the SM that are harmless in the vacuum and need a Higgs field to be probed

But can affect h physics:

My working assumptions

- SMEFT ⇒ Linearly realized EW symmetry (H doublet)
- Mass scale " Λ " of NP heavier than typical energy scale of the process "E" \Rightarrow expansion in E/ Λ
- Further simplifying assumptions (to limit # of O's)
 - only CP-even d=6 O's
 - no O's tested in vacuum
- $^-$ no L,B-L violating O's
- no dipole O's

- flavor universality

- no Ψ⁴ O's (t⁴,ttqq,q⁴)

Higgs deformations in the Higgs basis

Pomarol '14; +Gupta,Riva '14; Falkowski '15; HXSWG YR4

parametrize space of d=6 operators in a way more directly connected to observable quantities in Higgs physics

Interpretation of rates measurements

ATLAS+CMS [1606.02266]

Interpretation of rates measurements

Still missing: Higgs self-coupling

$$\begin{split} V^{\rm SM}(h) &= \frac{1}{2} m_h^2 h^2 + \lambda_3^{\rm SM} v h^3 + \lambda_4^{\rm SM} h^4 \\ \lambda_3^{\rm SM} &= \frac{m_h^2}{2v^2} \qquad \lambda_4^{\rm SM} = \frac{m_h^2}{8v^2} \qquad \begin{array}{c} \text{See also} \\ \text{Gorbahn's talk} \\ \text{Gorbahn's talk} \\ \end{array} \end{split}$$

- Why important? In the SM, λ_3 and λ_4 control
 - ⁻ stability of the EW vacuum
 - possibility of baryogenesis
 through 1st order EW phase
 transition

- λ_3 affects Higgs-pair production @LO
 - @LHC 13TeV, 35.9/fb, hh \rightarrow bb $\tau\tau$, CMS bound is $\sigma(hh)/\sigma_{sM}(hh) < 28 \text{ (exp 25)}$ [CMS PAS HIG-17-002]
- Assuming SM hVV & hff couplings
 - @HL-LHC, 14TeV, 3/ab, hh \rightarrow bb $\gamma\gamma$, ATLAS projection is -0.8< λ_3/λ_3 SM<7.7 [ATL-PHYS-PUB-2017-001]

Double-Higgs deformation(s)

Self-coupling & single-Higgs @NLO

Idea: trilinear coupling affects also single-Higgs rates, but **@NLO. Still, if** λ_3 is large ...

McCullough '13

Self-coupling & single-Higgs @NLO

Courtesy of D. Pagani @ Turin '17

Stefano Di Vita (DESY)

What can we learn from λ_3 analyses?

- 1. Is it theoretically motivated to deform only λ_3 ?
- 2. How large can λ_3 be, from the theoretical point of view?
- 3. Is bound on λ_3 stable if we allow other BSM deformations?
- 4. If λ_3 is large, does it **spoil** the previous single-Higgs **fits**?
- 5. Will it be enough to look at **inclusive rates**?
- 6. Can we "replace" $pp \rightarrow hh$ with **other observables**?
- 7. Can we really avoid performing **global fits** for BSM?
- 8. (fill w/ your own questions!)

Only an anomalous λ_3 ?

Note that, at NLO, single-Higgs observables are **insensitive to h**⁴,**h**⁵,...

- They enter only at higher loop level
- Modifications of the full V(h) could still be allowed, in principle
- At NLO, κ_λ framework = EFT w/ O_6

Modification of **h**³ **only** leads to loss perturbative unitarity at low energy scales in processes like

- $V^{\scriptscriptstyle L} V^{\scriptscriptstyle L} o V^{\scriptscriptstyle L} V^{\scriptscriptstyle L} h^{\scriptscriptstyle n}$
- for $|K_{\lambda}| < 10$ one gets $\Lambda \sim 5$ TeV [Falkowski, Rattazzi (in progress)]
- see also Di Luzio, Gröber, Spannowsky [1704.02311

Look for extensions of the SM that, in an EFT description:

- ⁻ Only affect h self-interactions at tree-level, eg SU(2) scalar quadruplets
 - * still, 1-loop matching \rightarrow other single-Higgs couplings!
- Give enhanced modifications of the trilinear
- See e.g.
 - De Blas et al [1412.8480]
 - Jiang, Trott [1612.02040]
 - Di Luzio, Gröber, Spannowsky [1704.02311]

How large can λ_3 be?

DV, Grojean, Panico, Riembau, Vantalon [1704.01953]

dimensionless parameter

 $\varepsilon \equiv \frac{\theta g_*^2 v^2}{m^2} \ll 1$

singlet

dimensionless argument

A class of models:

Higgs portal, controlled by

- 1 coupling (g_{*})
- 1 scale (m_{*})

 $\mathcal{L} \supset \theta g_* m_* H^{\dagger} H \varphi - \frac{m_*^4}{q_*^2} V(g_* \varphi / m_*)$

potential

Otherwise only derivative expansion is allowed, many more couplings!!

 $(H^{\dagger}H)^{2} \Rightarrow \text{tuning of quartic } \Delta \sim \frac{\theta^{2}g_{*}^{2}}{\lambda_{3}^{\text{SM}}}$ $\partial_{\mu}(H^{\dagger}H)\partial^{\mu}(H^{\dagger}H) \Rightarrow \delta c_{z} \sim \theta^{2}g_{*}^{2}\frac{v^{2}}{m^{2}} =$ $\Rightarrow \delta c_z \sim \theta^2 g_*^2 \frac{v^2}{m_*^2} = \theta \varepsilon$

 $\theta \simeq 1, \ g_* \simeq 3, \ m_* \simeq 2.5 \ \text{TeV}$

 $\varepsilon \simeq 0.1, \ 1/\Delta \simeq 1.5\%, \ \delta c_z \simeq 0.1, \ \delta \kappa_\lambda \simeq 6$

$$(H^{\dagger}H)^{3} \quad \Rightarrow \delta\kappa_{\lambda} \sim \theta^{3}g_{*}^{4}\frac{1}{\lambda_{3}^{SM}}\frac{v^{2}}{m_{*}^{2}} = \varepsilon \Delta$$

Can achieve parametric enhancement of λ_3 at the price of some tuning

Stefano Di Vita (DESY)

17

A global view on the Higgs self-coupling

DV, Grojean, Panico, Riembau, Vantalon [1704.01953]

ATLAS HL-LHC scenario

- Similar to CMS "Scenario 1"
- 14TeV, 5/ab, pile-up μ =140

• Keep only interference SM-BSM

- Allow for NLO corrections due to κ_λ
- With my assumptions, **10 parameters**
- Perform simple χ^2 fit

high precision $\rightarrow \mu_i^{\,\rm f} = 1 + \delta \sigma_i + \delta B R^{\rm f}$

Observables: $\mu_i^f = \sigma_i \times BR^f / (\sigma_i \times BR^f)_{SM}$ Production channels: ggF,WH,ZH,VBF,ttH Decay modes: $\gamma\gamma$,WW,ZZ,bb, $\tau\tau$ Assume SM signal ($\mu_i^f = 1$)

In principle 5×5 observables, but only 9 independent directions \rightarrow 1 exact flat direction

A global view on the Higgs self-coupling

DV, Grojean, Panico, Riembau, Vantalon [1704.01953]

ATLAS HL-LHC scenario

- Similar to CMS "Scenario 1"
- 14TeV, 5/ab, pile-up μ =140

• Keep only interference SM-BSM

- Allow for NLO corrections due to κ_{λ}
- With my assumptions, **10 parameters**
- Perform simple χ^2 fit

high precision $\rightarrow \mu_i^{\,\rm f} = 1 + \delta \sigma_i + \delta B R^{\rm f}$

Observables: $\mu_i^f = \sigma_i \times BR^f / (\sigma_i \times BR^f)_{SM}$ Production channels: ggF,WH,ZH,VBF,ttH Decay modes: $\gamma\gamma$,WW,ZZ,bb, $\tau\tau$ Assume SM signal ($\mu_i^f = 1$)

In principle 5×5 observables, but only 9 independent directions \rightarrow 1 exact flat direction

- Impact of single-Higgs couplings on κ_λ
- Impact of κ_{λ} on single-Higgs couplings
- Compare & combine w/ double-Higgs production
- Crude analysis of the effect of single-Higgs differential distributions

Exact flat direction in the global fit

Will further constraints help?

- Triple Gauge Couplings
 - $^-$ currently WWZ and WW γ tested at 5% \rightarrow expect 1%
 - can be converted in constraints on 2 linear combinations of

 $\hat{c}_{\gamma\gamma}, \hat{c}_{z\gamma}, c_{zz}, c_{z\Box}$

- BR($h \rightarrow Z\gamma$)
 - [–] Will be measured w/ 30% accuracy
 - Can be used to constrain $c_{z\gamma} \rightarrow$ not relevant for $\kappa_{\lambda !}$
- BR(h→µµ)
 - [–] Either one extra parameter δy_{μ}
 - [–] Or (w/ flavor universality) just helps to better bound δy_e

Bound on $(\kappa_{\lambda}-1)$ in a global fit

As expected, the flat direction is rather insensitive to the TGC constraint

Constrained "intermediate" scenarios

A game: let's pretend we have scenarios with some of $(\delta y_t, c_{gg}, \delta cz)$ switched off

As expected, constraining "by hand" the coefficients that control the flat direction, the bound on κ_{λ} shrinks

Any model builder willing to explore how motivated such scenarios are?

Stefano Di Vita (DESY)

Single-Higgs couplings fit w/κ_{λ} @NLO

 $\Delta \chi^2 = 2.3$ contours (68% CL in the gaussian limit) [other 8 couplings profiled]

If large κ_{λ} is allowed, it feeds back into single-Higgs couplings fits

Stefano Di Vita (DESY)

Compare & combine w/double-Higgs

Stefano Di Vita (DESY)

Impact of differential single-Higgs

The inclusion of differential data for single-Higgs observables seems promising, but more detailed estimates of the experimental systematics are required, as well as more refined analyses.

Combining differential data from single- and double-Higgs, the minimum at large δK_{λ} is further lifted. Synergy!

Outlook

- Keep up with the hard work in measuring inclusive & diff rates.
 - Remember that their interpretation is a 2nd step..
- Suggestion: use simplified frameworks with few parameters as a training ground, to push the combined experimental analyses and to show their limitations in such optimistic scenarios
- Caveat: bounds on κ_{λ} obtained in this way, will have a physical interpretation only in very specific scenarios, and will not represent model-independent statements on the self-coupling
- How to move forward?
 - Come up with **optimized observables** (e.g. the best differential distributions)
 - Include new channels to resolve flat directions in the BSM deformations (e.g. h+j, h+γ)
 - Updated HL-LHC projections for inclusive rates, and possibly for (select) differential distributions would be welcome, in order to assess the LHC potential to constrain BSM scenarios.
 - Are there BSM scenarios that can be tested now? \Rightarrow **Model building effort?**

Self-coupling & single-Higgs @NLO

$$\sum_{\text{NLO corrections}} \Sigma_{\text{NLO}} = Z_H \sum_{\text{LO}} (1 + \kappa_{\lambda} C_1)$$

$d\Phi$ inclusive or differential

LO

Self-coupling & single-Higgs @NLO

$$\Sigma_{\rm NLO} = Z_H \Sigma_{\rm LO} \left(1 + \kappa_\lambda C_1 \right)$$

$$Z_H = \frac{1}{1 - \kappa_\lambda^2 \, \delta Z_H}$$

$$\stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \sim \kappa_{\lambda}^{2}$$

$$\kappa_{\lambda}^2 \, \delta Z_H \lesssim 1$$
 $|\kappa_{\lambda}| \lesssim 25$

$$\delta Z_H = -\frac{9}{16} \frac{2(\lambda_3^{\rm SM})^2}{m_H^2 \pi^2} \left(\frac{2\pi}{3\sqrt{3}} - 1\right)$$

The wave-function normalization receives corrections that depend quadratically on λ_3 .

For large κ_{λ} , the result cannot be linearized and must be resummed.

For a sensible resummation

20

Courtesy of D. Pagani @ Turin '17

Stefano Di Vita (DESY)

Projections at HL-LHC: $\Delta \mu_i^f / \mu_i^f$

14TeV, 3/ab, $\mu{=}140$

Process		Combination	Theory	Experimental
$H \to \gamma \gamma$	ggF	0.07	0.05	0.05
	VBF	0.22	0.16	0.15
	$t\bar{t}H$	0.17	0.12	0.12
	WH	0.19	0.08	0.17
	ZH	0.28	0.07	0.27
$H \rightarrow ZZ$	ggF	0.06	0.05	0.04
	VBF	0.17	0.10	0.14
	$t\bar{t}H$	0.20	0.12	0.16
	WH	0.16	0.06	0.15
	ZH	0.21	0.08	0.20
$H \to WW$	ggF	0.07	0.05	0.05
	VBF	0.15	0.12	0.09
$H \to Z\gamma$	incl.	0.30	0.13	0.27
$H \rightarrow b\bar{b}$	WH	0.37	0.09	0.36
	ZH	0.14	0.05	0.13
$H \to \tau^+ \tau^-$	VBF	0.19	0.12	0.15

Any further effort on this side would be welcome!

- Updated simulations/projections
- Systematics
- Correlations (?)
- Theory → what to compute?
 Differential?

ATL-PHYS-PUB-2014-016

- + ATL-PHYS-PUB-2016-008
- + ggF $N^{3}LO$ uncertainty
- + VH (H \rightarrow ZZ) split in WH,ZH

Would it be feasible to have HL-LHC projections for (select) diff. distributions?

Some simple systematics

Triple gauge couplings – Higgs interplay

$$\mathcal{L}_{tgc} = ie \left(W_{\mu\nu}^{+} W_{\mu}^{-} - W_{\mu\nu}^{-} W_{\mu}^{+} \right) A_{\nu} + ie \left[(1 + \delta \kappa_{\gamma}) A_{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} + \tilde{\kappa}_{\gamma} \tilde{A}_{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} \right]$$

$$+ igc_{\theta} \left[(1 + \delta g_{1,z}) \left(W_{\mu\nu}^{+} W_{\mu}^{-} - W_{\mu\nu}^{-} W_{\mu}^{+} \right) Z_{\nu} + (1 + \delta \kappa_{z}) Z_{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} + \tilde{\kappa}_{z} \tilde{Z}_{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} \right]$$

$$+ i \frac{e}{m_{W}^{2}} \left[\lambda_{\gamma} W_{\mu\nu}^{+} W_{\nu\rho}^{-} A_{\rho\mu} + \tilde{\lambda}_{\gamma} W_{\mu\nu}^{+} W_{\nu\rho}^{-} \tilde{A}_{\rho\mu} \right] + i \frac{gc_{\theta}}{m_{W}^{2}} \left[\lambda_{z} W_{\mu\nu}^{+} W_{\nu\rho}^{-} Z_{\rho\mu} + \tilde{\lambda}_{z} W_{\mu\nu}^{+} W_{\nu\rho}^{-} \tilde{Z}_{\rho\mu} \right]$$

$$- g_{s} f^{abc} \partial_{\mu} G_{\nu}^{a} G_{\mu}^{b} G_{\nu}^{c} + \frac{c_{3g}}{v^{2}} g_{s}^{3} f^{abc} G_{\mu\nu}^{a} G_{\nu\rho}^{b} G_{\rho\mu}^{c} + \frac{\tilde{c}_{3g}}{v^{2}} g_{s}^{3} f^{abc} \tilde{G}_{\mu\nu}^{a} G_{\nu\rho}^{b} G_{\rho\mu}^{c}.$$

Stefano Di Vita (DESY)

Gauge invariant operators in the Higgs basis

$$\begin{split} O_{\delta\lambda_{3}} &= -\frac{1}{v^{2}}(H^{\dagger}H)^{3}, \\ O_{c_{gg}} &= \frac{g_{s}^{2}}{4v^{2}}H^{\dagger}H G_{\mu\nu}^{a}G_{\mu\nu}^{a} \\ O_{\deltac_{s}} &= -\frac{1}{v^{2}} \left[\partial_{\mu}(H^{\dagger}H)\right]^{2} + \frac{3\lambda}{v^{2}}(H^{\dagger}H)^{3} + \left(\sum_{f} \frac{\sqrt{2}m_{f_{i}}}{v^{3}}H^{\dagger}H\bar{f}_{L,i}Hf_{R,i} + \text{h.c.}\right), \\ O_{c_{sz}} &= \frac{ig^{3}}{v^{2}(g^{2} - g'^{2})} \left(H^{\dagger}\sigma^{i}\overrightarrow{D_{\mu}}H\right) D_{\nu}W_{\mu\nu}^{i} - \frac{ig^{2}g'}{v^{2}(g^{2} - g'^{2})} \left(H^{\dagger}\overrightarrow{D_{\mu}}H\right) \partial_{\nu}B_{\mu\nu}, \\ O_{c_{sz}} &= \frac{ig(g^{2} + g'^{2})}{2v^{2}(g^{2} - g'^{2})} \left(H^{\dagger}\sigma^{i}\overrightarrow{D_{\mu}}H\right) D_{\nu}W_{\mu\nu}^{i} - \frac{ig'(g^{2} + g'^{2})}{2v^{2}(g^{2} - g'^{2})} \left(H^{\dagger}\overrightarrow{D_{\mu}}H\right) \partial_{\nu}B_{\mu\nu} \\ &- \frac{ig}{v^{2}} \left(D_{\mu}H^{\dagger}\sigma^{i}D_{\nu}H\right) W_{\mu\nu}^{i} - \frac{ig'}{v^{2}} \left(D_{\mu}H^{\dagger}D_{\nu}H\right) B_{\mu\nu}, \\ O_{c_{s\gamma}} &= -\frac{2igg'^{2}}{v^{2}(g^{2} + g'^{2})} \left(D_{\mu}H^{\dagger}\sigma^{i}D_{\nu}H\right) W_{\mu\nu}^{i} + \frac{2ig'g^{2}}{2v^{2}(g^{2} - g'^{4})} \left(D_{\mu}H^{\dagger}D_{\nu}H\right) B_{\mu\nu}, \\ O_{c_{\gamma\gamma}} &= -\frac{igg'^{4}}{2v^{2}(g^{4} - g'^{4})} \left(H^{\dagger}\sigma^{i}\overrightarrow{D_{\mu}}H\right) D_{\nu}W_{\mu\nu}^{i} + \frac{ig'^{5}}{2v^{2}(g^{4} - g'^{4})} \left(D_{\mu}H^{\dagger}D_{\mu}H\right) B_{\mu\nu} + \frac{g'^{2}}{4v^{2}}H^{\dagger}H B_{\mu\nu}B_{\mu\nu}, \\ O_{\delta y_{f}}]_{ij} &= -\frac{\sqrt{2m_{f_{i}}m_{f_{j}}}}{v^{3}} H^{\dagger}H\bar{f}_{L,i}Hf_{R,j} + \text{h.c.}, \end{split}$$

Stefano Di Vita (DESY)