

HEFT 2017, Durham May 22th-24th

Top results from ATLAS and CMS

Thorsten Kuhl

On behalf of the ATLAS and CMS collaboration

Introduction

> Why looking for top quarks?

> Top is very heavy:

- Only standard model particle with mass at about VEV → y_t ~ 1
- Big correction to higgs mass → testing the standard model

> Top decays before hadronisation

Only place to study a bare quark

 $\tau_{had} \approx 2 \times 10^{-24} s$ $\tau_{top} \approx 5 \times 10^{-25} s$

Top could be a place to find new physics

Introduction

> Top factory: more then 30 Million top pairs produced at E_{CM} =13 TeV

- > Most analyses use only parts of the data sets:
 - ttV searches use about 1/3 of the 13 TeV data
 - Cross sections available for up to 3.2 fb⁻¹ @ 13 TeV (2015 dataset)
 - FCNC use only data from 7/8 TeV

Many analyses are modelling or experimental (JES) systematic dominated and improvements need time

Introduction

> Production:

- Cross section
- Mechanism
- Spin correlation

> Top Properties:

- Mass
- Width
- Spin
- Charge
- Polarisation

> Decay:

- Branching ratios/rare decays
- W polarisation
- Decay vertex structure

Inclusive cross sections

Production and decay

- Dominate production via gluon fusion >
 - Constrain gluon PDF
 - Extract $\boldsymbol{\alpha}_{\!\scriptscriptstyle \boldsymbol{\varsigma}}$ and $\boldsymbol{m}_{\!\scriptscriptstyle tol}$
- Probe pQCD at higher orders
- Soft radiation in initial and final state
 - Differential distributions
 - Constrain models for parton shower
- Natural probes for new physics
 - Highly boosted events
- Measurements in channels categorized by W decays

Total cross section

Evolution versus centre of mass energy well understood

Total cross section (II)

Single top inclusive cross section

> EWK production : smaller cross sections

Measurement for t-channel and Wt, evidence for s-channel

First results at 13 TeV for t-channel and Wt

Excellent agreement at all energies and production channels

Differential cross sections

Top as tool to study QCD radiation:

- Tag the event with a two lepton (eµ), two b-tag selection \rightarrow very clean top sample
- Look for additional jets in events

DES

- Important for generator development:
 - $\hfill \hfill \hfill$

then derive an UE tune using fixed α_{s}

 Commissioning/understanding of new matched/merged NLO multi-parton (scale, α_s)
 Thorsten Kuhl| HEFT2017, Top Overview | May. 23th 2017 | Page 11

CMS measurement in the all hadronic channel

- Boosted: background estimation using templates from 0-btag selection and normalisation to the top mass distribution
- The discrepancy between MC and data remain at high p_T as well
 - Depends on ME plus shower combinatior

Differential top cross sections

ATI -CONF-2016-040

- New measurement combining information from low and high p_T tops (using jet substructure)
 - multiple variables investigated m(tt
), p_T(top), y(tt
), p_T(tt
)
 (from pure ME to very ISR/FSR dependent)
- > ATLAS I+jet measurement:

Problems @NLO: top quark p₊

> Top p_{τ} comparison of NNLO with data @ 8 TeV

Theory and data of both experiments agree within errors, not very conclusive

- > CMS sees a much bigger and significant slope @ 13 TeV:
 - Missing higher order, EWK-corrections?
 - Need more data, more qualitative, confirmation from ATLAS
 - Other generator+shower cobination look better (Powheg+Herwig7) Thorsten Kuhl | HEFT2017, Top Overview | May. 23th 2017 | Page 14

tt+X (X=bb,W,Z) production

ttbb cross section @ 13 TeV

- Important background for searches
 - Measurement of the ttH coupling
- CMS: first inclusive ttbb cross section at 13 TeV
- Comparison with Powheg+Pythia8
 - Bigger fraction of ttbb measured then simulated (but most b from parton shower)

Phase Space	$\sigma_{t\bar{t}b\bar{b}}$ [pb]	$\sigma_{\mathrm{t}\bar{\mathrm{t}}\mathrm{j}\mathrm{j}}$ [pb]	$\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$
Measurement			
Visible	$0.085 \pm 0.012 \pm 0.029$	$3.5\pm0.1\pm0.7$	$0.024 \pm 0.003 \pm 0.007$
Full	$3.9\pm0.6\pm1.3$	$176\pm5\pm33$	$0.022 \pm 0.003 \pm 0.006$
Simulation (POWHEG)			
Visible	0.070 ± 0.009	5.1 ± 0.5	0.014 ± 0.001
Full	3.2 ± 0.4	257 ± 26	0.012 ± 0.001

ttV production

Large dataset gives access to the rare ttw and ttZ processes

- Direct probe of the ttZ coupling (new physics ?)
- Studying important background for searches
- Searches using many leptons to suppress backgrounds:
 - 2 leptons with the same charge
 - 3 or 4 lepton final state

ttV cross section

> CMS result using full 2016 data set (~36 fb⁻¹)

- Using 2 same sign leptons or >=3 leptons
- Split sample according number of b-jet
- Control regions to check WZ and ZZ backgrounds
- ttw use multivariate method in addition

ttV cross section

> Fit to many signal region/topologies:

- Simultaneous extraction of ttW and ttZ
- Take into account overlap of both signals in selection

> Results still statistically dominated

need to analyse more data and increase precision

ttV cross section: EFT theory interpretation

> Effective Lagrangian:

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda} \sum_{i} c_i \mathcal{O}_i + rac{1}{\Lambda^2} \sum_{j} c_j \mathcal{O}_j + \cdots$$

 Add additional production mechanism to ttw and ttZ production

Limits on effective couplings with W/Z/H in final state:

Wilson coefficient	Best fit [TeV ⁻²]	$1\sigma \text{ CL} [\text{TeV}^{-2}]$	$2\sigma \operatorname{CL} [\operatorname{TeV}^{-2}]$
$ \bar{c}_{uB}/\Lambda^2 + 0.1 \text{TeV}^{-2} $	3.2	[0.0, 4.4]	[0.0, 5.4]
$ \bar{c}_u/\Lambda^2 + 18.5 \mathrm{TeV}^{-2} $	19.1	[5.0, 26.4]	[0.0, 32.5]
\bar{c}_{uW}/Λ^2	3.0	[-4.1, -1.5] and [1.2, 4.1]	[-5.1, 5.0]
\bar{c}_{Hu}/Λ^2	-9.4	[-10.3, -8.1] and [0.1, 2.1]	[-11.1, -6.6] and [-1.4, 3.0]

CMS-PAS-TOP-17-005 36 fb⁻¹ (13 TeV) **CMS** Preliminary 12 best fit 1σ CL 10 $2\sigma CL$ 8 Δ In L 6 \sim 4 2 -12.5-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 \bar{c}_{Hu}/Λ^2 [TeV⁻²]

Top quark properties

Top quark mass: 7/8 TeV summary

Run-1 measurements almost completed (ATLAS I+jet missing)

combination has to exploit new measurements

Top quark mass: ATLAS di-leptons @ 8 TeV

> Di-lepton channel, two neutrinos in final state → system not fully reconstructed

- Optimise selection on p₁(lb) to reduce systematics
- Use m(lb) as sensitive variable

Phys. Lett. B761 (2016) 350

 $m_{top} = 172.99 \pm 0.41 \text{ (stat)} \pm 0.74 \text{ (syst) GeV}$

> New CMS measurement: arXiv:1704.06142

 $m_{top} = 172.22 \pm 0.18 \text{ (stat)} \pm 0.91 \text{ (syst) GeV}$

Top mass: CMS lepton+jets @ 13 TeV

First result at 13 TeV using recipe from 8 TeV

Result @ 13TeV: CMS-PAS-TOP-16-022

 $m_{top} = 172.62 \pm 0.38 \text{ (stat+JES)} \pm 0.70 \text{ (syst) GeV}$

Result @ 8TeV: Phys. Rev. D 93 (2016)

 $m_{top} = 172.35 \pm 0.16$ (stat+JES) ± 0.48 (syst) GeV (about 0.3% precision)

Excellent agreement with run-1 results but precision not yet reached

Limitation: flavor composition, b-fragmentation

W boson polarisation

- > W boson can have three different polarisation states:
 - Left-handed
 - Right-handed
 - Longitudinal

> W_{th} vertex in top decay is characterised by SM (V-A)-structure

- Fractions of three polarisation states well predicted (NNLO) PRD 81 (2010) 111503
- Can be probed by measuring top decay angles
- Single top: vertex accessible in production

New physics in vertex would change measured polarisation

W boson polarisation

In di-top: most precise lepton plus jet channel

- Reconstruct full system
- Fit templates to reconstructed data

 $b \leftarrow \psi^{+} t$

CMS-PAS-TOP-14-017

> Single top t-channel:

- Wtb vertex is present in production and decay of the top quark Superposition of two vertex structures
- Top is polarized
- Full system can be parametrize in one parameter for top polarisation plus 6 W polarisation observables:

New ATLAS publication measuring full set of asymmetries

Thorsten Kuhl| HEFT2017, Top Overview | May. 23th 2017 | Page 27

Nucl.Phys.B840:349-378,2010 Phys. Rev. D 93, 011301 (2016)

JHEP04 (2017) 124

0.45

0.10

-0.23

-0.20

0.34

0

-0.14

0

Polarisation in single top

 Kinematic signal selection
 To reject top-pair background
 Extract all asymmetries (example top polarisation)

For comparison: CMS measure P = 2*A^I_{FB} = 0.52 ± 0.22 JHEP 04 (2016) 073

Interpretation of the measurements using the general expression for the W_{tb} vertex:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{\rm L} P_{\rm L} + V_{\rm R} P_{\rm R}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}} (g_{\rm L} P_{\rm L} + g_{\rm R} P_{\rm R}) t W_{\mu}^{-} + \text{h.c.}$$

SM: $V_{L} = V_{tb}$ $V_{R} = 0$ $g_{L} = 0$ $g_{R} = 0$

> Interpretations :

Interpretation of the measurements using the general expression for the W_{tb} vertex:

> New ATLAS single top interpretation:

 Triple-differential angular decay rates of single top

Rare decays & FCNC

FCNC in Standard model

- > SM: flavour changing neutral currents (FCNC) are forbidden tree level
 - GIM mechanism
- Existing on loop level
 - Penguin diagram:

> Still highly suppressed:

Tiny branching ratios:

Standard Model (branching ratio)					
t ightarrow uZ	$8 imes 10^{-17}$	t ightarrow cZ	$1 imes 10^{-14}$		
$t ightarrow u \gamma$	$3.7 imes 10^{-16}$	$t ightarrow c \gamma$	4.6×10^{-14}		
t ightarrow ug	$3.7 imes 10^{-14}$	t ightarrow cg	4.6×10^{-12}		
t ightarrow uH	$2 imes 10^{-17}$	t ightarrow cH	3×10^{-15}		

Beyond the Standard Model these signatures can be enhanced → interesting signature to search for new phenomena

- > 3 ways to search for FCNC:
 - Decay of top quarks:
 - sensitivity similar for $t{\rightarrow}uX$ and $t{\rightarrow}cX$
 - $(X = \gamma, Z, g, H)$
 - Associated production in single top
 sensitivity for tXu > tXc (PDF)

- s-channel top production
 - only gut and gct
 - only SM top decays taken into consideration

Most Analyses using full 7 and 8 TeV dataset

DESY

> Results are usually interpreted

- Branching Ratio limit (model independent)
- Framework of anomalous couplings:

[arXiv:0803.3810, 0811.3842, 0904.2387]

> some simplifications:

- no 4-fermion contact interactions
- $|f_{i}^{L}|^{2+}|f_{i}^{R}| = 1$ and coupling > 0 (independent-convention)
- Analyses often do not distinguish L and R

FCNC search example: tgq

Neural networks are used to separate signal from backgrounds using shape informations

- > Results are presented as limits inside the anomalous coupling coupling framework or im limits on branching fractions $t \rightarrow gX$
 - (axes are twisted between ATLAS and CMS)

Eur. Phys. J. C76 (2016) 55

Results: FCNC searches

Thorsten Kuhl| HEFT2017, Top Overview | May. 23th 2017 | Page 37

Summary

> LHC is an exciting place to do top physics:

- Big production cross section (top factory), more data coming in 2017
- Inclusive production is well understood
 - agrees with NNLO calculation

Differential cross section

Matched merged Multileg@NLO needed for hard radiation but it is still in commissioning

> Top Properties:

- Top mass measurements with 2011/12 data nearly finished and need combination, first measurement at 13 TeV shown
- W polarisation results are shown for di-top and single-top and interpreted

> FCNC:

- Limits are shown, no significant deviation seen
- Most measurements dominated by modelling systematics, need active discussion between experiments and theory community