Top quark physics at NLO in the SMEFT

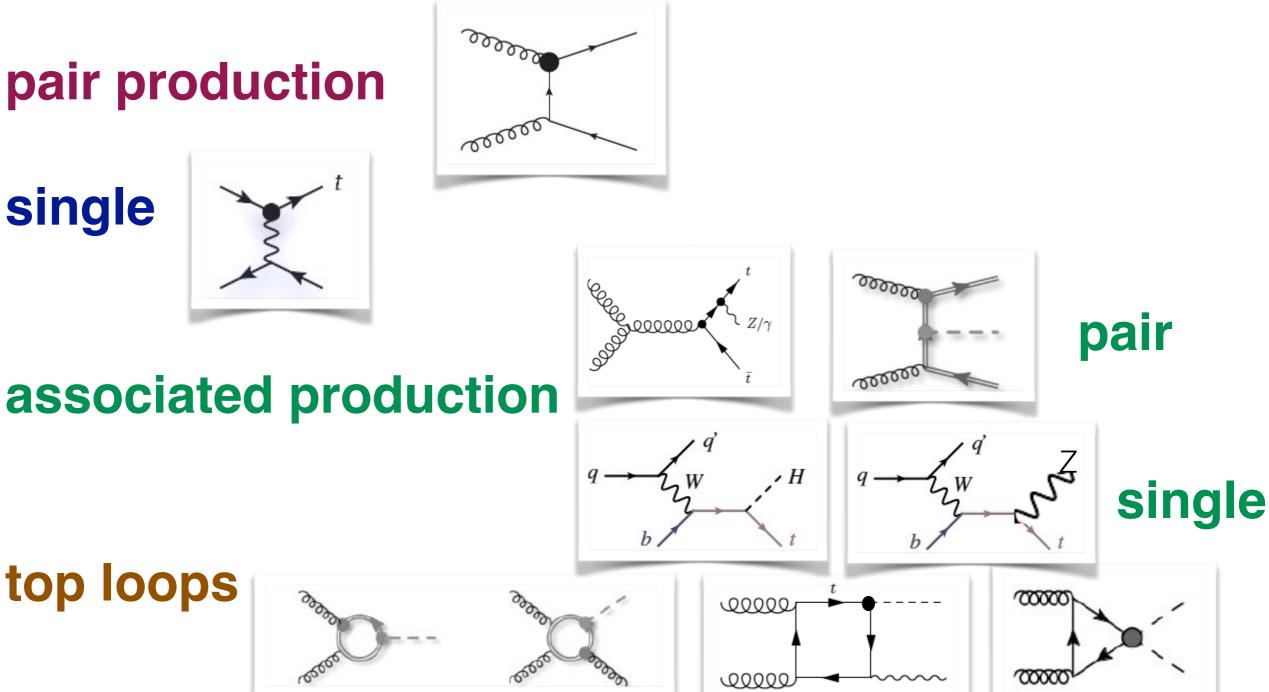
Eleni Vryonidou

based on arXiv:1607.05330 and 1601.08193

HEFT2017 Lumley Castle 23/5/17

Tops in SMEFT

$$\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$$


X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$		
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{\varphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{arphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

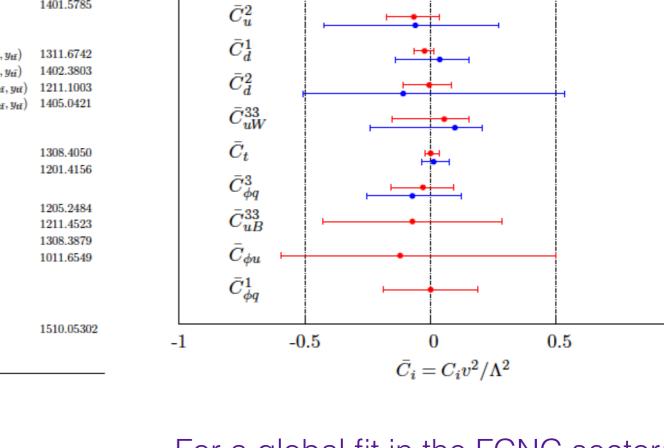
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating				
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{lpha} ight) ight.$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$	
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$Q_{qqu} \qquad \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$		$\left[(u_s^{\gamma})^T C e_t \right]$	
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)} \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$		$\left[(q_s^{\gamma m})^T C l_t^n \right]$		
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)} \qquad \varepsilon^{\alpha\beta\gamma} (\tau^I \varepsilon)_{jk} (\tau^I \varepsilon)_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(q_s^{\gamma m})^T C l_t^n \right]$		$\left[Cq_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$		
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^{lpha})^T ight]$	$Cu_r^{\beta} \left[(u_s^{\gamma})^T Ce_t \right]$		

Buchmuller, Wyler Nucl.Phys. B268 (1986) 621-653 Grzadkowski et al arxiv:1008.4884

SMEFT in processes with tops

Rich phenomenology:

Top-quark operators and how to look for them


$$\begin{array}{c} O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^I \varphi \right) (\bar{Q} \gamma^{\mu} \tau^I Q) \\ O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{t W} = y_t g_w (\bar{Q} \sigma^{\mu \nu} \tau^I t) \tilde{\varphi} W_{\mu \nu}^I \\ O_{t B} = y_t g_Y (\bar{Q} \sigma^{\mu \nu} t) \tilde{\varphi} B_{\mu \nu} \\ O_{t G} = y_t g_s (\bar{Q} \sigma^{\mu \nu} T^A t) \tilde{\varphi} G_{\mu \nu}^A , \\ O_{t \phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \end{array}$$
see for example: Aguilar-Saavedra (arXiv:0811.3842) \\ Zhang and Willenbrock (arXiv:1008.3869) \\ + four-fermion operators \\ + non-top operators (mixing) \end{array}

Operators entering various processes: Global approach needed

Towards global fits

EFT only makes sense if we follow a global approach First work towards global fits (Christoph's talk): Buckley et al arxiv:1506.08845 and 1512.03360 (N)NLO SM + LO EFT

Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.	Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.
Top pair pr	oduction						
Total cross-sections:			Differential	Differential cross-sections:			
ATLAS	7	lepton+jets	1406.5375	ATLAS	7	$p_T(t), M_{t\bar{t}}, y_{t\bar{t}} $	1407.0371
ATLAS	7	dilepton	1202.4892	CDF	1.96	M _{tt}	0903.2850
ATLAS	7	lepton+tau	1205.3067	CMS	7	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1211.2220
ATLAS	7	lepton w/o b jets	1201.1889	CMS	8	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1505.04480
ATLAS	7	lepton w/ b jets	1406.5375	Dø	1.96	$M_{t\bar{t}}, p_T(t), y_t $	1401.5785
ATLAS	7	tau+jets	1211.7205				
ATLAS	7	$t\bar{t}, Z\gamma, WW$	1407.0573	Charge asyr	nmetries:		
ATLAS	8	dilepton	1202.4892	ATLAS	7	A_C (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1311.6742
CMS	7	all hadronic	1302.0508	CMS	7	A_C (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1402.3803
CMS	7	dilepton	1208.2761	CDF	1.96	A_{FB} (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1211.1003
CMS	7	lepton+jets	1212.6682	Dø	1.96	A_{FB} (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1405.0421
CMS	7	lepton+tau	1203.6810				
CMS	7	tau+jets	1301.5755	Top widths:	:		
CMS	8	dilepton	1312.7582	Dø	1.96	Γ _{top}	1308.4050
$CDF + D\emptyset$	1.96	Combined world average	1309.7570	CDF	1.96	Γ_{top}	1201.4156
Single top p	roduction			W-boson he	licity fraction	8:	
ATLAS	7	t-channel (differential)	1406.7844	ATLAS	7		1205.2484
CDF	1.96	s-channel (total)	1402.0484	CDF	1.96		1211.4523
CMS	7	t-channel (total)	1406.7844	CMS	7		1308.3879
CMS	8	t-channel (total)	1406.7844	Dø	1.96		1011.6549
Dø	1.96	s-channel (total)	0907.4259				
Dø	1.96	<i>t</i> -channel (total)	1105.2788				
Associated	production			Run II data			
ATLAS	7	$t\bar{t}\gamma$	1502.00586	CMS	13	$t\bar{t}$ (dilepton)	1510.05302
ATLAS	8	tīZ	1509.05276				
CMS	8	$t\bar{t}Z$	1406.7830				

 \bar{C}_{G}

 \bar{C}_{uG}^{33}

 \bar{C}_{u}^{1}

Tevatron and LHC data Cross-sections and distributions E.Vryonidou

For a global fit in the FCNC sector: Durieux et al arXiv:1412.7166

individual

marginalized \vdash

1

Fits: Some considerations

- Theory uncertainties (see also Roman's talk):
 - SM: factorisation and renormalisation scale, PDF uncertainties
 - EFT: as in SM but also EFT scale, dimension-8 operators
- Simplifying assumptions: flavour, CP violation, FCNC
- $1/\Lambda^2$ vs $1/\Lambda^4$ contributions
 - 1/A² suppressed due to helicity: Azatov et al arXiv:1607.05236
 - Vanishing SM amplitude: FCNC
- Validity of the EFT expansion: E<Λ, report limits as a function of the max scale probed: Contino et al arXiv: 1604.06444

Use rich top phenomenology

- Measure and include as many observables as possible:
 - cross-sections
 - distributions of the top and decay products and associated V,H etc
 - spin correlations, polarisation: Bernreuther et al arXiv: 1508.05271, Aguilar et al arXiv:1508.04592, 1701.05900
 - asymmetries: Aguilar et al arXiv:1406.1798 and 1702.03297
 - W-helicities

To keep in mind: connection to Higgs, flavour, EWPO E.Vryonidou

The need for NLO predictions in the SMEFT

SMEFT is systematically improvable:

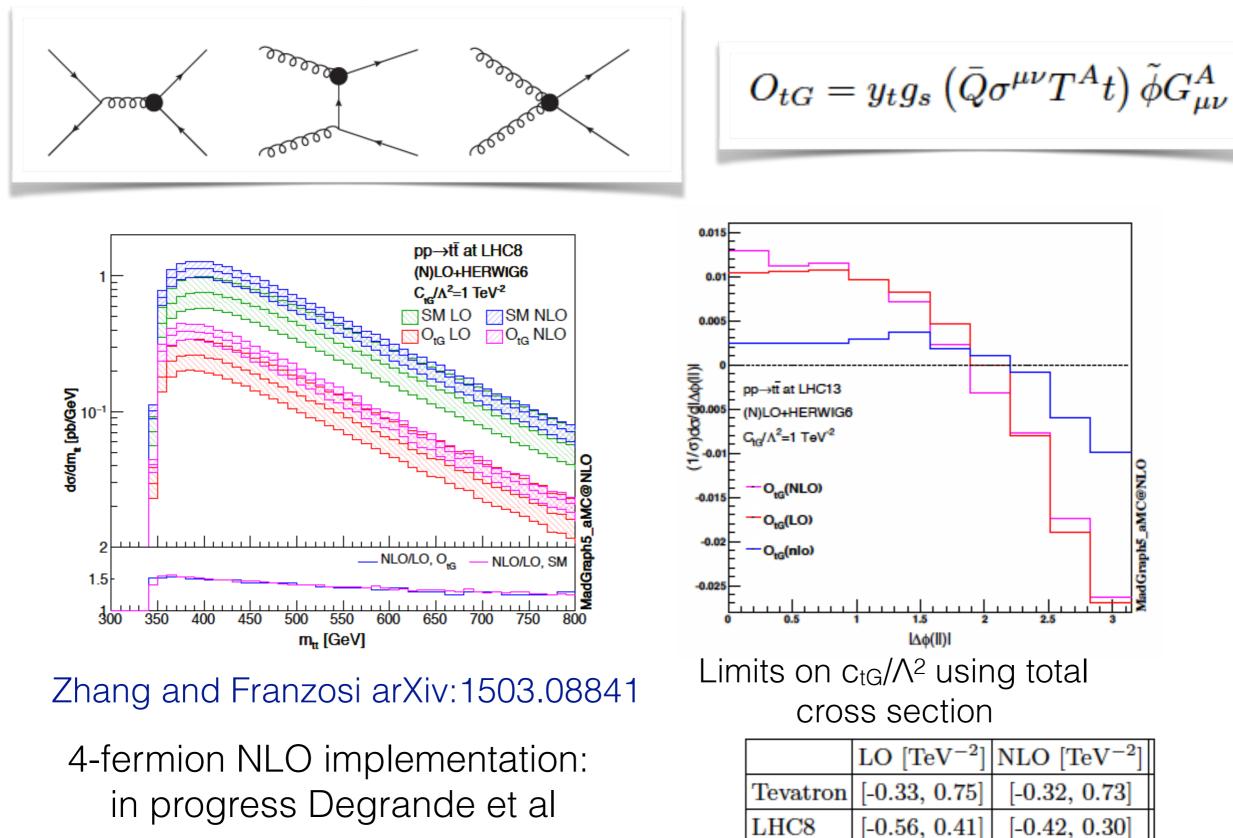
$$\mathcal{O}(\alpha_s) + \mathcal{O}\left(\frac{1}{\Lambda^2}\right) + \mathcal{O}\left(\frac{\alpha_s}{\Lambda^2}\right) + \cdots$$

Impact of NLO corrections in the light of global fits:

- Accuracy and precision: NLO corrections modify the central value and come with reduced theoretical uncertainties compared to LO
- Impact on the distributions non-flat K-factors different between operators and different from the SM
- Better control on RG and operator mixing effects new operators entering at NLO
- Effort to match SM precision in the light of more sensitive measurements and in the context of global EFT fits

SMEFT@NLO

- SMEFT@NLO ingredients:
 - Mixing between operators: anomalous dimension matrix: Jenkins et al arXiv:1308.2627,1310.4838, Alonso et al. 1312.2014
 - Check for additional operators at NLO


Automation within MadGraph5_aMC@NLO R2+UV counterterms for the NLO computation: NLOCT Degrande (arxiv:1406.3030)

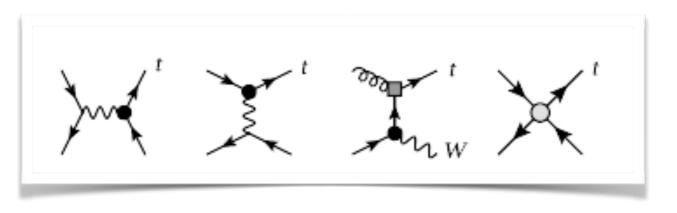
Progress in **top** quark processes in this framework:

- top pair production: Franzosi and Zhang (arxiv:1503.08841)
- single top production: C. Zhang (arxiv:1601.06163)
- ttZ/γ: O. Bylund, F. Maltoni, I. Tsinikos, EV, C. Zhang (arXiv:1601.08193)
- ttH: F. Maltoni, EV, C. Zhang (arXiv:1607.05330)
- FCNC: Degrande et al(arXiv:1412.5594), Durieux et al(arXiv:1412.7166)

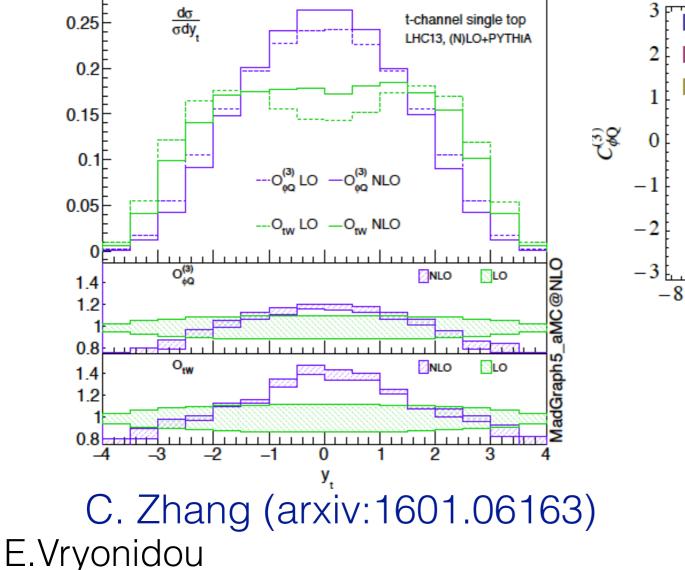
See B. Fuks talk for results in EW Higgs

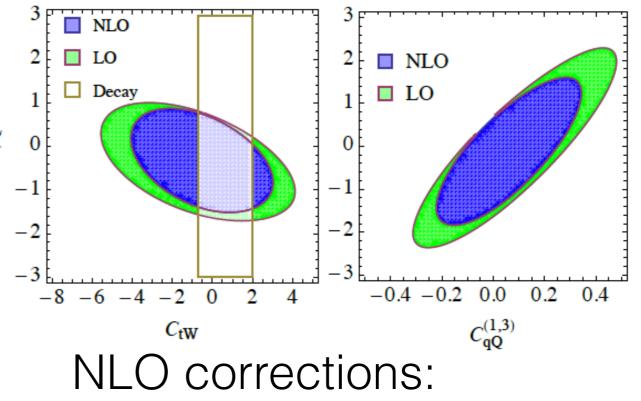
First example: top-pair production

E.Vryonidou

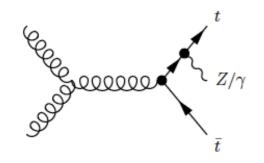

[-0.56, 0.61]

LHC14


[-0.39, 0.43]


single top production

 $O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$ $O_{tW} = y_t g_W (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I}$ $O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A}$ $O_{qQ,rs}^{(3)} = (\bar{q}_r \gamma_{\mu} \tau^{I} q_s) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$

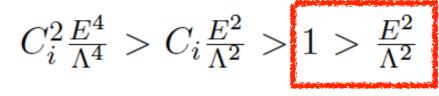

Only one four-fermion contributing at $1/\Lambda^2$

- Impact on distributions
- Impact on limits
 - Accuracy+precision

Top pair + Z/γ

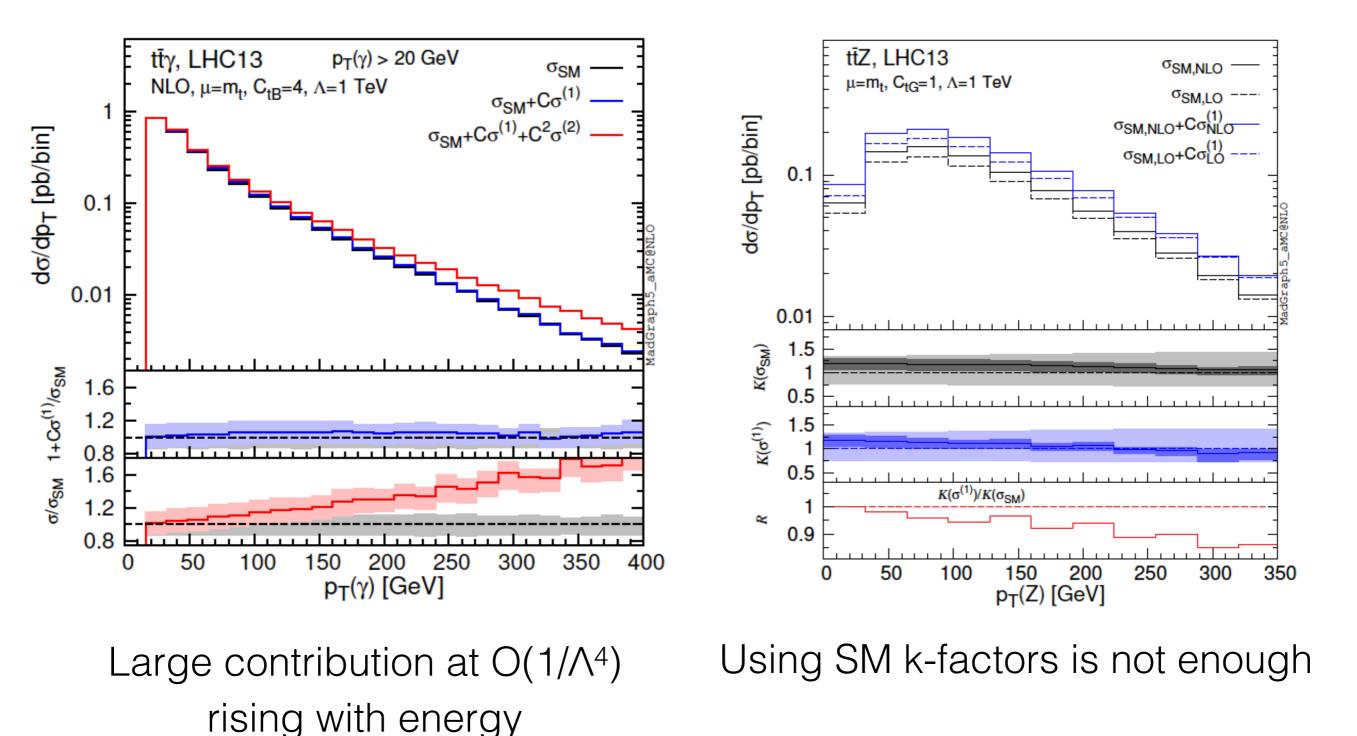
probe of top neutral couplings: ttZ,ttγ,ttg

SM σ(ttZ)=0.88 pb at 13TeV LHC: ATLAS, CMS measurements

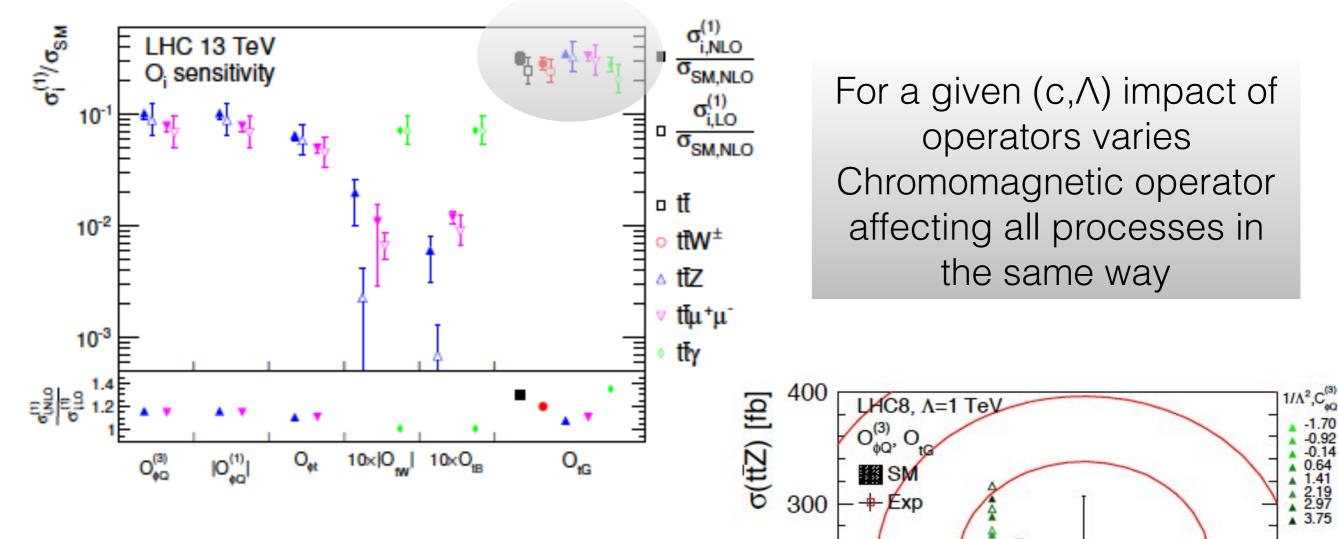

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{(\Lambda/1\text{TeV})^2} \sigma_i^{(1)} + \sum_{i \le j} \frac{C_i C_j}{(\Lambda/1\text{TeV})^4} \sigma_{ij}^{(2)}$$

$13 \mathrm{TeV}$	\mathcal{O}_{tG}	$\mathcal{O}^{(3)}_{\phi Q}$	$\mathcal{O}_{\phi t}$	\mathcal{O}_{tW}
$\sigma^{(1)}_{i,LO}$	$286.7^{+38.2\%}_{-25.5\%}$	$78.3^{+40.4\%}_{-26.6\%}$	$51.6^{+40.1\%}_{-26.4\%}$	$-0.20(3)^{+88.0\%}_{-230.0\%}$
$\sigma^{(1)}_{i,NLO}$	$310.5^{+5.4\%}_{-9.7\%}$	$90.6^{+7.1\%}_{-11.0\%}$	$57.5^{+5.8\%}_{-10.3\%}$	$-1.7(2)^{+31.3\%}_{-49.1\%}$
K-factor	1.08	1.16	1.11	8.5
$\sigma^{(2)}_{ii,LO}$	$258.5^{+49.7\%}_{-30.4\%}$	$2.8(1)^{+39.7\%}_{-26.9\%}$	$2.9(1)^{+39.7\%}_{-26.7\%}$	$20.9^{+44.3\%}_{-28.3\%}$
$\sigma^{(2)}_{ii,NLO}$	$244.5^{+4.2\%}_{-8.1\%}$	$3.8(3)^{+13.2\%}_{-14.4\%}$	$3.9(3)^{+13.8\%}_{-14.6\%}$	$24.2^{+6.2\%}_{-11.2\%}$

Bylund et al arXiv:1601.08193


Operators $O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$ $O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q)$ $O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t)$ $O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I}$ $O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu}$ $O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A},$

Small contribution from O_{tW} and O_{tB} at $O(1/\Lambda^2)$ but large at $O(1/\Lambda^4)$ How should we treat $O(1/\Lambda^4)$ terms?


Check if EFT condition is satisfied

Differential distributions for tt+V

O. Bylund, F. Maltoni, I. Tsinikos, EV, C. Zhang (arXiv:1601.08193) E.Vryonidou

A sensitivity study

200

100

500

arXiv:1601.08193

1000

1500

 $\sigma(t\bar{t}\gamma)$ [fb]

LHC measurements of ttV processes can set constraints on the Wilson coefficients as they become more precise at Run II See also:

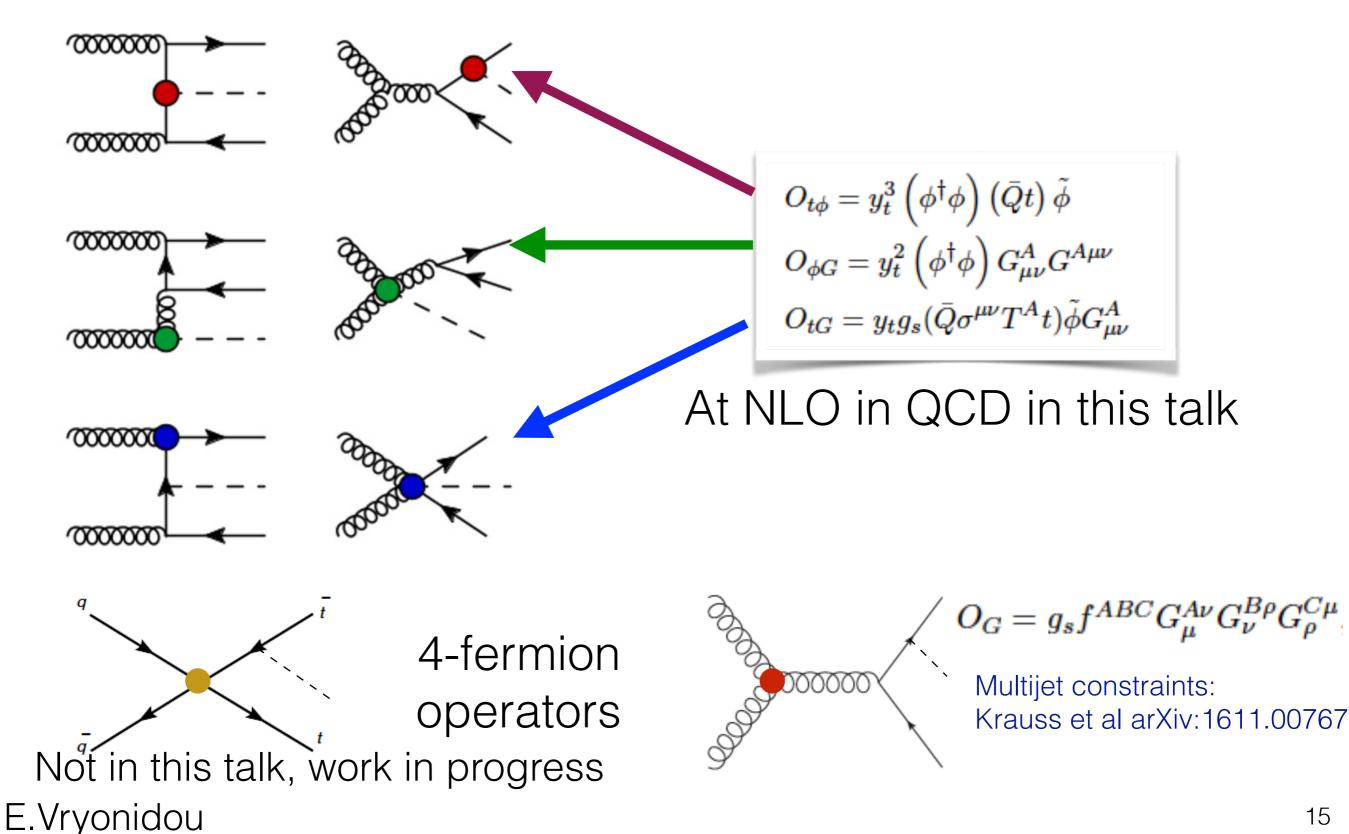
Schulze et al. arXiv:1404.1005,1501.05939, 1603.08911 (using ratios of cross-sections) Dror et al. arXiv:1511.03674 for ttWj

E.Vryonidou

1/A2,C,1/A4

Top-operators in non-top final states

Gluon-fusion contribution to HZ production affected by the operators changing gtt, ttZ and ttH Additional information


[fb]	SM		\mathcal{O}_{tG}	$\mathcal{O}_{\phi Q}^{(1)}$
13TeV	93.6 ^{+34.3%} -23.8%	$\sigma_i^{(1)}$	$34.6^{+35.2\%}_{-24.5\%}$	$5.91^{+36.4\%}_{-24.9\%}$
		$\sigma_{ii}^{(2)}$	$6.09^{+39.2\%}_{-26.1\%}$	$0.182^{+40.2\%}_{-26.6\%}$
		$\sigma_i^{(1)}/\sigma_{SM}$	$0.370\substack{+0.7\%\\-0.9\%}$	$0.0631^{+1.6\%}_{-1.5\%}$
		$\sigma_{ii}^{(2)}/\sigma_i^{(1)}$	$0.176^{+2.9\%}_{-2.1\%}$	$0.0309^{+2.8\%}_{-2.2\%}$

No contributions from the electroweak dipole operators due to charge conjugation invariance 0.0001 1+Cσ⁽¹⁾/σ_{SM} 5 3 1 5 α/σSM 3 200 300 400 500 600 700 800 1000 m(HZ) [GeV] See also: Englert et al arXiv:1603.05304

14

Combination with weak Higgs operators: in progress (also relevant for tH) E.Vryonidou

ttH in the EFT

ttH@NLO

 $(O_{t\phi}, O_{\phi G}, O_{tG})$

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$

 $O_{tG} O_{\phi G}$

dim-5

 σ

dim-4

$$\frac{dC_i(\mu)}{d\log\mu} = \frac{\alpha_s}{\pi} \gamma_{ij} C_j(\mu) \qquad \gamma = \begin{pmatrix} -2 & 16 & 8\\ 0 & -7/2 & 1/2\\ 0 & 0 & 1/3 \end{pmatrix}$$

Jenkins et al. arXiv:1308.2627,1310.4838 Alonso et al arXiv:1312.2014

Higher-dimension operators mix into lowerdimension ones

Setup allows computation of:

dim-6

$$= \sigma_{\rm SM} + \sum_{i} \frac{1 \,{\rm TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \le j} \frac{1 \,{\rm TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}.$$

interference with SM

interference between operators, squared contributions

Cross-section results (1)

13 T	eV	σ NLO	К	
σ_{SM}		$0.507_{-0.048-0.000-0.008}^{+0.030+0.000+0.007}$	1.09	
$\sigma_{t\phi}$		$-0.062\substack{+0.006+0.001+0.001\\-0.004-0.001-0.001}$	1.13	
$\sigma_{\phi G}$		$0.872^{+0.131+0.037+0.013}_{-0.123-0.035-0.016}$	1.39	
σ_{tG}		$0.503^{+0.025+0.001+0.007}_{-0.046-0.003-0.008}$	1.07	
$\sigma_{t\phi,t}$. φ	$0.0019\substack{+0.0001+0.0001+0.0000\\-0.0002-0.0000-0.0000}$	1.17	
$\sigma_{\phi G}$	ϕG	$1.021_{-0.178-0.085-0.029}^{+0.204+0.096+0.024}$	1.58	
σ_{tG}	tG	$0.674_{-0.067-0.007-0.019}^{+0.036+0.004+0.016}$	1.04	
$\sigma_{t\phi,q}$	$\mathbf{b}G$	$-0.053^{+0.008+0.003+0.001}_{-0.008-0.004-0.001}$	1.42	
$\sigma_{t\phi,t}$	G	$-0.031^{+0.003+0.000+0.000}_{-0.002-0.000-0.000}$	1.10	
$\sigma_{\phi G}$	tG	$0.859^{+0.127+0.021+0.017}_{-0.126-0.020-0.022}$	1.37	
		·		
$\sigma = \sigma_{\rm S}$	з _м +	$-\sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \in I} \frac{1 \text{TeV}^2}{\Lambda^2}$	$\frac{\mathrm{eV}^4}{4}C_iC_j$	$_{j}\sigma_{ij}$.

 $i \leq j$

- Different K-factors for different operators, different from the SM
- Large 1/Λ⁴ contribution for the chromomagnetic operator
- Constraints from top pair production: ctG=[-0.42,0.30] Franzosi and Zhang arxiv:1503.08841
- Global approach needed to consistently extract information on coefficients within the SMEFT framework
- Differential information also important

E.Vryonidou

i

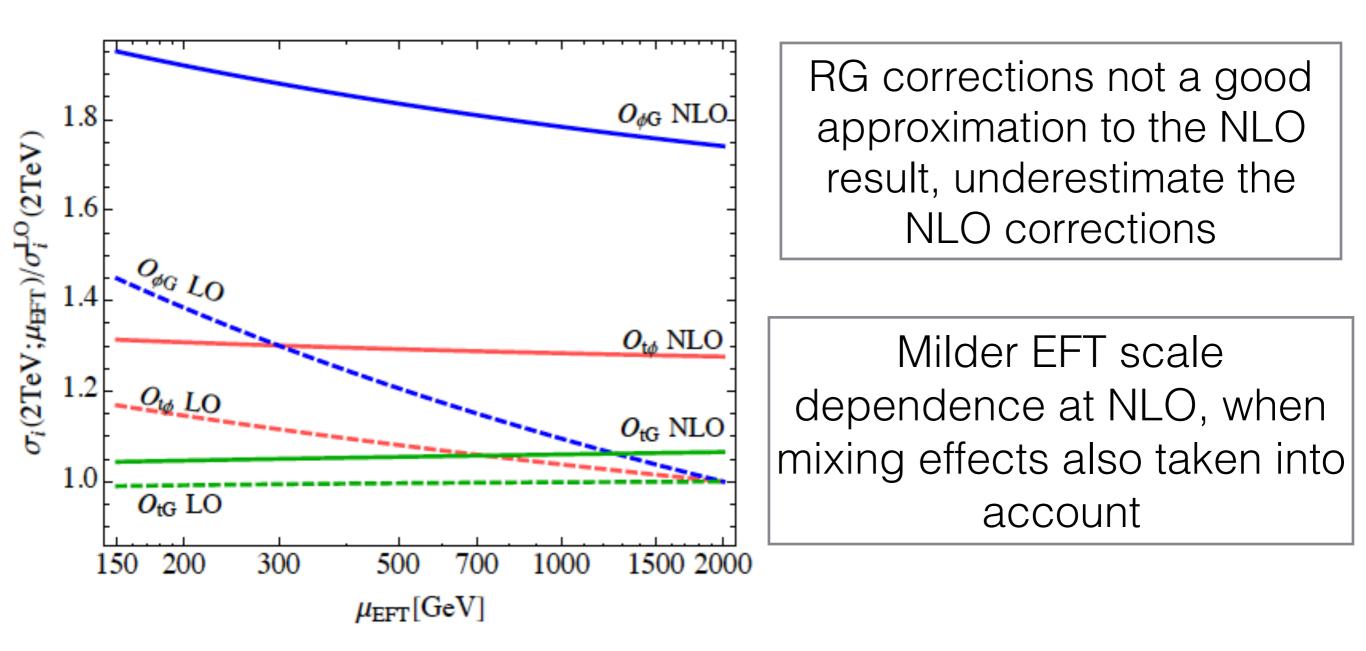
Cross-section results (2)

	13 TeV	σ NLO	К
	σ_{SM}	$0.507^{+0.030+0.000+0.007}_{-0.048-0.000-0.008}$	1.09
Γ	$\sigma_{t\phi}$	$-0.062^{+0.006+0.001+0.001}_{-0.004-0.001-0.001}$	1.13
	$\sigma_{\phi G}$	$0.872_{-0.123-0.035-0.016}^{+0.131+0.037+0.013}$	1.39
	σ_{tG}	$0.503_{-0.046-0.003-0.008}^{+0.025+0.001+0.007}$	1.07
F	$\sigma_{t\phi,t\phi}$	$0.0019\substack{+0.0001+0.0001+0.0000\\-0.0002-0.0000-0.0000}$	1.17
	$\sigma_{\phi G,\phi G}$	$1.021_{-0.178-0.085-0.029}^{+0.204+0.096+0.024}$	1.58
	$\sigma_{tG,tG}$	$0.674_{-0.067-0.007-0.019}^{+0.036+0.004+0.016}$	1.04
	$\sigma_{t\phi,\phi G}$	$-0.053^{+0.008+0.003+0.001}_{-0.008-0.004-0.001}$	1.42
	$\sigma_{t\phi,tG}$	$-0.031^{+0.003+0.000+0.000}_{-0.002-0.000-0.000}$	1.10
	$\sigma_{\phi G,tG}$	$0.859\substack{+0.127+0.021+0.017\\-0.126-0.020-0.022}$	1.37
L	• <i>φ</i> G, <i>t</i> G	-0.126 - 0.020 - 0.022	1.01

First systematic study of uncertainties:

- 1) Scale and PDF uncertainties: Similar to SM
- Reduced scale and PDF uncertainties in the ratio over the SM
- 2) EFT scale uncertainties

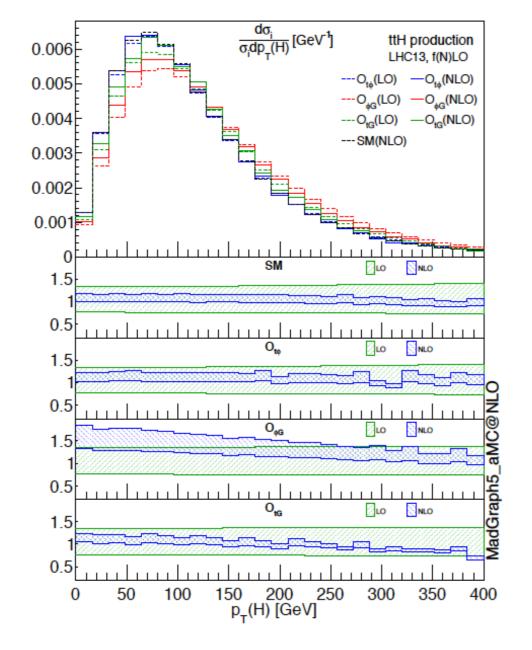
 $\sigma_i(\mu_0;\mu) = \Gamma_{ji}(\mu,\mu_0)\sigma_j(\mu) \,.$

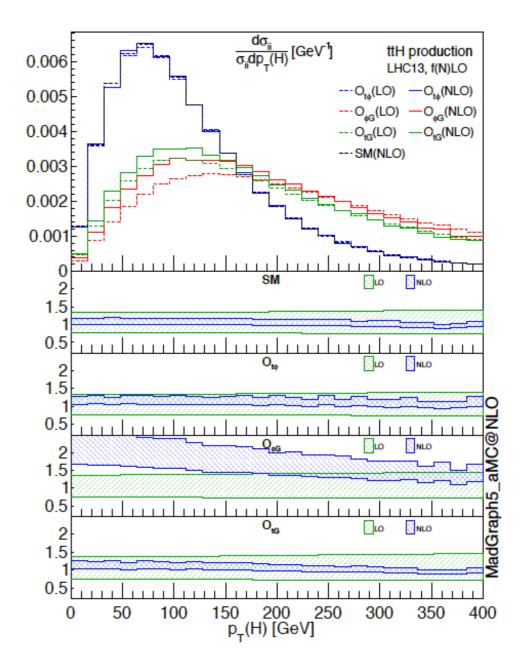

 $\sigma_{ij}(\mu_0;\mu) = \Gamma_{ki}(\mu,\mu_0)\Gamma_{lj}(\mu,\mu_0)\sigma_{kl}(\mu)$

$$\Gamma_{ij}(\mu,\mu_0) = \exp\left(\frac{-2}{\beta_0}\log\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\gamma_{ij}\right)$$

Cross-sections evaluated at a different scale ($\mu_0/2$, $2\mu_0$) evolved back to μ_0 taking into account operator mixing and running

3) C/ Λ^2 expansion $\sigma = \sigma_{SM} + \sum_{i} \frac{C_i^{dim6}}{(\Lambda/1 \text{TeV})^2} \sigma_i^{(dim6)} + \sum_{i < j} \frac{C_i^{dim6} C_j^{dim6}}{(\Lambda/1 \text{TeV})^4} \sigma_{ij}^{(dim6)} + \text{Included}$ $+ \sum_{i} \frac{C_i^{dim8}}{(\Lambda/1 \text{TeV})^4} \sigma_i^{(dim8)} + \mathcal{O}(\Lambda^{-6}).$ E.Vryonidou Needs dim-8 operators (Not included here) But it can be estimated using a cut-off Contino et al arXiv:1604.0644

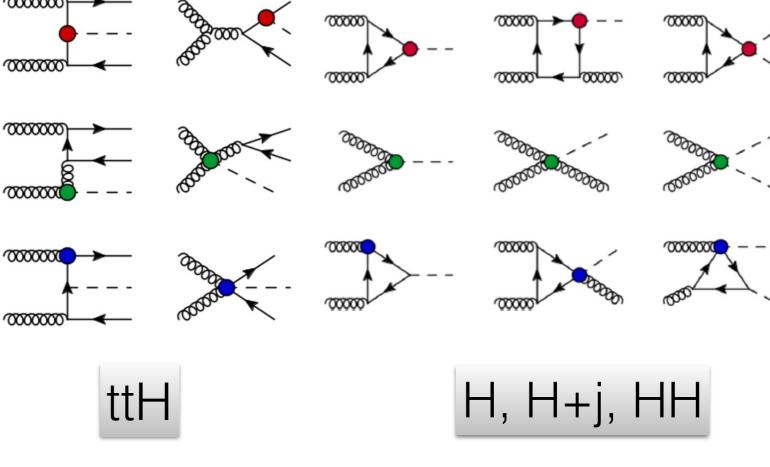

A study of RG effects


Comparison of exact NLO with LO See a improved by 1-loop RG running ¹⁵

See also: Hartmann et al arXiv: 1505.02646,1611.09879

Differential distributions for ttH

NLO: smaller uncertainties, non-flat K-factors

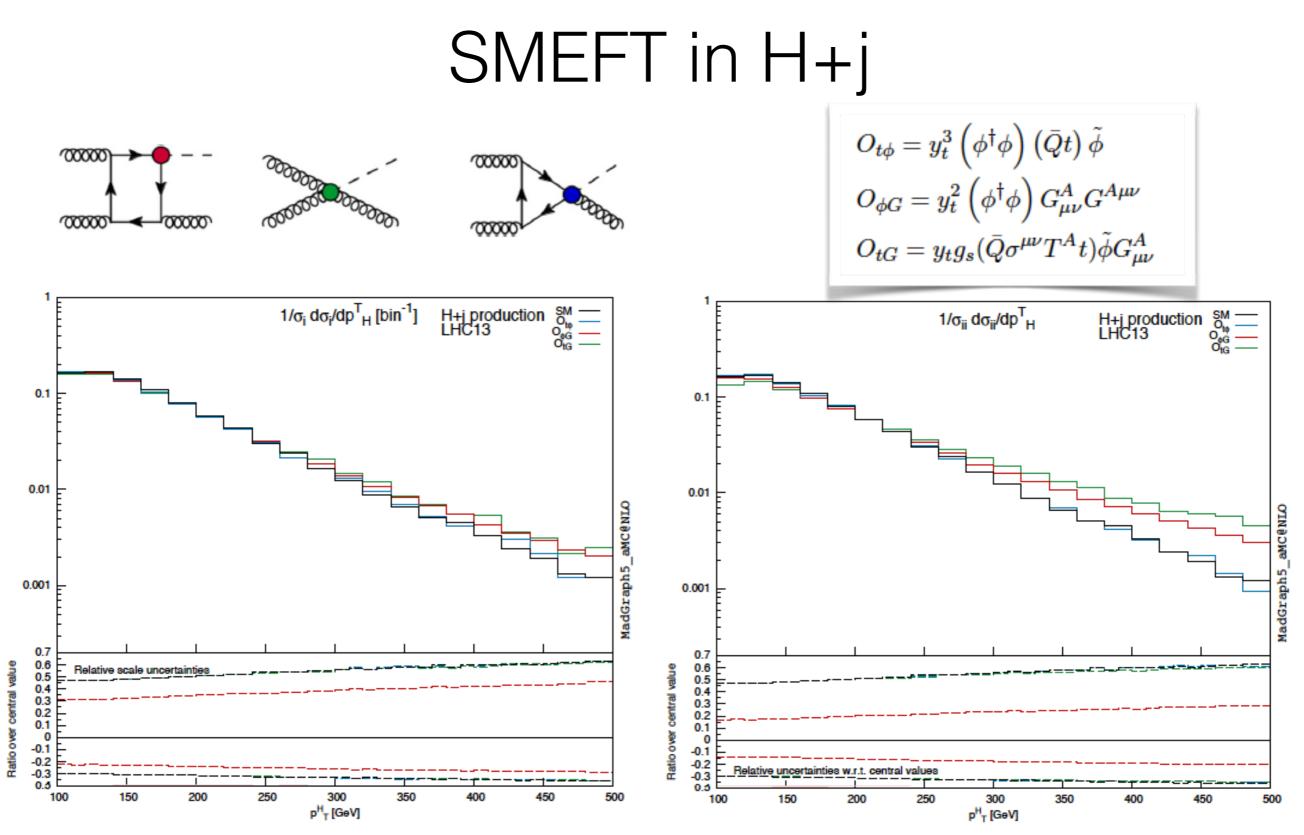


Different shapes for different operators for the squared terms

Maltoni, EV, Zhang arXiv:1607.05330

Top and Higgs

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$



See also Degrande et al. arXiv:1205.1065 Grojean et al. arXiv:1312.3317 Azatov et al arXiv:1608.00977 Cirigliano et al arXiv:

Cirigliano et al arXiv: 1510.00725,1603.03049,1605.04311 (including CP-violation)

Use with 1) ttH and 2) H, H+j to break degeneracy between operators and extract maximal information on these operators

Maltoni, EV, Zhang: arXiv:1607.05330

Harder tails from dim-6 operators: Boosted analysis

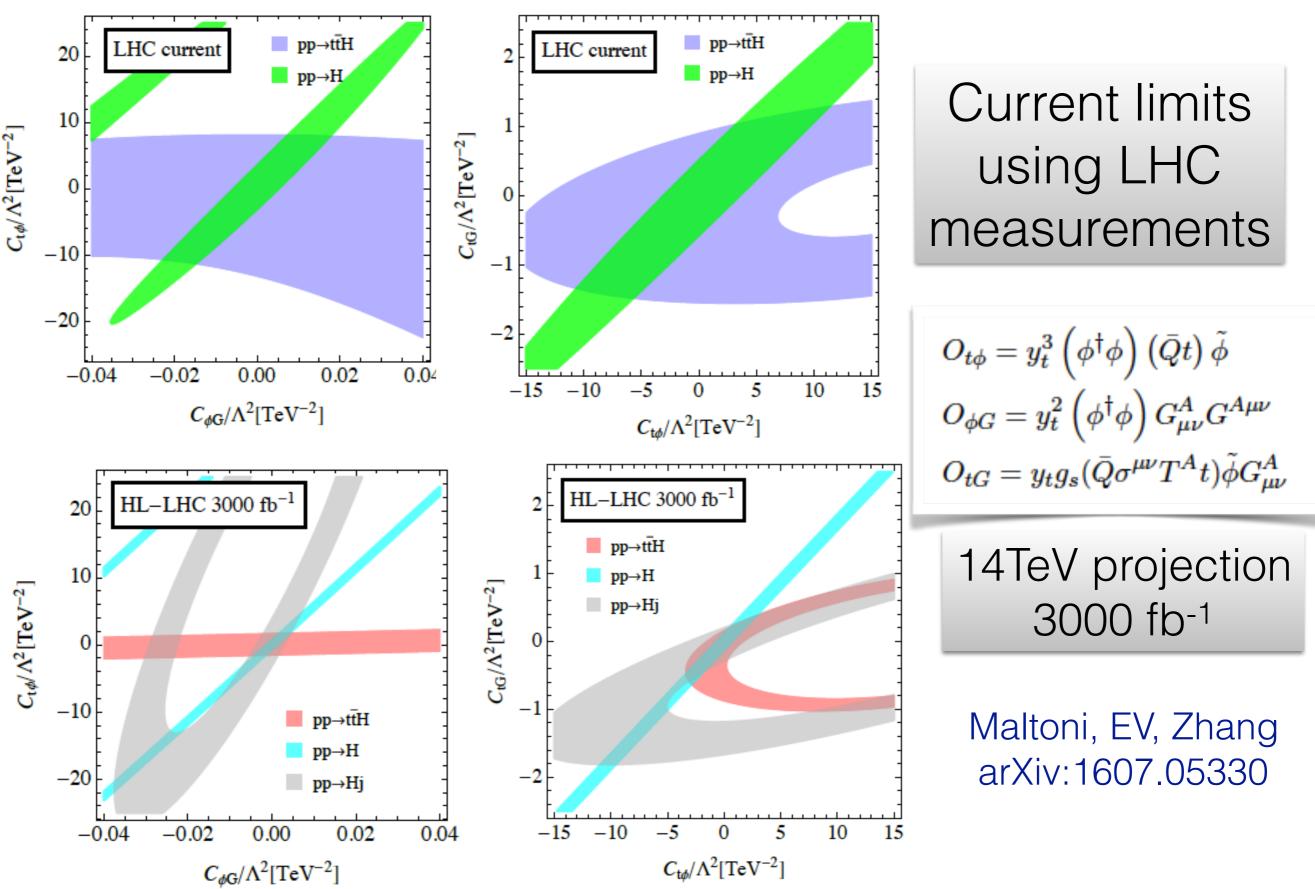
Maltoni, EV, Zhang: arXiv:1607.05330 E.Vryonidou

See also Grazzini et al arXiv:1612.00283 and Agnieszka's talk yesterday

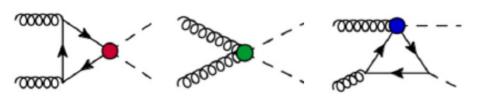
Constraints on the Wilson coefficients

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$

Toy χ² fit for illustrative purposes using: single H, ttH Run I and Run II results Impact of the 3 operators also included in Higgs decays


	Individual	Marginalised	C_{tG} fixed	
$C_{t\phi}/\Lambda^2 \; [{\rm TeV}^{-2}]$	[-3.9, 4.0]	[-14, 31]	[-12,20]	95% c.
$C_{\phi G}/\Lambda^2 [{ m TeV^{-2}}]$	[-0.0072, -0.0063]	[-14,31] [-0.021,0.054]	[-0.022, 0.031]	
$C_{tG}/\Lambda^2 \; [\text{TeV}^{-2}]$	[-0.68, 0.62]	[-1.8, 1.6]		
			$t_{\rm V}$	in

- Individual limit on C_{tG} comparable to the one from top pair production-room to improve with ttH measurement in run II
- Including the chromomagnetic operator leaves much more space to the other two operators


typically C_{tG}=0 in Higgs analyses

Need for global analysis

Constraints using two-operator fits

SMEFT in HH

700 m_{HH} [GeV]

 $1/\sigma_i \, d\sigma_i/dm_{hh} \, [bin^{-1}]$ HH production $S_{O_{hh}}^{M}$ HH LHC13 Q_{hh}^{M}

0.16

0.14

0.12

0.1

0.06

0.04

0.02

$$egin{aligned} O_{t\phi} &= y_t^3 \left(\phi^\dagger \phi
ight) \left(ar{Q} t
ight) ar{\phi} \ O_{\phi G} &= y_t^2 \left(\phi^\dagger \phi
ight) G^A_{\mu
u} G^{A \mu
u} \ O_{tG} &= y_t g_s (ar{Q} \sigma^{\mu
u} T^A t) ar{\phi} G^A_{\mu
u} \end{aligned}$$

 $1/\sigma_{ii} d\sigma_{ii}/dm_{hh}$ [bin⁻¹] HH production $S_{O_{10}}^{M}$ LHC13 Q_{00}^{M}

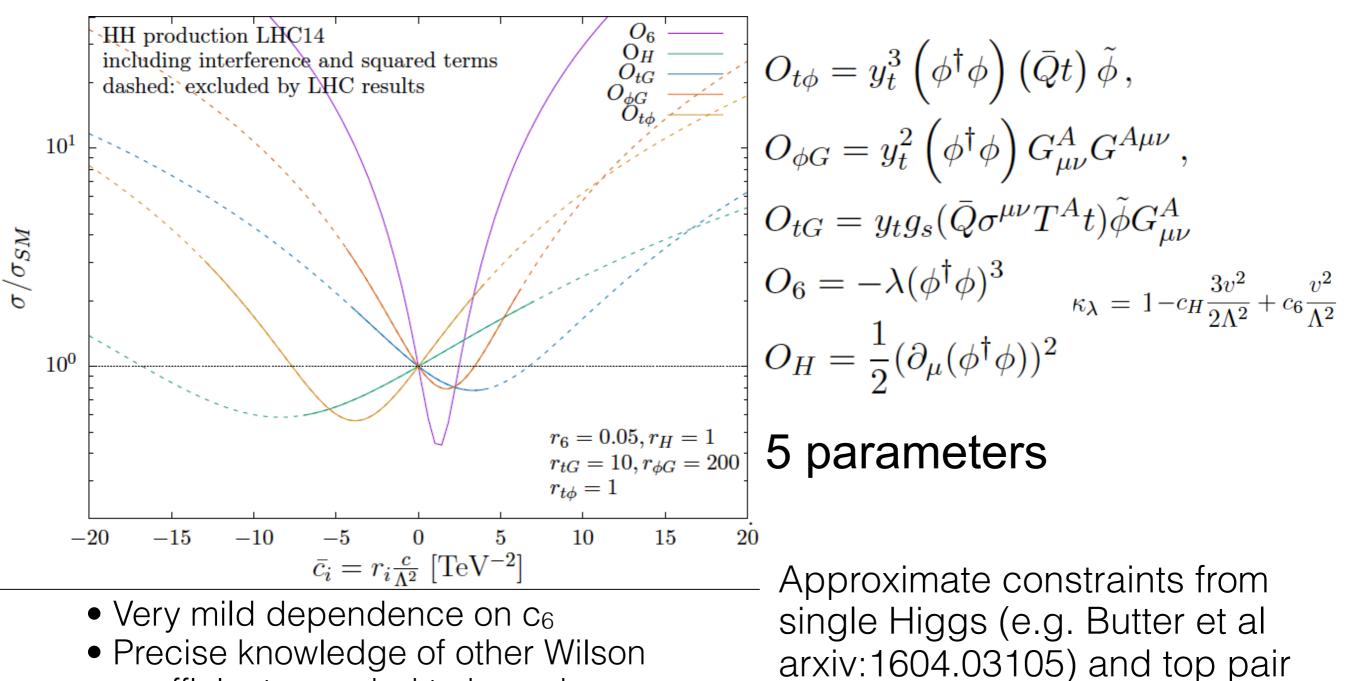
Chromomagnetic operator computed for the first time

13 TeV	σ/σ_{SM} LO
σ_{SM}	$1.000 \substack{+0.000 + 0.000 \\ -0.000 - 0.000}$
$\sigma_{t\phi}$	$0.227^{+0.00114+0.0116}_{-0.000918-0.0101}$
$\sigma_{\phi G}$	$-47.3_{-6.14-4.42}^{+6.18+3.707}$
σ_{tG}	$-1.356_{-0.0225-0.051}^{+0.0271+0.161}$
$\sigma_{t\phi,t\phi}$	$0.0293^{+0.000727+0.0031}_{-0.000584-0.0026}$
$\sigma_{\phi G,\phi G}$	$2856.2^{+743.3+552}_{-628.5-425}$
$\sigma_{tG,tG}$	$1.940^{+0.0650+0.198}_{-0.0477-0.493}$
$\sigma_{t\phi,\phi G}$	$-11.83^{+1.39+1.42}_{-1.41-1.77}$
$\sigma_{t\phi,tG}$	$-0.340^{+0.000238+0.064}_{-0.000438-0.047}$
$\sigma_{\phi G,tG}$	$147.5^{+20.83+20.7}_{-18.86-31.4}$

To be investigated: the impact of the chromomagnetic operator in EFT analyses that focus on the extraction of the triple Higgs coupling λ (e.g. arXiv:1502.00539 and arXiv:1410.3471)

E.Vryonidou

0.25


0.2

0.15

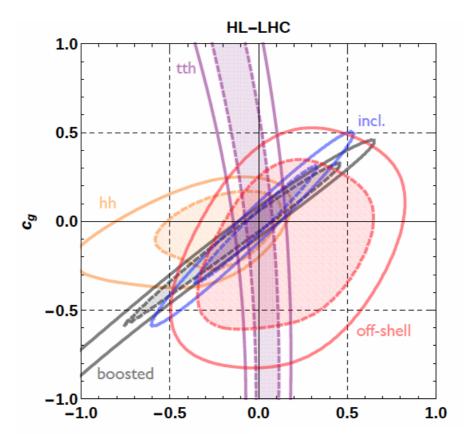
0.1

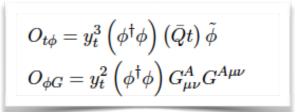
0.05

How will OtG affect the HH EFT analyses?

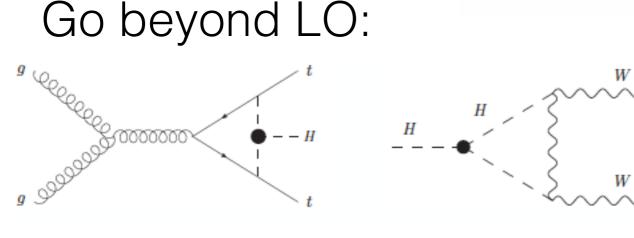
- coefficients needed to bound c₆
 Differential distributions will also be
- Differential distributions will also be necessary

E.Vryonidou

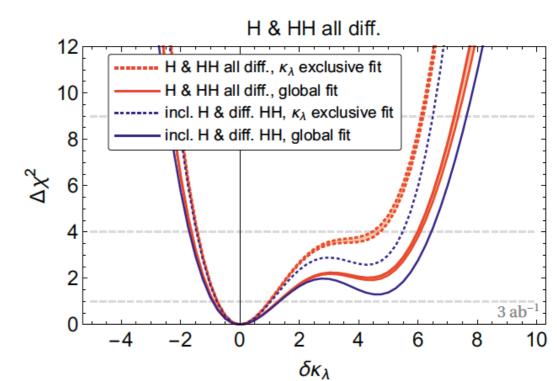

production (Franzosi and Zhang


arxiv:1503.08841)

How to extract maximal information?


Go Global:

- inclusive H
- boosted Higgs
- ttH
- HH
- off-shell Higgs



Azatov et al arXiv:1608.00977

Gorbahn and Haisch 1607.03773 Degrassi et al 1607.04251

E.Vryonidou

see Martin's and Stefano's talks Di Vita et al 1704.01953

27

Conclusions

- Higher-order corrections needed to match SM precision and experimental accuracy
- Progress in top-quark processes: pair production, single top, tt+V, tt+H as well as loop-induced processes
- QCD corrections important both for total cross-sections and distributions: SM k-factors are not enough
- Global fits results already available: important to include NLO predictions where available to extract maximal and more reliable information
- Combination of Higgs and top results is crucial for a global EFT fit

Thank you for your attention