Precise LHC phenomenology: the theoretical challenge

Thomas Binoth

7. February 2007 Higgs-Maxwell workshop Edinburgh, Scotland

Content:

- Motivation: LHC@NLO, why going to loops?
- One loop methods
- The GOLEM project
- Going beyond one-loop
- Summary

The advent of the LHC era

LHC:

- Large Hadron Collider at CERN, $\sqrt{s} = 14$ TeV, start 2007
- Large amount of Human Capital (for experimentalists)
- Long and Hard Calculations (for theorists)

The advent of the LHC era

LHC:

- Large Hadron Collider at CERN, $\sqrt{s} = 14$ TeV, start 2007
- Large amount of Human Capital (for experimentalists)
- Long and Hard Calculations (for theorists)

What will we see?

- nothing \rightarrow extremely disturbing/interesting!
- Higgs boson + nothing \rightarrow asks for high precision checks (ILC!)
- Higgs boson + something \rightarrow investigate "something" in SM background!

- LEP: Nonabelian structure and loops important \Rightarrow bounds on M_{Top} , $\log(M_H)$
- SM Higgs boson $\Rightarrow 114.4 \text{ GeV} < m_H < 200 \text{ GeV}$ (!)
- Tevatron Run I & II: SM and nothing else!

- LEP: Nonabelian structure and loops important \Rightarrow bounds on M_{Top} , $\log(M_H)$
- SM Higgs boson $\Rightarrow 114.4 \text{ GeV} < m_H < 200 \text{ GeV}$ (!)
- Tevatron Run I & II: SM and nothing else!
- Higgs sector not yet confirmed

$$V(H) = \frac{1}{2}M_H^2 H^2 + \lambda_3 H^3 + \lambda_4 H^4$$

SM:
$$\lambda_4 = \lambda_3/v = 3 M_H^2/v^2$$

- LEP: Nonabelian structure and loops important \Rightarrow bounds on M_{Top} , $\log(M_H)$
- SM Higgs boson $\Rightarrow 114.4 \text{ GeV} < m_H < 200 \text{ GeV}$ (!)
- Tevatron Run I & II: SM and nothing else!
- Higgs sector not yet confirmed

$$V(H) = \frac{1}{2}M_H^2 H^2 + \lambda_3 H^3 + \lambda_4 H^4$$

SM:
$$\lambda_4 = \lambda_3/v = 3 M_H^2/v^2$$

 SM ⊂ MSSM ⊂ SUSY GUT ⊂ Supergravity ⊂ Superstring ⊂ *M*-Theory SM ⊂ "Extra Dimensions", "Little Higgs", "Strong interaction" Model

- LEP: Nonabelian structure and loops important \Rightarrow bounds on M_{Top} , $\log(M_H)$
- SM Higgs boson $\Rightarrow 114.4 \text{ GeV} < m_H < 200 \text{ GeV}$ (!)
- Tevatron Run I & II: SM and nothing else!
- Higgs sector not yet confirmed

$$V(H) = \frac{1}{2}M_H^2 H^2 + \lambda_3 H^3 + \lambda_4 H^4$$

SM:
$$\lambda_4 = \lambda_3/v = 3 M_H^2/v^2$$

- $SM \subset MSSM \subset SUSY \ GUT \subset Supergravity \subset Superstring \subset M$ -Theory $SM \subset "Extra Dimensions", "Little Higgs", "Strong interaction" Model$
- BSM ⇒ something around 1 TeV (?) Hierarchy/finetuning problem not a convincing argument ! Renormalizability of SM ⇔ SM insensitive to cut-off scales !

Discovery potential of the Higgs boson at the LHC

- LHC designed to find the Higgs boson up to $m_H \sim 1~{
 m TeV}$
- $m_H < 2 m_Z$ most difficult
- $2 m_Z < m_H < 1$ TeV "gold plated mode" $H \rightarrow ZZ \rightarrow \mu\mu\mu\mu$
- $m_H \sim 1$ TeV perturbative approach ceases to be valid

...due to undetectable invisible matter ?

- $H \rightarrow$ singlet matter and missing energy signal completely washed out
- Look for excess from $PP \rightarrow H + 2 \text{ jets} \rightarrow E + 2 \text{ jets}$

...due to undetectable invisible matter ?

- $H \rightarrow$ singlet matter and missing energy signal completely washed out
- Look for excess from $PP \rightarrow H + 2 \text{ jets} \rightarrow E + 2 \text{ jets}$

...due to heavy Higgs/no Higgs scenario?

• Look for excess in $W_L W_L \rightarrow W_L W_L$ scattering

...due to undetectable invisible matter ?

- $H \rightarrow$ singlet matter and missing energy signal completely washed out
- Look for excess from $PP \rightarrow H + 2 \text{ jets} \rightarrow E + 2 \text{ jets}$

...due to heavy Higgs/no Higgs scenario?

• Look for excess in $W_L W_L \rightarrow W_L W_L$ scattering

 \implies precise control of Backgrounds crucial !!!

...due to undetectable invisible matter ?

- $H \rightarrow$ singlet matter and missing energy signal completely washed out
- Look for excess from $PP \rightarrow H + 2 \text{ jets} \rightarrow E + 2 \text{ jets}$

...due to heavy Higgs/no Higgs scenario?

• Look for excess in $W_L W_L \to W_L W_L$ scattering

 \implies precise control of Backgrounds crucial !!!

Immediate questions:

- What are the invisible decay channels?
- What fakes a light Higgs boson in the precision observables?

...due to undetectable invisible matter ?

- $H \rightarrow$ singlet matter and missing energy signal completely washed out

...due to heavy Higgs/no Higgs scenario?

• Look for excess in $W_L W_L \to W_L W_L$ scattering

 \implies precise control of Backgrounds crucial !!!

Immediate questions:

- What are the invisible decay channels?
- What fakes a light Higgs boson in the precision observables?

Nothing@LHC \Rightarrow Manifestation of New physics !

Signal:

- Decays: $H \to \gamma \gamma$, $H \to WW^{(*)}$, $H \to ZZ^{(*)}$, $H \to \tau^+ \tau^-$
- $PP \rightarrow H + 0, 1, 2$ jets Gluon Fusion
- $PP \rightarrow Hjj$ Weak Boson Fusion
- $PP \rightarrow H + t\bar{t}$
- $PP \rightarrow H + W, Z$

Signal:

- Decays: $H \to \gamma \gamma$, $H \to WW^{(*)}$, $H \to ZZ^{(*)}$, $H \to \tau^+ \tau^-$
- $PP \rightarrow H + 0, 1, 2$ jets Gluon Fusion
- $PP \rightarrow Hjj$ Weak Boson Fusion
- $PP \rightarrow H + t\bar{t}$
- $PP \rightarrow H + W, Z$

Backgrounds:

- $PP \rightarrow \gamma \gamma + 0, 1, 2 \text{ jets}$
- $PP \rightarrow WW^*, ZZ^* + 0, 1, 2$ jets
- $PP \rightarrow t\bar{t} + 0, 1, 2$ jets
- $PP \rightarrow V + \text{ up to 3 jets}$ $(V = \gamma, W, Z)$
- $PP \rightarrow VVV + 0, 1 \text{ jet}$

After discovery of a Higgs like boson:

- measure Standard Model properties
- quantitative analysis of Higgs/Matter couplings
- Crucial: reliable background control
- not all backgrounds can be measured: theoretical input necessary!

After discovery of a Higgs like boson:

- measure Standard Model properties
- quantitative analysis of Higgs/Matter couplings
- Crucial: reliable background control
- not all backgrounds can be measured: theoretical input necessary!

All Standard Model processes are background to new physics! New physics signatures: (GeV)

- Z' easy
- $n \text{ jets } + E_T$
- multiparticle cascades

Tools for experimental analysis

Pythia Herwig Sherpa

• LO Matrixelements + parton shower + hadronization model

Tools for experimental analysis

Pythia Herwig Sherpa

• LO Matrixelements + parton shower + hadronization model

- $2 \rightarrow N$ Matrixelements: shapes, jet structure, well described after tuning
- LO absolute rates intrinsically unreliable!

Example: $\gamma\gamma$ rate at Tevatron Run II [hep-ex/0412050]

- DIPHOX: NLO code for $\gamma\gamma$, $\gamma\pi^0$, $\pi^0\pi^0$ production (including fragmentation)
- http://lappweb.in2p3.fr/lapth/PHOX_FAMILY/diphox.html [T.B., J.P. Guillet, E. Pilon, M. Werlen]

DIPHOX (solid), RESBOS (dashed), PYTHIA×2 !!! (dot-dashed)

Parton model and scale uncertainties

Parton model and scale uncertainties

Scale dependence remnant of UV/IR divergencies: $\frac{Q^{\epsilon}}{\epsilon} - \frac{\mu^{\epsilon}}{\epsilon} = \log(Q/\mu)$

Parton model and scale uncertainties

Scale dependence remnant of UV/IR divergencies: $\frac{Q^{\epsilon}}{\epsilon} - \frac{\mu^{\epsilon}}{\epsilon} = \log(Q/\mu)$

Example: 3 jet cross section at NLO

[Z. Nagy, Phys.Rev. D68 (2003)]

Higher order QCD calculations are mandatory to soften scale dependence !!!

Framework for NLO calculations

$$\mathcal{M}_{LO}$$
: $\mathcal{M}_{NLO,virtual}$: $\mathcal{M}_{NLO,virtual}$: $\mathcal{M}_{NLO,real}$: $\mathcal{M}_{NLO,real}$:

$$\sigma = \sigma_{LO} + \sigma_{NLO}$$

$$\sigma_{LO} = \frac{1}{2s} \int dP S_N \mathcal{O}_N(\{p_j\}) |\mathcal{M}_{LO}|^2$$

$$\sigma_{NLO} = \frac{1}{2s} \int dP S_N \alpha_s \left(\mathcal{O}_N(\{p_j\}) \left[\mathcal{M}_{LO} \mathcal{M}^*_{NLO,V} + \mathcal{M}^*_{LO} \mathcal{M}_{NLO,V} \right] + \int dP S_1 \mathcal{O}_{N+1}(\{p_j\}) |\mathcal{M}_{NLO,R}|^2 \right)$$

Framework for NLO calculations

$$\mathcal{M}_{LO}$$
: $\mathcal{M}_{NLO,virtual}$: $\mathcal{M}_{NLO,virtual}$: $\mathcal{M}_{NLO,real}$: $\mathcal{M}_{NLO,real}$:

$$\sigma = \sigma_{LO} + \sigma_{NLO}$$

$$\sigma_{LO} = \frac{1}{2s} \int dP S_N \mathcal{O}_N(\{p_j\}) |\mathcal{M}_{LO}|^2$$

$$\sigma_{NLO} = \frac{1}{2s} \int dP S_N \alpha_s \left(\mathcal{O}_N(\{p_j\}) \left[\mathcal{M}_{LO} \mathcal{M}^*_{NLO,V} + \mathcal{M}^*_{LO} \mathcal{M}_{NLO,V} \right] + \int dP S_1 \mathcal{O}_{N+1}(\{p_j\}) |\mathcal{M}_{NLO,R}|^2 \right)$$

- IR divergences cancel between real and virtual corrections
- \mathcal{O}_N , \mathcal{O}_{N+1} define observable, e.g. N, N+1 jets

Cancellation of IR divergences

$$F_{NLO} = F_{NLO}^{V} + \int dPS_1 F_{NLO}^{R}$$

$$F_{NLO}^{V} = \mathcal{O}_N(\{p_j\}) \left[\frac{A(0)}{\epsilon} + \text{finite terms}\right]$$

$$\int dPS_1 F_{NLO}^{R} = \int \frac{dQ^2}{(Q^2)^{1+\epsilon}} \mathcal{O}_{N+1}(\{p_j\}) A(Q^2)$$

$$= \int dQ^2 \mathcal{O}_{N+1}(\{p_j\}) \left[\frac{A(0)}{(Q^2)^{1+\epsilon}} + \frac{A(Q^2) - A(0)}{Q^2} + \dots\right]$$

Cancellation of IR divergences

$$F_{NLO} = F_{NLO}^{V} + \int dP S_1 F_{NLO}^{R}$$

$$F_{NLO}^{V} = \mathcal{O}_N(\{p_j\}) \left[\frac{A(0)}{\epsilon} + \text{finite terms}\right]$$

$$\int dP S_1 F_{NLO}^{R} = \int \frac{dQ^2}{(Q^2)^{1+\epsilon}} \mathcal{O}_{N+1}(\{p_j\}) A(Q^2)$$

$$= \int dQ^2 \mathcal{O}_{N+1}(\{p_j\}) \left[\frac{A(0)}{(Q^2)^{1+\epsilon}} + \frac{A(Q^2) - A(0)}{Q^2} + \dots\right]$$

If and only if (!) $\mathcal{O}_{N+1}(\{p_j\}) \to \mathcal{O}_N(\{p_j\})$ for $Q^2 \to 0$ the poles cancel:

$$\int dPS_1 F_{NLO}^R = -\mathcal{O}_N(\{p_j\}) \frac{A(0)}{\epsilon} + \int dQ^2 \text{ finite terms}$$

Cancellation of IR divergences

$$F_{NLO} = F_{NLO}^{V} + \int dPS_1 F_{NLO}^{R}$$

$$F_{NLO}^{V} = \mathcal{O}_N(\{p_j\}) \left[\frac{A(0)}{\epsilon} + \text{finite terms}\right]$$

$$\int dPS_1 F_{NLO}^{R} = \int \frac{dQ^2}{(Q^2)^{1+\epsilon}} \mathcal{O}_{N+1}(\{p_j\}) A(Q^2)$$

$$= \int dQ^2 \mathcal{O}_{N+1}(\{p_j\}) \left[\frac{A(0)}{(Q^2)^{1+\epsilon}} + \frac{A(Q^2) - A(0)}{Q^2} + \dots\right]$$

If and only if (!) $\mathcal{O}_{N+1}(\{p_j\}) \to \mathcal{O}_N(\{p_j\})$ for $Q^2 \to 0$ the poles cancel:

$$\int dPS_1 F_{NLO}^R = -\mathcal{O}_N(\{p_j\}) \frac{A(0)}{\epsilon} + \int dQ^2 \text{ finite terms}$$

- IR safe measurement functions do not resolve soft or collinear partons
 IR safety is essential for applying perturbation theory
- combination of real/virtual corrections well understood at 1-loop
- Bottleneck for NLO computations: virtual corrections

Status QCD@NLO for LHC:

- $2 \rightarrow 2$: everything you want
- $2 \rightarrow 3: PP \rightarrow 3 j, Vjj, \gamma\gamma j, Vb\bar{b}, t\bar{t}H, b\bar{b}H, jjH, HHH, (t\bar{t}j)$
- $2 \rightarrow 4$: everything remains to be done !

Status QCD@NLO for LHC:

- $2 \rightarrow 2$: everything you want
- $2 \rightarrow 3: PP \rightarrow 3 j, Vjj, \gamma\gamma j, Vb\bar{b}, t\bar{t}H, b\bar{b}H, jjH, HHH, (t\bar{t}j)$
- $2 \rightarrow 4$: everything remains to be done !

- mostly standalone computations
 Exception: MCFM Campbell, Ellis
- LHC induces a lot of very recent activity !

Milestones:

- 4 partons @ NLO Ellis/Sexton, 1985
- 5 g @ NLO Bern/Dixon/Kosower, 1993
- Unitarity based and twistor space inspired methods
- "Modern" Algebraic/Seminumerical techniques
- 6 g @ NLO 2006

• get loop amplitudes by sewing tree amplitudes using unitarity

$$\mathcal{A}_{1-\mathrm{loop}}\sim\sum\limits_C\int d\mathrm{PS}_C$$

• tree amplitudes gauge invariant

• get loop amplitudes by sewing tree amplitudes using unitarity

$$\mathcal{A}_{1-\mathrm{loop}} \sim \sum_C \int d\mathrm{PS}_C$$

- tree amplitudes gauge invariant
- Bern,Dixon,Dunbar,Kosower-Theorem on cut-constructability: Sufficient condition for cut.-con. is that tensor integrals $\int d^D k k^R / (k^2 - M^2)^N$ obey $R \le N - 2$

• get loop amplitudes by sewing tree amplitudes using unitarity

$$\mathcal{A}_{1-\mathrm{loop}} \sim \sum_C \int d\mathrm{PS}_C$$

- tree amplitudes gauge invariant
- Bern,Dixon,Dunbar,Kosower-Theorem on cut-constructability: Sufficient condition for cut.-con. is that tensor integrals $\int d^D k k^R / (k^2 - M^2)^N$ obey $R \le N - 2$
- Revived by "Twistor space approach" [Cachazo, Svrcek, Witten (2004)]
- maximally helicity violating QCD tree amplitudes are lines in "Twistor space".

$$\mathcal{A}_{\mathrm{MHV}} \sim i g^{N-2} \frac{\langle ij \rangle}{\langle 12 \rangle \langle 23 \rangle \dots \langle n-1, n \rangle \langle n1 \rangle} \sim$$

 $^lacksymbol{\bullet}$ novel perturbative expansion: MHV-vertices + scalar propagators $\sim 1/P^2$

 $\langle ij \rangle := \langle i^- | j^+ \rangle$, $[ij] := \langle i^+ | j^- \rangle$, $| j^+ \rangle$ defined by $p_j | j^+ \rangle = 0$, $| j^- \rangle = | j^+ \rangle^C$

+ 000 +

• BDDK: d = 4 cuts do not fully determine one-loop amplitude

 cut constructible part of all 1-loop 6-gluon helicity amplitudes known [Feng, Britto, Mastrolia (2006)]
Unitarity based/Twistor space inspired approach:

• BDDK: d = 4 cuts do not fully determine one-loop amplitude

- cut constructible part of all 1-loop 6-gluon helicity amplitudes known [Feng, Britto, Mastrolia (2006)]
- "bootstrap" approach exists to evaluate \mathcal{R} by collinear limits and "auxiliary relations", done for $\mathcal{A}_{6-gluon}^{+++---}$ [Bern, Dixon, Kosower (2006)]
- *d*-dimensional cut techniques under investigation
- Feynman diagrammatic approach by Chinese group [Xiao, Yang, Zhu (2006)] $\mathcal{R}[\mathcal{A}_{6-gluon}^{\pm\cdots}]$ from tensor form factors.
- virtual part of 6g@NLO done!!!

Unitarity based/Twistor space inspired approach:

• BDDK: d = 4 cuts do not fully determine one-loop amplitude

- cut constructible part of all 1-loop 6-gluon helicity amplitudes known [Feng, Britto, Mastrolia (2006)]
- "bootstrap" approach exists to evaluate \mathcal{R} by collinear limits and "auxiliary relations", done for $\mathcal{A}_{6-gluon}^{+++---}$ [Bern, Dixon, Kosower (2006)]
- *d*-dimensional cut techniques under investigation
- Feynman diagrammatic approach by Chinese group [Xiao, Yang, Zhu (2006)] $\mathcal{R}[\mathcal{A}_{6-gluon}^{\pm \cdots}]$ from tensor form factors.
- virtual part of 6g@NLO done!!!
- formalisms mainly for multi-gluon amplitudes
- external quarks, massive internal particles (?), big issue: automation

Unitarity based/Twistor space inspired approach:

• BDDK: d = 4 cuts do not fully determine one-loop amplitude

- cut constructible part of all 1-loop 6-gluon helicity amplitudes known [Feng, Britto, Mastrolia (2006)]
- "bootstrap" approach exists to evaluate \mathcal{R} by collinear limits and "auxiliary relations", done for $\mathcal{A}_{6-gluon}^{+++---}$ [Bern, Dixon, Kosower (2006)]
- *d*-dimensional cut techniques under investigation
- Feynman diagrammatic approach by Chinese group [Xiao, Yang, Zhu (2006)] $\mathcal{R}[\mathcal{A}_{6-gluon}^{\pm \cdots}]$ from tensor form factors.
- virtual part of 6g@NLO done!!!
- formalisms mainly for multi-gluon amplitudes
- external quarks, massive internal particles (?), big issue: automation

Unitarity based/Twistor space inspired methods have good potential further research necessary to establish a general method!!!

Feynman diagrammatic approach:

$$\Gamma^{c,\lambda}(p_j, m_j) = \sum_{\{c_i\},\alpha} f^{\{c_i\}} \mathcal{G}_{\alpha}^{\{\lambda\}}$$

$$\mathcal{G}_{\alpha}^{\{\lambda\}} = \int \frac{d^n k}{i\pi^{n/2}} \frac{\mathcal{N}^{\{\lambda\}}}{(q_1^2 - m_1^2) \dots (q_N^2 - m_N^2)} = \sum_R \mathcal{N}_{\mu_1,\dots,\mu_R}^{\{\lambda\}} I_N^{\mu_1\dots\mu_R}(p_j, m_j)$$

$$I_N^{\mu_1\dots\mu_R}(p_j, m_j) = \int \frac{d^n k}{i\pi^{n/2}} \frac{k^{\mu_1}\dots k^{\mu_R}}{(q_1^2 - m_1^2) \dots (q_N^2 - m_N^2)} , \quad q_j = k - r_j = k - p_1 \dots - p_j$$

- Passarino-Veltman: momentum space reduction $\rightarrow 1/\det(G)^R, G_{ij} = 2r_i \cdot r_j$
- Lorentz Tensor Integrals \rightarrow Formfactor representation à la Davydychev:

$$I_N^{\mu_1...\mu_R} = \sum \tau^{\mu_1...\mu_R} (r_{j_1}, \dots, r_{j_r}, g^m) I_N^{n+2m} (j_1, \dots, j_r)$$

$$I_N^D (j_1, \dots, j_r) = (-1)^N \Gamma (N - \frac{D}{2}) \int_0^\infty d^N z \, \delta(1 - \sum_{l=1}^N z_l) \, \frac{z_{j_1} \dots z_{j_r}}{(-\frac{1}{2}z \cdot S \cdot z)^{N-D/2}}$$

$$S_{ij} = (r_i - r_j)^2 - m_i^2 - m_j^2 \,, \, r_j = p_1 + \dots + p_j$$

Reduction of Feynman parameter integrals

Bern, Dixon, Kosower (1993); T.B., Guillet, Heinrich, (2000)

Each N-point integral with a non-trivial numerator can be represented by scalar integrals with shifted dimensions.

•
$$I_{N=5,6}^{n+2m}$$
 drop out.

•
$$I_N^{n+2m} \to (I_N^{n+2m-2}, I_{N-1}^{n+2m-2})$$

Each N-point integral with non-trivial numerator can be represented by scalar integrals $I_1^n, I_2^n, I_3^n, I_4^{n+2}$. But $1/\det(G)$ unavoidable!

The GOLEM project

- Evaluation of 1-loop amplitudes bottleneck for LHC@NLO
- Automated evaluation of one-loop amplitudes
- Combinatorial complexity ↔ Numerical instabilities
 ⇒ flexibility to switch between algebraic/numeric representations

The GOLEM project

- Evaluation of 1-loop amplitudes bottleneck for LHC@NLO
- Automated evaluation of one-loop amplitudes
- Combinatorial complexity ↔ Numerical instabilities
 ⇒ flexibility to switch between algebraic/numeric representations

G eneral 0 ne L oop E valuator for M atrix elements

The GOLEM project

- Evaluation of 1-loop amplitudes bottleneck for LHC@NLO
- Automated evaluation of one-loop amplitudes
- Combinatorial complexity ↔ Numerical instabilities
 ⇒ flexibility to switch between algebraic/numeric representations

G eneral 0 ne L oop E valuator for M atrix elements

 The GOLEM team: T.B., A. Guffanti, J.Ph. Guillet, G. Heinrich, S. Karg, N. Kauer, F. Mahmoudi, E. Pilon, T. Reiter, C. Schubert, G. Burton

Step 1: Amplitude organization

- Split amplitude into gauge invariant subamplitudes
 - \rightarrow No compensations between subamplitudes

$$\mathcal{A}(|p_j\rangle,\epsilon_j^\lambda,\dots) = \sum_I \mathcal{A}_I(|p_j\rangle,\epsilon_j^\lambda,\dots)$$

Step 1: Amplitude organization

- Split amplitude into gauge invariant subamplitudes
 - \rightarrow No compensations between subamplitudes

$$\mathcal{A}(|p_j\rangle,\epsilon_j^\lambda,\dots) = \sum_I \mathcal{A}_I(|p_j\rangle,\epsilon_j^\lambda,\dots)$$

Step 2: Graph generation

generate Feynman diagrams

v

project onto gauge invariant structures defined in step 1

$$\begin{aligned} \mathcal{A}(|p_{j}\rangle,\epsilon_{j}^{\lambda},\ldots) &= \sum_{G} \mathcal{G}_{G}(|p_{j}\rangle,\epsilon_{j}^{\lambda},\ldots) \\ &= \sum_{I} \sum_{G} \mathcal{C}_{IG}(s_{jk}) \,\mathcal{T}_{I}(|p_{j}\rangle,\epsilon_{j}^{\lambda},\ldots) \end{aligned}$$

 $(s_{jk} = (p_j + p_k)^2)$

Step 3: Reduction to integral basis

- Choose integral basis $\{I_B\}$ (see below)
- apply algebraic or semi-numerical reduction methods to map onto $\{I_B\}$
- semi-numerical reduction done with Fortran/C code

$$\mathcal{A}(|p_j\rangle,\epsilon_j^{\lambda},\dots) = \sum_B \sum_I \sum_G \mathcal{C}_{BIG}(s_{jk},\dots) I_B \mathcal{T}_I(|p_j\rangle,\epsilon_j^{\lambda},\dots)$$

Step 3: Reduction to integral basis

- Choose integral basis $\{I_B\}$ (see below)
- apply algebraic or semi-numerical reduction methods to map onto $\{I_B\}$
- semi-numerical reduction done with Fortran/C code

$$\mathcal{A}(|p_j\rangle,\epsilon_j^{\lambda},\ldots) = \sum_B \sum_I \sum_G \mathcal{C}_{BIG}(s_{jk},\ldots) I_B \mathcal{T}_I(|p_j\rangle,\epsilon_j^{\lambda},\ldots)$$

Step 4: Export/manipulate coefficients C_{BIG} 's (optional)

- Denominator structure and size of C_{BIG} 's critical for numerical evaluation
- Export C_{BIG} to MAPLE/MATHEMATICA \rightarrow simplification/factorization
- Export C_{BIG} to Fortran/C code \rightarrow produce optimized output

$$\mathcal{A}(|p_j\rangle, \epsilon_j^{\lambda}, \dots) = \sum_B \sum_I \sum_G \operatorname{simplify}[\mathcal{C}_{BIG}(s_{jk}, \dots)] I_B \mathcal{T}_I(|p_j\rangle, \epsilon_j^{\lambda}, \dots)$$

GOLEM Basis integrals

$$I_{N=3,4}^{n,n+2}(j_1,\ldots,j_r) \sim \int_0^1 \prod_{i=1}^4 dz_i \,\delta(1-\sum_{l=1}^4 z_l) \,\frac{z_{j_1}\ldots z_{j_r}}{(-\frac{1}{2}\,z\cdot\mathcal{S}\cdot z-i\delta)^{3-n/2}}$$

Three alternatives for evaluation:

- 1. algebraic reduction to "standard" basis I_2^n , I_3^n , I_4^{n+2} ("Master integrals")
- 2. semi-numerical reduction to scalar integrals $[1.\&2. \rightarrow \text{Gram determinants} \sim 1/\det(G)^r]$
- 3. direct numerical evaluation

Computations with GOLEM:

All algorithms coded in FORM and FORTRAN 90:

- $\phi\phi \rightarrow \phi\phi\phi\phi$, $\gamma\gamma \rightarrow \phi\phi\phi\phi$
- $gg \rightarrow HH, HHH$
- $gg \rightarrow W^*W^* \rightarrow l\nu l'\nu'$ (30% effect with Higgs search cuts)
- $qq \rightarrow qqqq$ under construction, goal: $PP \rightarrow bbbb$, $PP \rightarrow 4$ jets
- GOLEM can be used to evaluate rational terms of amplitudes!
 → complementary to unitarity based methods

Other semi-numerical approach by Ellis, Giele, Zanderighi:

- 6-gluon amplitude (for some phase space points)
- $gg \to Hgg \ (m_{Top} \to \infty)$

Numerical evaluation of amplitudes

Efficient numerical evaluation of unreduced integrals would avoid proliferation of terms:

$$I_N^D(j_1,...,j_r) \sim \int_0^\infty d^N z \,\delta(1-\sum_{l=1}^N z_l) \,\frac{z_{j_1}...z_{j_r}}{(-\frac{1}{2}z \cdot S \cdot z)^{N-D/2}}$$

6-photon amplitude using "multi-dimensional contour deformation" Soper, Nagy 2006

T.B., Heinrich, Kauer (2002), T.B., Guillet, Heinrich, Pilon, Schubert (2005) Soper (2000); Ferroglia, Passera, Passarino, Uccirati (2002); Y. Kurihara, T. Kaneko, (2005); Anastasiou, Daleo (2005); Soper, Nagy (2006). – p.25/42

Going beyond NLO

Exclusive observables induce logarithmic sensitivity in fixed order computations!

$$\sigma_{NLO} \sim \alpha_s \log^2\left(\frac{p_T^2}{Q^2}\right) \dots \to \infty \text{ for } p_T \to 0$$

If $\alpha_s \log^2\left(\frac{p_T^2}{Q^2}\right) \sim 1 \Rightarrow$ perturbation theory breaks down !

Going beyond NLO

Exclusive observables induce logarithmic sensitivity in fixed order computations!

$$\sigma_{NLO} \sim \alpha_s \log^2\left(\frac{p_T^2}{Q^2}\right) \dots \to \infty \text{ for } p_T \to 0$$

If $\alpha_s \log^2\left(\frac{p_T^2}{Q^2}\right) \sim 1 \Rightarrow$ perturbation theory breaks down !

Include, i.e. "resum", higher order contributions:

$$\sigma = 1 + \alpha_s \log^2\left(\frac{p_T^2}{Q^2}\right) + \frac{\alpha_s^2}{2} \log^4\left(\frac{p_T^2}{Q^2}\right) + \dots = \exp(\alpha_s \log^2\left(\frac{p_T^2}{Q^2}\right)) \to 0 \text{ for } p_T \to 0$$

Going beyond NLO

Exclusive observables induce logarithmic sensitivity in fixed order computations!

$$\sigma_{NLO} \sim \alpha_s \log^2\left(\frac{p_T^2}{Q^2}\right) \dots \to \infty \text{ for } p_T \to 0$$

If $\alpha_s \log^2\left(\frac{p_T^2}{Q^2}\right) \sim 1 \Rightarrow$ perturbation theory breaks down !

Include, i.e. "resum", higher order contributions:

$$\sigma = 1 + \alpha_s \log^2\left(\frac{p_T^2}{Q^2}\right) + \frac{\alpha_s^2}{2} \log^4\left(\frac{p_T^2}{Q^2}\right) + \dots = \exp(\alpha_s \log^2\left(\frac{p_T^2}{Q^2}\right)) \to 0 \text{ for } p_T \to 0$$

- Parton shower in LO Monte-Carlo programs contain all order information in collinear direction
- Hard radiation better desribed by including higher order Matrix elements
- Control over scale variation needs virtual higher order contributions
- Final goal: Monte Carlo simulations at NLO !

Combining NLO with parton showers

- Contributions by: Collins, Zu (2002); Frixione, Nason, Webber (2002); GRACE-collab. (2003); Krämer, Soper (2004)
- public MC@NLO code [Frixione, Webber] contains processes: W, Z, γ^* , H, $b\bar{b}$, $t\bar{t}$, HW, HZ, WW, WZ, ZZ, t + X

Frixione, Laenen, Motylinski, Webber (2005)

Going to NNLO

- NLO leads to $\mathcal{O}(10\%)$ precision
- for certain paradigm processes we need $\mathcal{O}(1\%)$, i.e. NNLO !
- $PP \rightarrow H, W, Z$ done (mostly inclusive!)

Going to NNLO

- NLO leads to $\mathcal{O}(10\%)$ precision
- for certain paradigm processes we need $\mathcal{O}(1\%)$, i.e. NNLO !
- $PP \rightarrow H, W, Z$ done (mostly inclusive!)
- Subtraction method for NNLO processes not yet established
- Method to isolate IR poles algorithmically from loop and phase space integrals does exist ["sector decomposition", T.B., G.Heinrich (2000)]
- Applied to $PP \rightarrow H \rightarrow \gamma \gamma$, by Anastasiou, Melnikov, Petriello (2004) differential NNLO result !
- has potential for automation.

Summary

LHC phenomenology needs and deserves (!) at least NLO precision

Summary

LHC phenomenology needs and deserves (!) at least NLO precision

The NLO multi-leg challenge:

- Lots of activity: algebraic, numeric, string inspired \rightarrow 6-gluon amplitude done...
- ... but still no complete $2 \rightarrow 4$ process
- GOLEM approach for 1-loop multi-leg processes
 - $gg \rightarrow W^*W^* \rightarrow l\nu l'\nu' \rightarrow sizable Higgs background$
 - $gg \rightarrow HH, HHH \rightarrow$ Multi-Higgs physics
 - $q\bar{q} \rightarrow q\bar{q}q\bar{q}$ at NLO in progress
 - complementary to unitarity based methods for rational terms

Summary

LHC phenomenology needs and deserves (!) at least NLO precision

The NLO multi-leg challenge:

- Lots of activity: algebraic, numeric, string inspired \rightarrow 6-gluon amplitude done...
- ... but still no complete $2 \rightarrow 4$ process
- GOLEM approach for 1-loop multi-leg processes
 - $gg \rightarrow W^*W^* \rightarrow l\nu l'\nu' \rightarrow sizable Higgs background$
 - $gg \rightarrow HH, HHH \rightarrow$ Multi-Higgs physics
 - $q \bar{q}
 ightarrow q \bar{q} q \bar{q}$ at NLO in progress
 - complementary to unitarity based methods for rational terms

Beyond NLO challenges:

- combining NLO with parton shower
- implementation of known 2-loop matrix elements
- efficient NNLO IR subtraction formalism \rightarrow differential distributions

Schematic overview of N-point tensor integral reduction

Treatment of basis integrals:

$B = |\det(G)/\det(\mathcal{S})|$

The $gg \to W^*W^* \to l\nu l'\nu'$ amplitude

- missing background for $gg \to H \to W^*W^*$ [T.B., Ciccolini, Kauer, Krämer, 2005/2006. $m_q \neq 0$, W's offshell.] [Dührssen, Jacobs, Marquard, van der Bij, 2005. $m_q \neq 0$, W's onshell.]
- On-shell amplitude known since a long time [N. Glover, J.J. van der Bij (1989) $m_q = 0$; C. Kao, D. A. Dicus (1991) $m_q \neq 0$]

- missing background for $gg \rightarrow H \rightarrow W^*W^*$ [T.B., Ciccolini, Kauer, Krämer, 2005/2006. $m_q \neq 0$, W's offshell.] [Dührssen, Jacobs, Marquard, van der Bij, 2005. $m_q \neq 0$, W's onshell.]
- On-shell amplitude known since a long time [N. Glover, J.J. van der Bij (1989) $m_q = 0$; C. Kao, D. A. Dicus (1991) $m_q \neq 0$]

- missing background for $gg \rightarrow H \rightarrow W^*W^*$ [T.B., Ciccolini, Kauer, Krämer, 2005/2006. $m_q \neq 0$, W's offshell.] [Dührssen, Jacobs, Marquard, van der Bij, 2005. $m_q \neq 0$, W's onshell.]
- On-shell amplitude known since a long time [N. Glover, J.J. van der Bij (1989) $m_q = 0$; C. Kao, D. A. Dicus (1991) $m_q \neq 0$]

- single resonant graphs add to zero
- interference between Higgs signal and background also below WW threshold

Helicity amplitudes Γ^{++} , Γ^{+-} , off-shell W's, $m_q \neq 0$, S/B interference

Fully algebraic reduction:

Helicity amplitudes Γ^{++} , Γ^{+-} , off-shell W's, $m_q \neq 0$, S/B interference Fully algebraic reduction:

- box/triangle topologies \rightarrow 27 Basis functions: $I_4^{d=6}$, $I_3^{d=4}$, $I_2^{d=n}$, 1.
- Decomposition of amplitude by gauge invariant structures (9 independent)
- Coefficients at most $1/\det(G)$, 6 scales $(s, t, s_3, s_4, M_b^2, M_t^2)$
- Instability region: $p_T^2(W) = \det(G)/s^2 < 0.01 \text{ GeV}^2$, $|s_{3,4} M_W^2| \gg M_W \Gamma_W$.
- Code available: http://hepsource.sf.net/GG2WW for $m_q = 0$, $m_q \neq 0$
- Shortly: All $gg \rightarrow VV$ ($V = \gamma, Z, W$) box processes

Results: 2 Massless Generations, 3 Generations

LHC (pp, $\sqrt{s} = 14$ TeV)

	$\sigma(pp \to W^*W^* \to \ell \bar{\nu} \bar{\ell'} \nu')$ [fb]					
	gg	$\frac{\sigma_{gg,3gen}}{\sigma_{gg,2gen}}$		ν <u>φ</u> ΝΙ Ο	$rac{\sigma_{ m NLO}}{\sigma_{ m LO}}$	$\frac{\sigma_{\rm NLO}+gg}{\sigma_{\rm NLO}}$
	60.12(7)	1 10	1000000000000000000000000000000000000	1070(1)+71	1 5 5	1.04
σ_{tot}	$53.61(2)^{+14.0}_{-10.8}$	1.12	875.8(1) - 67.5	$1373(1)^{+11}_{-79}$	1.57	1.04
σ_{std}	$\frac{29.79(2)}{25.89(1)\substack{+6.85\\-5.29}}$	1.15	$270.5(1)^{+20.0}_{-23.8}$	$491.8(1)_{-32.7}^{+27.5}$	1.82	$\frac{1.06}{1.05}$
σ_{bkg}	$\frac{1.416(3)}{1.385(1)\substack{+0.40\\-0.31}}$	1.02	$4.583(2)^{+0.42}_{-0.48}$	$4.79(3)^{+0.01}_{-0.13}$	1.05	$\frac{1.30}{1.29}$

 $M_W/2 \le \mu_{
m ren, fac} \le 2M_W$ ($q\bar{q} \rightarrow WW$ from MCFM by J. Campbell, R.K. Ellis)

standard cuts: $p_{T,\ell} > 20~{
m GeV}$, $|\eta_\ell| < 2.5$, $p_T > 25~{
m GeV}$

search cuts: $\Delta \phi_{T,\ell\ell} < 45^{\circ}$, $M_{\ell\ell} < 35$ GeV, 25 GeV $< p_{T,\min}$, 35 GeV $< p_{T,\max} < 50$ GeV jet veto removes jets with: $p_{T,jet} > 20$ GeV, $|\eta_{jet}| < 3$

▶ ⇒ severe Higgs search cuts amplify ggWW contribution $\sim 30\%!$

The $\gamma\gamma \rightarrow ggg$ amplitude

[T.B., J.-Ph. Guillet, F. Mahmoudi, (2004)]

- Relevant for $\gamma\gamma$ + jet background for Higgs+jet production [D. de Florian, Z. Kunszt, (1999)]
- Amplitude indirectly known from $gg \rightarrow ggg$ [Z. Bern, L. Dixon, D. Kosower, (1993)]

The $\gamma\gamma \rightarrow ggg$ amplitude

[T.B., J.-Ph. Guillet, F. Mahmoudi, (2004)]

- Relevant for $\gamma\gamma$ + jet background for Higgs+jet production [D. de Florian, Z. Kunszt, (1999)]
- Amplitude indirectly known from $gg \rightarrow ggg$ [Z. Bern, L. Dixon, D. Kosower, (1993)]

Independent helicity structures:

 $\Gamma^{+++++}, \Gamma^{++++-}, \Gamma^{++++--}, \Gamma^{+-++++}, \Gamma^{+-+++-}, \Gamma^{--++++}$

All helicity amplitudes calculated by algebraic reduction

- Box, pentagon topologies, 5 scales
- One colour structure: $\sim f^{abc}$
- Sorted by scalar integrals and gauge independent structures

The $gg \rightarrow HH, HHH$ amplitude

- Cross sections for multi-Higgs production by gluon fusion [T.B., S. Karg, N. Kauer]
- $gg \rightarrow HH$ and effective amplitudes $M_T \rightarrow \infty$ known since a long time [N. Glover, J.J. van der Bij (1987/1988)]
- $gg \rightarrow HHH$ recently calculated by T. Plehn, M. Rauch.
The $gg \rightarrow HH, HHH$ amplitude

- Cross sections for multi-Higgs production by gluon fusion [T.B., S. Karg, N. Kauer]
- $gg \rightarrow HH$ and effective amplitudes $M_T \rightarrow \infty$ known since a long time [N. Glover, J.J. van der Bij (1987/1988)]
- $gg \rightarrow HHH$ recently calculated by T. Plehn, M. Rauch.

Helicity amplitudes Γ^{++} , Γ^{+-} , algebraic reduction:

The $gg \rightarrow HH, HHH$ amplitude

- Cross sections for multi-Higgs production by gluon fusion [T.B., S. Karg, N. Kauer]
- $gg \rightarrow HH$ and effective amplitudes $M_T \rightarrow \infty$ known since a long time [N. Glover, J.J. van der Bij (1987/1988)]
- $gg \rightarrow HHH$ recently calculated by T. Plehn, M. Rauch.

Helicity amplitudes Γ^{++} , Γ^{+-} , algebraic reduction:

- box/triangle/pentagon topologies, 7 scales $(s_{12}, s_{23}, s_{34}, s_{45}, s_{51}, M_H^2, M_t^2)$
- Gauge invariant structures: tr($\mathcal{F}_1\mathcal{F}_2$), $p_2.\mathcal{F}_1.p_i p_1.\mathcal{F}_2.p_j$, $\mathcal{F}_j^{\mu\nu} = p_j^{\mu}\varepsilon_j^{\nu} p_j^{\nu}\varepsilon_j^{\mu}$
- Basis functions: $I_4^{d=6}$, $I_3^{d=4}$, $I_2^{d=n}$, 1. Coefficients at most $1/\det(G)$

- perfect agreement with Plehn/Rauch
- Numerically stable result
- CPU time: 1 h for inclusive cross section on pentium 4 PC (2.8 GHz)

• \Rightarrow quartic Higgs coupling can not be tested at the LHC

- $L_{M_T \to \infty} = \frac{\alpha_s}{12\pi} \mathcal{F}^a_{\mu\nu} \mathcal{F}^{\mu\nu \ a} \ \log(1 + H/v) \Rightarrow gg + nH$ effective vertices
- effective vertices not a good description at LHC for $n \ge 2$

- $L_{M_T \to \infty} = \frac{\alpha_s}{12\pi} \mathcal{F}^a_{\mu\nu} \mathcal{F}^{\mu\nu \ a} \ \log(1 + H/v) \Rightarrow gg + nH$ effective vertices
- effective vertices not a good description at LHC for $n \ge 2$

- cross section enhanced by BSM physics, $\delta_3 = (\lambda_{3H,BSM} \lambda_{3H,SM})/\lambda_{3H,SM}$
- trilinear Higgs coupling not uniquely fixed at LHC (if at all)

- amplification possible in two Higgs doublet models
- resonant amplification does, aneta amplification does not help

- amplification possible in two Higgs doublet models
- resonant amplification does, aneta amplification does not help

• Higher dimensional operators $\Rightarrow \lambda_{3H}$, λ_{4H} free parameters

The $q\bar{q} \rightarrow q\bar{q}q\bar{q}$ amplitude (in progress)

- Contribution of $PP \rightarrow 4$ jets, bbbb at NLO [$\sigma \sim O(nb)$ at LHC!]
- Two helicity amplitudes needed: A^{+++++} , A^{++++--}
- Other partonic contributions: $gg \rightarrow gggg$, $gg \rightarrow q\bar{q}gg$, $gg \rightarrow q\bar{q}q\bar{q}$ plus crossings \rightarrow accessible with twistor space inspired/unitarity based methods (?!)

The $q\bar{q} \rightarrow q\bar{q}q\bar{q}$ amplitude (in progress)

- Contribution of $PP \rightarrow 4$ jets, bbbb at NLO [$\sigma \sim O(nb)$ at LHC!]
- Two helicity amplitudes needed: A^{+++++} , A^{++++--}
- Other partonic contributions: $gg \rightarrow gggg$, $gg \rightarrow q\bar{q}gg$, $gg \rightarrow q\bar{q}q\bar{q}$ plus crossings \rightarrow accessible with twistor space inspired/unitarity based methods (?!)

- algebraic reduction done \rightarrow Masterintegrals
- semi-numerical reduction \rightarrow Golem basis with Fortran 90 code "golem90 v0.2"
- Amplitude evaluation $\mathcal{O}(s)$, rank 3 6-point form factor ~ 40 ms (Pentium4, 1.6 GHz)
- Evaluation time of virtual corrections small compared to real emission corrections

The $q\bar{q} \rightarrow q\bar{q}q\bar{q}$ amplitude

Numerical results of hexagon diagram of helicity Amplitude A^{+++++} :

$$A^{+++++}(k_1, \dots, k_6) = \frac{g_s^6}{(4\pi)^{n/2}} \frac{1}{s} \left[\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C + \mathcal{O}(\epsilon)\right]$$

Spinor lines closed by multiplying $1 = \frac{\langle 1^+ | 4 | 2^+ \rangle}{\sqrt{s_{14} s_{24}}} \frac{\langle 4^+ | 1 | 3^+ \rangle}{\sqrt{s_{14} s_{13}}} \frac{\langle 6^+ | 1 | 5^+ \rangle}{\sqrt{s_{15} s_{16}}} e^{i\Phi}$ Kinemtical point:

k = ($k^{0},$	$k^1,$	$k^2,$	$k^4)$
$k_1 = ($	0.5,	0.,	0.,	0.5)
$k_2 = ($	0.5,	0.,	0.,	-0.5)
$k_3 = (0.1$	917819,	0.1274118,0	0.08262477,	0.1171311)
$k_4 = (0.3)$	366271,-0	0.06648281,	-0.3189379,-	-0.08471424)
$k_5 = (0.2$	160481,	-0.2036314,0).04415762,	0.05710657)
$k_6 = (0.2)$	555428,	0.1427024,	0.1921555,-	-0.08952338)

Up to phase/color factor:

$\operatorname{Re}(A)$	$\operatorname{Im}(A)$	$\operatorname{Re}(B)$	$\operatorname{Im}(B)$	$\operatorname{Re}(C)$	$\operatorname{Im}(C)$
-5.313592	-1.245007	-23.74344	-23.54086	-14.37056	-96.23081