

Christoph Englert

Results from TopFitter

HEFT `17

Durham, 23.05.2017

based on

[Buckley, CE, Ferrando, Miller, Moore, Russell, White `15] [CE, Moore, Nordstrom, Russell `16] [CE, Russell `17]

SMEFT!?

What are "good" places to look for BSM?

- global fits to hundreds of parameters technically challenging
- educated guesses

What are "good" places to look for BSM?

see also

top sector

[Bernardo et al. `14]

[Castro, Ermann, Grunwald, Kröninger, Rosien `16]

<u>my talk</u>: *what can we learn from the top sector at the LHC?*0. top physics is abundant (~900 pb) why not use it directly
1. what's the direct status after the first LHC runs
2. what's the best way to directly constrain generic BSM phenomena in the top sector in the future

indirect constraints: e.g. [de Blas, Chala, Santiago `15]

multidimensional interpolation & fit with Professor

Our fitting procedure in a nutshell

multidimensional interpolation & fit

adapted random walks in parameter space

[SFITTER, Lafaye, Plehn, Zerwas `04]

Our fitting procedure in a nutshell

multidimensional interpolation & fit

adapted random walks in parameter space

[SFITTER, Lafaye, Plehn, Zerwas `04]

parameterisation-based interpolation

[PROFESSOR, Buckley et al. `09]

Our fitting procedure in a nutshell

multidimensional interpolation & fit

adapted random walks in parameter space

[SFITTER, Lafaye, Plehn, Zerwas `04]

parameterisation-based interpolation

[PROFESSOR, Buckley et al. `09]

$$\sigma \sim \sigma_{\rm SM} + C_i \sigma_{D6} + C_i^2 \sigma_{D6^2} \qquad {}^{uncertainties (up to order 4)}$$

$$f_b(\{C_i\}) = \alpha_0^b + \sum_i \beta_i^b C_i + \sum_{i \le j} \gamma_{i,j}^b C_i C_j + \dots + k_{eep track of dim6^2 effects}$$

$$\chi^2(\mathbf{C}) = \sum_{\mathcal{O}} \sum_{i,j} \frac{(f_i(\mathbf{C}) - E_i)\rho_{i,j}(f_j(\mathbf{C}) - E_j)}{\sigma_i \sigma_j} \qquad k_{eep track of dim6^2 effects}$$

• operators

$$\begin{split} O_{qq}^{(1)} &= (\bar{q}\gamma_{\mu}q)(\bar{q}\gamma^{\mu}q) \\ O_{qq}^{(3)} &= (\bar{q}\gamma_{\mu}\tau^{I}q)(\bar{q}\gamma^{\mu}\tau^{I}q) \\ O_{uu} &= (\bar{u}\gamma_{\mu}u)(\bar{u}\gamma^{\mu}u) \\ O_{qu}^{(8)} &= (\bar{q}\gamma_{\mu}T^{A}q)(\bar{u}\gamma^{\mu}T^{A}u) \\ O_{qd}^{(8)} &= (\bar{q}\gamma_{\mu}T^{A}q)(\bar{d}\gamma^{\mu}T^{A}d) \\ O_{ud}^{(8)} &= (\bar{u}\gamma_{\mu}T^{A}u)(\bar{d}\gamma^{\mu}T^{A}d) \,. \end{split}$$

$$O_{uW} = (\bar{q}\sigma^{\mu\nu}\tau^{I}u)\tilde{\phi}W^{I}_{\mu\nu}$$
$$O_{uG} = (\bar{q}\sigma^{\mu\nu}T^{A}u)\tilde{\phi}G^{A}_{\mu\nu}$$
$$O_{G} = f_{ABC}G^{A\nu}_{\mu}G^{B\lambda}_{\nu}G^{C\mu}_{\lambda}$$
$$O_{\tilde{G}} = f_{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\lambda}_{\nu}G^{C\mu}_{\lambda}$$
$$O_{\phi G} = (\phi^{\dagger}\phi)G^{A}_{\mu\nu}G^{A\mu\nu}$$

$$O_{\phi q}^{(3)} = i(\phi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \phi)(\bar{q} \gamma^{\mu} \tau^{I} q)$$

$$O_{\phi q}^{(1)} = i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\bar{q} \gamma^{\mu} q)$$

$$O_{uB} = (\bar{q} \sigma^{\mu\nu} u) \widetilde{\phi} B_{\mu\nu}$$

$$O_{\phi u} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi)(\bar{u} \gamma^{\mu} u)$$

$$O_{\phi \tilde{G}} = (\phi^{\dagger} \phi) \widetilde{G}_{\mu\nu}^{A} G^{A\mu\nu}$$

[Buchmüller, Wyler `87] [Hagiwara, Peccei, Zeppenfeld, Hikasa `87] [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10]

- consider CP even operators
- neglect operators with chiral suppression for the interference with SM
- top pair production, single top production, top pair + Z production decay observables

9

• differential distributions

experiments report toplevel unfolded results

• operators

$$O_{qq}^{(1)} = (\bar{q}\gamma_{\mu}q)(\bar{q}\gamma^{\mu}q)$$

$$O_{qq}^{(3)} = (\bar{q}\gamma_{\mu}\tau^{I}q)(\bar{q}\gamma^{\mu}\tau^{I}q)$$

$$O_{uu} = (\bar{u}\gamma_{\mu}u)(\bar{u}\gamma^{\mu}u)$$

$$O_{qu}^{(8)} = (\bar{q}\gamma_{\mu}T^{A}q)(\bar{u}\gamma^{\mu}T^{A}u)$$

$$O_{qd}^{(8)} = (\bar{q}\gamma_{\mu}T^{A}q)(\bar{d}\gamma^{\mu}T^{A}d)$$

$$O_{ud}^{(8)} = (\bar{u}\gamma_{\mu}T^{A}u)(\bar{d}\gamma^{\mu}T^{A}d).$$

$$\begin{aligned}
O_{uW} &= (\bar{q}\sigma^{\mu\nu}\tau^{I}u)\tilde{\phi}W^{I}_{\mu\nu} \\
O_{uG} &= (\bar{q}\sigma^{\mu\nu}T^{A}u)\tilde{\phi}G^{A}_{\mu\nu} \\
O_{G} &= f_{ABC}G^{A\nu}_{\mu}G^{B\lambda}_{\nu}G^{C\mu}_{\lambda} \\
O_{\tilde{G}} &= f_{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\lambda}_{\nu}G^{C\mu}_{\lambda} \\
O_{\phi G} &= (\phi^{\dagger}\phi)G^{A}_{\mu\nu}G^{A\mu\nu}
\end{aligned}$$

$$O_{\phi q}^{(3)} = i(\phi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \phi)(\bar{q} \gamma^{\mu} \tau^{I} q)$$

$$O_{\phi q}^{(1)} = i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\bar{q} \gamma^{\mu} q)$$

$$O_{uB} = (\bar{q} \sigma^{\mu\nu} u) \widetilde{\phi} B_{\mu\nu}$$

$$O_{\phi u} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi)(\bar{u} \gamma^{\mu} u)$$

$$O_{\phi \tilde{G}} = (\phi^{\dagger} \phi) \tilde{G}_{\mu\nu}^{A} G^{A\mu\nu}$$

• only sensitive to a superposition of operators (at LO)

$$top pairs top single top$$

$$C_{u}^{1} = C_{qq}^{(1)1331} + C_{uu}^{1331} + C_{qq}^{(3)1331} C_{t} = C_{qq}^{(3)1133} + \frac{1}{6} (C_{qq}^{(3)1331} - C_{qq}^{(3)1331}) C_{t}^{2} = C_{qu}^{(8)1133} + C_{qu}^{(8)3311} C_{d}^{1} = C_{qq}^{(3)1133} + \frac{1}{4} C_{ud}^{(8)3311} C_{d}^{2} = C_{qu}^{(8)1133} + C_{qd}^{(8)3311} .$$

- total of 195 measurements, 174 based on differential distributions
- treatment of uncertainties and systematics
 - 1. experimental systematics
 - in general no control
 - available experimental systematics/uncertainties added in quadrature when available
 - uncertainties of top parton-level matching included when available
 - correlation between different signal regions not included
 - bin-by-bin migration effects do not impact the fit result

- total of 195 measurements, 174 based on differential distributions
- treatment of uncertainties and systematics
 - 2. SM theoretical uncertainties

- [Butterworth et al. `15]
- PDF and scale uncertainties following the PDF4LHC recommendation: full scale + PDF uncertainty band
- no electroweak corrections
- no strong/electroweak operator mixing effects
- interpolation error estimated to 5%
- uncorrelated with experimental systematics

Eleni's talk

[Jenkins, Manohar, Trott `13] [Alonso, Jenkins, Manohar, Trott `13] [Berthier, Trott `15] S [Bylund et al `16]

Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.	Dataset	\sqrt{s} (TeV)	Measurements	Ref.	
Top pair production								
Total cross-sections:			Differential cross-sections:					
ATLAS	7	lepton+jets	1406.5375	ATLAS	7	$p_T(t), M_{t\bar{t}}, y_{t\bar{t}} $	1407.0371	
ATLAS	7	dilepton	1202.4892	CDF	1.96	$M_{t\bar{t}}$	0903.2850	
ATLAS	7	lepton+tau	1205.3067	CMS	7	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1211.2220	
ATLAS	7	lepton w/o $b~{\rm jets}$	1201.1889	CMS	8	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1505.04480	
ATLAS	7	lepton w/ b jets	1406.5375	DØ	1.96	$M_{t\bar{t}}, p_T(t), y_t $	1401.5785	
ATLAS	7	tau+jets	1211.7205					
ATLAS	7	$t\bar{t}, Z\gamma, WW$	1407.0573	Charge asymmetries:				
ATLAS	8	dilepton	1202.4892	ATLAS	7	$A_{\rm C}$ (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1311.6742	
CMS	7	all hadronic	1302.0508	CMS	7	$A_{\rm C}$ (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1402.3803	
CMS	7	dilepton	1208.2761	CDF	1.96	A_{FB} (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1211.1003	
CMS	7	lepton+jets	1212.6682	DØ	1.96	A_{FB} (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1405.0421	
CMS	7	lepton+tau	1203.6810					
CMS	7	tau+jets	1301.5755	Top widths:				
CMS	8	dilepton	1312.7582	DØ	1.96	$\Gamma_{ m top}$	1308.4050	
$CDF + D\emptyset$	1.96	Combined world average	1309.7570	CDF	1.96	$\Gamma_{ m top}$	1201.4156	
Single top production			W-boson helicity fractions:					
ATLAS	7	t-channel (differential)	1406.7844	ATLAS	7		1205.2484	
CDF	1.96	s-channel (total)	1402.0484	CDF	1.96		1211.4523	
CMS	7	<i>t</i> -channel (total)	1406.7844	CMS	1.96		1308.3879	
CMS	8	<i>t</i> -channel (total)	1406.7844	DØ	1.96		1011.6549	
DØ	1.96	s-channel (total)	0907.4259					
DØ	1.96	<i>t</i> -channel (total)	1105.2788					
Associated production		Run II data						
ATLAS	7	$tar{t}\gamma$	1502.00586	CMS	13	$t\bar{t}$ (dilepton)	1510.05302	
ATLAS	8	$t\bar{t}Z$	1509.05276					
CMS	8	$t\bar{t}Z$	1406.7830					

Top quark pair production

LHC vs Tevatron

LHC together with Tevatron

 correlated Tevatron+LHC distributions are highly constraining, e.g. LHC central charge asymmetry vs Tevatron forward backward asymmetry

Decay observables

• Whelicity fractions

[Zhang, Willenbrock `10] [Aguilar-Saavedra, Bernabeu `10]

Summary of the top sector

- top quark pheno programme at the LHC is well-developed...
- we can set constraints on all operators relevant for top pairs modulo "blind" directions of operator combinations. But...

experimental selection

theoretical model

lepton

colliders

• which phase space region/environment impacts the constraints on on top sector given current uncertainty expectations?

19

- setup
 - top pair production extrapolated to 13 TeV, >30/fb
 - split sensitivity range in **fully resolved** and **boosted regime** (HepTopTagger) for semi-leptonic tops [Plehn, Salam, Spannowsky `09]

Leptons $p_T > 30 \text{ GeV}$		(a)	
	$ \eta < 4.2$	Tat jet + b	
Missing energy	$E_T^{\text{miss}} > 30 \text{ GeV}$		
Small jets	anti- $k_T R = 0.4$	no /	
	$p_T > 30 \text{ GeV}$, $ \eta < 2$		yes
Fat jets	anti- $k_T R = 1.2$	+	
	$p_T > 200 \text{ GeV}$, $ \eta < 2$		
Resolved	≥ 4 small jets w/ ≥ 2 b-tags	resolved	boosted
Boosted	≥ 1 fat jet, ≥ 1 small jet w/ b-tag		

impact of <u>experimental</u> systematics

impact of <u>experimental</u> systematics

impact of <u>theoretical</u> systematics

[CE, Russell `17]

New Frontiers: ILC/CLIC?

25

see also [Amjad et al. `13]

New Frontiers: ILC/CLIC?

- ► EFT analyses have seen tremendous progress recently
- developments for new fully differential fitting techniques based on multi-dimensional interpolation (quasi-analytical control)
- top (BSM) programme very well developed at the LHC
- ► next steps:
 - extending analysis to full final state avoiding corrections to topquark level
 - inclusion of electroweak precision constraints