

Probing the Higgs boson CP properties in the SMEFT

Fuks Benjamin

LPTHE / UPMC

I612.01808: with F. Ferreira, V. Sanz & D. Sengupta I609.04833 (EPJC`17): with C. Degrande, K. Mawatari, K. Mimasu & V. Sanz

HEFT 2017

Lumley Castle, 22-24 May 2017

Effective field theories for new physics

- The effective field theory (EFT) approach for new physics
 - * All new phenomena are assumed to appear at a large energy scale Λ
 - * Departures from the Standard Model expressed as a series in I/Λ
 - \star In terms of the SM fields (no assumption on the form of new physics)
 - \star Addition of higher-dimensional operators
 - ★ Leading effects usually assumed to be of dimension six (sometimes dimension-eight operators are relevant as well)
 - * Not predictive at scales larger than \land (loss of unitarity)
- The EFT parameter space is large (I parameter / new operator)
 - Observables usually depend on specific linear combinations of coefficients
 A much smaller subset of parameters is relevant with respect to data
 - \star EFT are testable

Current data is constraining, but room for deviations still exists

Large classes fo scenarios feature CP-violating Higgs couplings

What are the current constraints?

What are the prospects?

Can we distinguish CP-violating from CP-conserving effects?

CP-violation in the gauge sector

CP-violation in the gauge sector can be parameterized with 6 operators

$$\begin{aligned} \mathcal{L}_{\rm CPV}^{(6)} &= \frac{ig}{\Lambda^2} \tilde{c}_{\scriptscriptstyle HW} \left[D_\mu \Phi^{\dagger} T_{2k} D_\nu \Phi \right] \widetilde{W}^{k,\mu\nu} + \frac{ig'}{\Lambda^2} \tilde{c}_{\scriptscriptstyle HB} \left[D_\mu \Phi^{\dagger} D_\nu \Phi \right] \widetilde{B}^{\mu\nu} + g'^2 \frac{\tilde{c}_{\gamma}}{\Lambda^2} \Phi^{\dagger} \Phi B_{\mu\nu} \widetilde{B}^{\mu\nu} \\ &+ g_s^2 \frac{\tilde{c}_g}{\Lambda^2} \Phi^{\dagger} \Phi G^a_{\mu\nu} \widetilde{G}^{\mu\nu}_a + g^3 \frac{\tilde{c}_{_{3W}}}{\Lambda^2} \epsilon_{ijk} W^i_{\mu\nu} W^{\nu j}_{\ \rho} \widetilde{W}^{\rho\mu k} + g_s^3 \frac{\tilde{c}_{_{3G}}}{\Lambda^2} f_{abc} G^a_{\mu\nu} G^{\nu b}_{\ \rho} \widetilde{G}^{\rho\mu c} \end{aligned}$$

CP-violating fermionic operators neglected

• Focus on electroweak Higgs production and decays: \tilde{c}_{3G} irrelevant

5D parameter space: $\tilde{c}_{HW}, \tilde{c}_{HB}, \tilde{c}_{\gamma}, \tilde{c}_{g}, \tilde{c}_{3W}$

```
    ♦ Most stringent constraints: LHC and Tevatron signal strengths
    ♦ LHC Run I, p p ⇒ h ⇒ γγ: \tilde{c}_{\gamma}, \tilde{c}_{g}
    ♦ LHC Run I + Tevatron, VH + p p ⇒ h ⇒ 4I: \tilde{c}_{HW}, \tilde{c}_{HB}
    ♦ LHC Run I, WBF: \tilde{c}_{HW}
    ♦ LHC Run I, W-boson pair production: \tilde{c}_{3W}
```

Signal strengths @ Tevatron & LHC Run I

Prospects for the signal strength strategy

Reminder: Run I constraints
 * |c̃γ| < 0.001 and |c̃g| < 0.0001
 * |c̃HB|, |c̃HW|, |c̃3W| < 0.05-0.2

Expectations (at the 2σ level) for 300 (purple) and 3000 fb⁻¹ (blue)

Getting better in being differential

ZH production: generalities

- The sum of the p_T of the two leptons $p_T(\ell^+, \ell^-) = p_T(\ell^+) + p_T(\ell^-)$
- * The angular separation of the two leptons $\Delta \tilde{\phi}(\ell^+, \ell^-) = |\Delta \phi(\ell^+, \ell^-)| \frac{\pi}{2}$

ZH production: distributions

- \star Very important distortion of the angular spectrum
 - Bumps and dips more pronounced

New handles on new physics

ZH production: new handles on new physics

★ Efficiencies

- The stronger is the cut, the larger is the expected sensitivity to the EFT operator
- The effects is enhanced with the magnitude of the EFT parameter

★ Asymmetries

Very large dependence on the EFT parameter (including the sign)

VBF production: generalities

VBF production: distributions

- \bigstar EFT operators impact the full pT spectrum
 - Distortion of the p_T spectrum (the fall at high p_T is reduced)
 - EFT validity range: OK but one must be careful

 \star Important distortions of the angular spectrum

VBF production: new handles on new physics

★ Efficiencies

- The stronger is the cut, the larger is the expected sensitivity to the EFT operator
- The effects is enhanced with the magnitude of the EFT parameter

★ Asymmetries

• Very large dependence on the EFT parameter (including the sign)

VBF production - Detector effects

Robust observables with respect to detector effects

★ Asymmetries

- Large detector effects on angular variables
- Conclusive statements can still be achieved (still dependent on the EFT parameters)

The next steps

Results in the CP-conserving case

Introduction

(Higgs) Effective Field Theory at NLO in QCD

Example I - WH production at the LHC

WH production at the LHC - QCD corrections

- Differential K-factors are scenario-dependent
 - \star Orange is very close to the SM case
 - \star Blue is in contrast flat
 - \star LO predictions are in both cases inaccurate

WH production at the LHC - EFT effects

Probing the Higgs boson CP properties in the SMEFT

Benjamin Fuks - HEFT 2017 - 22.05.2017 - 19

Example 2 - WBF production at the LHC

Higgs decays into a photon pair

 $pp \rightarrow H + jj \rightarrow \gamma\gamma + jj$

- ♣ Hard (p_T > 25 GeV) and forward (|η| < 4.5) jets
- ♣ Hard (p_T > 20 GeV) and central (|η| < 2.5) photons

♦ VBF cuts: M_{jj} > 500 GeV and $\Delta \eta_{jj}$ > 3

Study of various observables

- Sensitive to the momentum flow
- NLO effects (via differential K-factors)
 - ★ K-factors EFT-independent
 - \star In agreement with the SM
 - ★ Not flat
- EFT effects are destructive (this contrasts with VH)

EFT validity

Unitarity and perturbativity checks

VBF/VH complementarity for extracting constraints

- \star 1/ Λ^4 effects possibly large in the tails
- ★ Benchmark- and process-dependent
- \star Care must be taken with the EFT interpretation
 - > WH: orange is OK, blue is not
 - > WBF: orange and blue OK

Benjamin Fuks - HEFT 2017 - 22.05.2017 - 21

Summary

 We have initiated a program to investigate the CP properties of the Higgs Investigation signal strengths Mild constraints on most CPV operators Not exciting expectation from the future HL-LHC run Getting differential could potentially help The joint use of a dimensionful and dimensionless observable is promising Maximizing the sensitivity to both the EFT and CPV effects
 Outlook: disentangling of CP-violating and conserving effects A full signal and background analysis is on its way Inclusion of NLO effects Check of the EFT range of validity
 Those questions have already been addressed in the CP-conserving sector NLO effects are important (normalization and shapes) Care must be taken in the tails (for some processes)