Composite Higgs models

Mikael Chala (IFIC)

in collaboration with G. Durieux, C. Grojean, L. Lima,

and O. Matsedonskyi. Based on arXiv:1703.10624.

 $\overline{\text{HEFT } 2017}, \overline{\text{May } 22^{\text{th}}} 2017$

The Standard Model is very strong, but it cannot explain all observations

$\overline{\text{HEFT}} \ 2017, \ \overline{\text{May}} \ 22^{\text{th}} \ 2017$

Composite Higgs models (very good candidates for new physics)

- **No hierarchy problem** because the Higgs is a bound state,
- This is lighter than the new physics scale (presumably slightly above the TeV) because is a Goldstone of \mathcal{G}/\mathcal{H} ,
- Fermion masses are induced by non-hierarchical couplings in the UV,

(almost) a high-energy copy of QCD

$\overline{\text{HEFT}} \ 2017, \ \overline{\text{May}} \ 22^{\text{th}} \ 2017$

HEFT 2017, May 22th 2017

HEFT 2017, May $22^{\text{th}} 2017$

$\overline{\text{HE}\text{FT}}\ 2017, \text{May}\ 22^{\text{th}}\ 2017$

HEFT 2017, May 22^{th} 2017

 $\overline{\text{HEFT}} \ 2017, \ \overline{\text{May}} \ 22^{\text{th}} \ 2017$

 $HEFT 2017, May 22^{th} 2017$

 $\overline{\text{HEFT 2017, May 22^{th} 2017}}$

Sigma model Lagrangian + symmetry-breaking terms

$$-\frac{c_6}{f^2}(H^{\dagger}H)^3 + \frac{c_y^{ij}}{f^2}(H^{\dagger}H\overline{\psi}_L^iH\psi_R^j) + \cdots$$

HEFT 2017, May $22^{\text{th}} 2017$

Sigma model Lagrangian + symmetry-breaking terms

$$L \sim \frac{c_H}{2f^2} [\partial_\mu (H^{\dagger} H)]^2 + \frac{c_T}{2f^2} (H^{\dagger} D_\mu H)^2 - \frac{c_6}{f^2} (H^{\dagger} H)^3 + \frac{c_y^{ij}}{f^2} (H^{\dagger} H \overline{\psi}_L^i H \psi_R^j) + \cdots$$

HEFT 2017, May $22^{\text{th}} 2017$

Coefficients estimated via SILH formalism [hep-ph/0703164]

$$L \sim \frac{c_H}{2f^2} [\partial_\mu (H^{\dagger} H)]^2 + \frac{c_T}{2f^2} (H^{\dagger} D_\mu H)^2 - \frac{c_6}{f^2} (H^{\dagger} H)^3 + \frac{c_y^{ij}}{f^2} (H^{\dagger} H \overline{\psi}_L^i H \psi_R^j) + \cdots$$

 $\overline{\text{HE}\text{FT}\ 2017}, \text{May}\ 22^{\text{th}}\ 2017$

Non-minimal composite Higgs models (even better candidates for new physics)

- No hierarchy problem because the Higgs is a bound state,
- This is lighter than the new physics scale (presumably slightly above the TeV) because is a Goldstone of \mathcal{G}/\mathcal{H} ,
- Fermion masses are induced by non-hierarchical couplings in the UV,

provide dark matter candidates, explanation for baryon anti-baryon asymmetry, feasible UV completions...

$\overline{\text{HEFT}} \ 2017, \ \overline{\text{May}} \ 22^{\text{th}} \ 2017$

Non-minimal composite Higgs models (table taken from Bellazzini *et al*, 1401.2457)

${\cal G}$	${\cal H}$	C	N_G	$\mathbf{r}_{\mathcal{H}} = \mathbf{r}_{\mathrm{SU}(2) imes \mathrm{SU}(2)} \left(\mathbf{r}_{\mathrm{SU}(2) imes \mathrm{U}(1)} ight)$	Ref.
SO(5)	SO(4)	\checkmark	4	${f 4}=({f 2},{f 2})$	11
$SU(3) \times U(1)$	$\mathrm{SU}(2) \times \mathrm{U}(1)$		5	$\mathbf{2_{\pm 1/2}+1_0}$	10,35
SU(4)	$\operatorname{Sp}(4)$	\checkmark	5	${f 5}=({f 1},{f 1})+({f 2},{f 2})$	[29, 47, 64]
$\mathrm{SU}(4)$	$[\mathrm{SU}(2)]^2 \times \mathrm{U}(1)$	\checkmark^*	8	$({f 2},{f 2})_{\pm {f 2}}=2\cdot ({f 2},{f 2})$	65
$\mathrm{SO}(7)$	SO(6)	\checkmark	6	${f 6}=2\cdot ({f 1},{f 1})+({f 2},{f 2})$	_
$\mathrm{SO}(7)$	G_2	\checkmark^*	7	${f 7}=({f 1},{f 3})+({f 2},{f 2})$	66
$\mathrm{SO}(7)$	$\mathrm{SO}(5) imes \mathrm{U}(1)$	\checkmark^*	10	${f 10_0}=({f 3},{f 1})+({f 1},{f 3})+({f 2},{f 2})$	_
$\mathrm{SO}(7)$	$[SU(2)]^{3}$	\checkmark^*	12	$({f 2},{f 2},{f 3})=3\cdot({f 2},{f 2})$	
$\operatorname{Sp}(6)$	$\operatorname{Sp}(4) \times \operatorname{SU}(2)$	\checkmark	8	$(4,2)=2\cdot(2,2)$	65
${ m SU}(5)$	$\mathrm{SU}(4) \times \mathrm{U}(1)$	\checkmark^*	8	${f 4}_{-5}+ar{f 4}_{+{f 5}}=2\cdot({f 2},{f 2})$	$\overline{67}$
${ m SU}(5)$	SO(5)	\checkmark^*	14	${f 14}=({f 3},{f 3})+({f 2},{f 2})+({f 1},{f 1})$	[9, 47, 49]
SO(8)	$\mathrm{SO}(7)$	\checkmark	7	${f 7}=3\cdot ({f 1},{f 1})+({f 2},{f 2})$	
$\mathrm{SO}(9)$	SO(8)	\checkmark	8	$8=2\cdot(2,2)$	$\left[67 ight]$
SO(9)	$SO(5) \times SO(4)$	\checkmark^*	20	$({f 5},{f 4})=({f 2},{f 2})+({f 1}+{f 3},{f 1}+{f 3})$	$\overline{34}$
$[SU(3)]^2$	${ m SU}(3)$		8	${f 8}={f 1_0}+{f 2_{\pm 1/2}}+{f 3_0}$	8
$[SO(5)]^{2}$	$\mathrm{SO}(5)$	\checkmark^*	10	${f 10}=({f 1},{f 3})+({f 3},{f 1})+({f 2},{f 2})$	$\overline{32}$
$SU(4) \times U(1)$	$SU(3) \times U(1)$		7	$\mathbf{3_{-1/3}} + \mathbf{\bar{3}_{+1/3}} + \mathbf{1_0} = 3 \cdot \mathbf{1_0} + \mathbf{2_{\pm 1/2}}$	35,41
SU(6)	$\operatorname{Sp}(6)$	\checkmark^*	14	${f 14}=2\cdot ({f 2},{f 2})+({f 1},{f 3})+3\cdot ({f 1},{f 1})$	30,47
$[SO(6)]^2$	SO(6)	\checkmark^*	15	${f 15}=({f 1},{f 1})+2\cdot ({f 2},{f 2})+({f 3},{f 1})+({f 1},{f 3})$	36

Coefficients estimated via SILH formalism [hep-ph/0703164]

$$L \sim \frac{c_H}{2f^2} [\partial_\mu (H^{\dagger} H)]^2 + \frac{c_T}{2f^2} (H^{\dagger} D_\mu H)^2 - \frac{c_6}{f^2} (H^{\dagger} H)^3 + \frac{c_y^{ij}}{f^2} (H^{\dagger} H \overline{\psi}_L^i H \psi_R^j) + \cdots$$

 $\overline{\text{HE}\text{FT}\ 2017}, \text{May}\ 22^{\text{th}}\ 2017$

Coefficients estimated via SILH formalism [hep-ph/0703164]

$$L \sim \frac{c_S^1}{2f^2} [\partial_\mu (S^2)]^2 + \frac{c_S^2}{2f^2} (S^{\dagger} \partial_\mu S)^2 - \frac{c_S^2}{f^2} (S^{2,3,\cdots}) + \frac{c_S^{ij}}{f} (S\overline{\psi}_L^i H \psi_R^j) + \cdots$$

 $\overline{\text{HE}\text{FT}\ 2017}, \text{May}\ 22^{\text{th}}\ 2017$

1S1C $(f, g_{\rho}; m_{\rho} = g_{\rho}f)$ + dimensional analysis determines the scaling of the effective operators, [1506.01961]

Operator coefficients of order one, up to selection rules

It is actually an assumption, but is not an arbitrary one

$$m_{\rho}^{2}f^{2}\left[\frac{N_{c}y_{t}^{2}}{(4\pi)^{2}}\right]^{\#_{L}}\left[\frac{N_{f}g_{\rho}^{2}}{(4\pi)^{2}}\right]^{\#_{L}}\left[\frac{y_{q}\bar{q}q}{m_{\rho}^{2}f}\right]^{\#_{q}}\left[\frac{g_{A}A}{m_{\rho}}\right]^{\#_{A}}\left[\frac{S}{f}\right]^{\#_{S}}\left[\frac{H}{f}\right]^{\#_{H}}\left[\frac{\partial_{\mu}}{m_{\rho}}\right]^{\#_{\partial}}$$

$\overline{\text{HEFT 2017, May 22^{th} 2017}}$

There is a priori no reason for the mass of S to be tuned. It is then expected that

 $m_S^2 \sim m_\rho^2 \frac{N_c y_t^2}{(4\pi)^2} \sim \frac{f^2}{v^2} m_h^2 \sim (500 \,\text{GeV})^2 \ll m_\rho^2$

$\overline{\text{HEFT} 2017}, \text{ May } 22^{\text{th}} 2017$

Concrete expression in calculable composite Higgs models

 $\overline{\text{HEFT } 2017}, \overline{\text{May } 22^{\text{th}}} 2017$

The coset SO(6)/SO(5)(first studied in 0902.1483)

 $V \sim f^2 \left| c_1 - \frac{7}{4} c_2 \right| h^2 + (c_2 - c_1) h^4$ $-c_2 f^2 S^2 + (c_2 - c_1) h^2 S^2$

 $\overline{\text{HEFT}} \ 2017, \ \overline{\text{May}} \ 22^{\text{th}} \ 2017$

The coset SO(6)/SO(5)(first studied in 0902.1483)

 $\overline{\text{HEFT}} \ 2017, \ \overline{\text{May}} \ 22^{\text{th}} \ 2017$

The coset $SO(7)/G_2$ (first studied in 1210.6208)

 $\overline{\text{HEFT 2017, May 22^{th} 2017}}$

$\overline{\text{HEFT 2017, May 22^{th} 2017}}$

$\overline{\text{HEFT}} \ 2017, \ \overline{\text{May}} \ 22^{\text{th}} \ 2017$

A basis for the EFT of H+S(regarding S, we focus on dimension 5)

Caveat: eliminating operator redundancies can break the power counting estimates:

$$\frac{1}{f}|D_{\mu}H|^{2}S \rightarrow \frac{1}{2f}|H|^{2}\square S -\frac{1}{2f}(H^{\dagger}\square HS + h.c)$$

HEFT 2017, May $22^{\text{th}} 2017$

A basis for the EFT of H+S (regarding S, we focus on dimension 5)

Caveat: eliminating operator redundancies can break the power counting estimates.

The operators are related. One of them can be removed

$$\mathcal{O}_1 = \frac{1}{f} |D_\mu H|^2 S \qquad \mathcal{O}_2 = \frac{i}{f} (H^{\dagger} D_\mu H) \partial^\mu S + \text{h.c.} \qquad \mathcal{O}_3 = \frac{1}{f} \partial_\mu |H|^2 \partial^\mu S$$
$$\mathcal{O}_4 = \frac{1}{f} (H^{\dagger} \Box H) S + \text{h.c.} \qquad \mathcal{O}_5 = \frac{1}{f} |H|^2 \Box S$$

$\overline{\text{HEFT } 2017}, \overline{\text{May } 22^{\text{th}}} 2017$

A basis for the EFT of H+S (regarding S, we focus on dimension 5)

Caveat: eliminating operator redundancies can break the power counting estimates.

The operators are related. One of them can be removed

$$\mathcal{O}_1 = \frac{1}{f} |D_{\mu}H|^2 S \qquad \mathcal{O}_2 = \frac{i}{f} (H^{\dagger} D_{\mu}H) \partial^{\mu}S + \text{h.c.} \qquad \mathcal{O}_3 = \frac{1}{f} \partial_{\mu} |H|^2 \partial^{\mu}S$$
$$\mathcal{O}_4 = \frac{1}{f} (H^{\dagger} \Box H)S + \text{h.c.} \qquad \mathcal{O}_5 = \frac{1}{f} |H|^2 \Box S$$

$\overline{\text{HEFT } 2017}, \overline{\text{May } 22^{\text{th}}} 2017$

A basis for the EFT of H+S(regarding S, we focus on dimension 5)

- Caveat: eliminating operator redundancies can break the power counting estimates.
 - It can be removed in favor of $\partial_{\mu}S \ \overline{q}\gamma^{\mu}q$

$$\mathcal{O}_1 = \frac{1}{f} |D_\mu H|^2 S \qquad \mathcal{O}_2 = \frac{i}{f} (H^\dagger D_\mu H) \partial^\mu S + \text{h.c.} \qquad \mathcal{O}_3 = \frac{1}{f} \partial_\mu |H|^2 \partial^\mu S$$
$$\mathcal{O}_4 = \frac{1}{f} (H^\dagger \Box H) S + \text{h.c.} \qquad \mathcal{O}_5 = \frac{1}{f} |H|^2 \Box S$$

$\overline{\text{HEFT 2017, May 22^{th} 2017}}$

A basis for the EFT of H+S (regarding S, we focus on dimension 5)

Caveat: eliminating operator redundancies can break the power counting estimates.

We end up with the minimal set of operators

SX^2 , $S^{2,4}$	$S D_{\mu}H ^2$, $S^{3,5}$
$S \bar{q} H q$, $S^2 H ^2$	$S H ^2$, $S H ^4$, $S^3 H ^2$

 $\overline{\text{HEFT 2017, May 22^{th} 2017}}$

Estimated size of the dimension-5 operators (cases beyond the PNGB one are also present)

	scalar		pseudo-scalar		
	generic	PNGB	generic	PNGB (PC)	PNGB (anom.)
$k_X S X^2$	$\frac{g_X^2}{g_\rho^2}\frac{1}{f}$	$\frac{3y_t^2}{(4\pi)^2} \frac{g_X^2}{g_\rho^2} \frac{1}{f}$	$\frac{g_X^2}{g_\rho^2}\frac{1}{f}$	$\frac{3y_t^2}{(4\pi)^2} \frac{g_X^2}{g_\rho^2} \frac{1}{f}$	$\frac{N_f^{(X)}g_X^2}{(4\pi)^2}\frac{1}{f}$
$k_q S \bar{q} H q$	$y_q \frac{1}{f}$	$y_q rac{1}{f}$	$iy_q rac{1}{f}$	$iy_qrac{1}{f}$	
$k_H S D_\mu H ^2$	$\frac{1}{f}$				
$k_{H1} S H ^2, \ k_{H2} S H ^4 / f^2, \ k_{H3} S^3 H ^2 / f^2$	$\frac{3y_t^2}{(4\pi)^2} \frac{m_{ ho}^2}{f}$	$\frac{3y_t^2}{(4\pi)^2} \frac{m_{ ho}^2}{f}$			
$k_{H4} S^2 H ^2$		$\frac{3y_t^2}{(4\pi)^2} \frac{m_{\rho}^2}{f^2}$	$\frac{3y_t^2}{(4\pi)^2} \frac{m_{\rho}^2}{f^2}$	$\frac{3y_t^2}{(4\pi)^2} \frac{m_{\rho}^2}{f^2}$	$\frac{\tilde{N}_f g_\rho^2}{(4\pi)^2} \frac{3y_t^2}{(4\pi)^2} \frac{m_\rho^2}{f^2}$
$k_M S^2 \ , \ k_4 S^4 / f^2$	$m_{ ho}^2$	$\frac{3y_t^2}{(4\pi)^2}m_\rho^2$	$m_{ ho}^2$	$\frac{3y_t^2}{(4\pi)^2}m_\rho^2$	$\frac{\tilde{N}_f g_\rho^2}{(4\pi)^2} m_\rho^2$
$k_3S^3\ ,\ k_5S^5/f^2$	$\frac{m_{\rho}^2}{f}$	$\frac{3y_t^2}{(4\pi)^2}\frac{m_\rho^2}{f}$			

Impact on direct production of S (PNGB scalar; the pseudoscalar goes to tt)

HEFT 2017, May 22th 2017

Impact on Higgs physics

(cases beyond the PNGB one are also present)

		effect of scal	compositeness	
		generic	PNGB	effects [+MC]
\mathcal{O}_g	$rac{g_S^2}{v^2} H ^2G_{\mu u}G^{\mu u}$	$k_g k_{H1} rac{3y_t^2}{(4\pi)^2} rac{1}{g_ ho^2} rac{m_ ho^2}{M^2} \xi$	$k_g k_{H1} {9 y_t^4 \over (4\pi)^4} {1 \over g_ ho^2} {m_ ho^2 \over M^2} \xi$	$c_g \frac{3y_t^2}{(4\pi)^2} \frac{1}{g_{\rho}^2} \xi$
\mathcal{O}_{γ}	$\frac{g^{\prime 2}}{v^2} H ^2 B_{\mu\nu}B^{\mu\nu}$	$(k_W + k_B)k_{H1} rac{3y_t^2}{(4\pi)^2} rac{1}{g_ ho^2} rac{m_ ho^2}{M^2} \xi$	$(k_W + k_B)k_{H1} \frac{9y_t^4}{(4\pi)^4} \frac{1}{g_{ ho}^2} \frac{m_{ ho}^2}{M^2} \xi$	$c_{\gamma}\frac{3y_t^2}{(4\pi)^2}\frac{1}{g_{\rho}^2}\xi$
\mathcal{O}_W	$\frac{ig}{2v^2}(H^{\dagger}\sigma^i\overleftrightarrow{D}_{\mu}H)(D_{\nu}W^{\mu\nu})^i$	$4k_W k_{H1} \frac{3y_t^2}{(4\pi)^2} \frac{1}{g_{\rho}^2} \frac{m_{\rho}^2}{M^2} \xi$	$4k_W k_{H1} rac{9 y_t^4}{(4\pi)^4} rac{1}{g_ ho^2} rac{m_ ho^2}{M^2} \xi$	$c_W rac{1}{g_ ho^2} \xi$
\mathcal{O}_B	$\frac{ig'}{2v^2}(H^\dagger \overleftarrow{D}_{\mu} H)(\partial_{\nu} B^{\mu\nu})$	$-4k_Wk_{H1}rac{3y_t^2}{(4\pi)^2}rac{1}{g_ ho^2}rac{m_ ho^2}{M^2}\xi$	$-4k_W k_{H1} \frac{9y_t^4}{(4\pi)^4} \frac{1}{g_{ ho}^2} \frac{m_{ ho}^2}{M^2} \xi$	$c_B rac{1}{g_ ho^2} \xi$
\mathcal{O}_{HW}	$\frac{ig}{v^2}(D_{\mu}H)^{\dagger}\sigma^i(D_{\nu}H)W^{i\mu u}$	$-4k_Wk_{H1}rac{3y_t^2}{(4\pi)^2}rac{1}{g_ ho^2}rac{m_ ho^2}{M^2}\xi$	$-4k_W k_{H1} \frac{9y_t^4}{(4\pi)^4} \frac{1}{g_{ ho}^2} \frac{m_{ ho}^2}{M^2} \xi$	$c_{HW} rac{1}{g_ ho^2} \xi \left[rac{g_ ho^2}{(4\pi)^2} ight]$
\mathcal{O}_{HB}	$rac{ig'}{v^2}(D_{\mu}H)^{\dagger}(D_{\nu}H)B^{\mu u}$	$4k_W k_{H1} \frac{3y_t^2}{(4\pi)^2} \frac{1}{g_{\rho}^2} \frac{m_{\rho}^2}{M^2} \xi$	$4k_W k_{H1} \frac{9y_t^4}{(4\pi)^4} \frac{1}{g_\rho^2} \frac{m_\rho^2}{M^2} \xi$	$c_{HB} \frac{1}{g_{\rho}^2} \xi \left[\frac{g_{\rho}^2}{(4\pi)^2} \right]$
\mathcal{O}_q	$rac{1}{v^2}ar{q}Hq H ^2$	$y_q k_{H1} \left(k_q - \frac{k_H}{2} \right) \frac{3y_t^2}{(4\pi)^2} \frac{m_{ ho}^2}{M^2} \xi$	$y_q k_{H1} k_q rac{3y_t^2}{(4\pi)^2} rac{m_ ho^2}{M^2} \xi$	$c_q y_q \xi$
\mathcal{O}_H	$rac{1}{2v^2}\partial_\mu H ^2\partial^\mu H ^2$	$k_{H1} \left(k_{H1} \frac{3y_t^2}{(4\pi)^2} \frac{m_{\rho}^2}{M^2} - k_H \right) \frac{3y_t^2}{(4\pi)^2} \frac{m_{\rho}^2}{M^2} \xi$	$k_{H1}^2 \frac{9y_t^4}{(4\pi)^4} \frac{m_{\rho}^4}{M^4} \xi$	$c_H \xi$

Impact on Higgs physics (cases beyond the PNGB one are also present)

Limits on new vector-like quarks (mainly QCD-produced top partners)

Bounds considering all branching ratios (also elusive decays) in light of 1505.04306, ATLAS-2016-102, ATLAS-2016-104, ATLAS-2017-015, CMS-SUS-16-029

HEFT 2017, May 22th 2017

Limits on new vector-like quarks (mainly QCD-produced top partners)

Bounds can be automatically obtained using the VLQ-limits, available at http://github.com/mikaelchala/vlqlimits

$\overline{\text{HEFT 2017, May 22^{th} 2017}}$

Conclusions

HEFT 2017, May $22^{\text{th}} 2017$

- Non-minimal composite Higgs models are very good candidates for new physics
- Power counting estimates suggest that extra scalar singlets S are heavier than the Higgs boson
- We have worked out a basis of dimension-5 operators for S. Some redundant operators must be kept in order not to break the power counting
- The effects of S on Higgs physics can be larger than those coming from the strong sector

HEFT 2017, May 22th 2017

- Non-minimal composite Higgs models are very good candidates for new physics
- Power counting estimates suggest that extra scalar singlets S are heavier than the Higgs boson
- We have worked out a basis of dimension-5 operators for S. Some redundant operators must be kept in order not to break the power counting
- The effects of S on Higgs physics can be larger than those coming from the strong sector

Thank you very much for your attention:

HEFT 2017, May $22^{\text{th}} 2017$

The form of the H+S potential can be obtained using the aforementioned power counting:

$$V \sim m_{\rho}^2 f^2 \frac{N_c y_t^2}{(4\pi)^2} \left[-\alpha \frac{|H|^2}{f^2} + \beta \frac{|H|^4}{f^4} \right]$$

HEFT 2017, May $22^{\text{th}} 2017$

 α and β have to be tuned in order to achieve the separation $v \ll f$. $\xi = v^2/f^2$ "measures" the tuning

$$V \sim m_{\rho}^2 f^2 \frac{N_c y_t^2}{(4\pi)^2} \left[-\frac{\alpha}{f^2} \frac{|H|^2}{f^2} + \frac{\beta}{f^4} \frac{|H|^4}{f^4} \right]$$

HEFT 2017, May 22th 2017

 α and β have to be tuned in order to achieve the separation $v \ll f$. $\xi = v^2/f^2$ "measures" the tuning

$$v = f\left(\frac{\alpha}{2\beta}\right)^{\frac{1}{2}} , \quad m_h^2 \simeq \beta \frac{N_c y_t^2}{2\pi^2} \frac{v^2}{f^2} m_\rho^2$$

HEFT 2017, May 22th 2017

A basis for the EFT of H+S(regarding S, we focus on dimension 5)

Caveat: eliminating operator redundancies can break the power counting estimates.

The reason is that the kinetic terms are not suppressed

$$\frac{y_t^2}{16\pi^2} \frac{m_\rho^2}{f} S|H|^2 \rightarrow \frac{1}{f} S H^{\dagger} \Box H \text{ or } \frac{1}{f} \Box S|H|^2$$

 $\overline{\text{HEFT } 2017}, \overline{\text{May } 22^{\text{th}}} 2017$

 $\overline{\text{HEFT 2017, May 22^{th} 2017}}$

 $\overline{\text{HEFT 2017, May 22^{th} 2017}}$

HEFT 2017, May 22^{th} 2017