V + heavy flavour @ LHC

Sebastien Prince, McGill University on behalf of the ATLAS and CMS collaborations

HF@LHC 17

Outline

- V+HF cross section measurements presented at this workshop **last year** https://conference.ippp.dur.ac.uk/event/516/
 - ATLAS Z+b(b), W+b(b), W+c @ 7 TeV
 - CMS Z+b(b), W+bb, W+c @ 7 TeV
- This talk covers the measurements made public since last year
 - ATLAS **y**+b, **y**+c @ 8 TeV
 - CMS Z+b(b), Z+c, W+bb @ 8 TeV

Physics motivation

- Test of pQCD
 - New topologies
 - 4-flavour scheme vs 5-flavour scheme (4F vs 5F)
- Sensitive to b- and c-PDF
- V + HF processes background to Higgs measurements and to various searches
- 8 TeV might be better than 13 TeV to probe high x values

ATLAS **y+b**, **y+c** @ 8 TeV

4

χ +D, χ +C Prompt photon events 10⁶ ATLAS Preliminary Data 2012 √s = 8 TeV, 20.2 fb⁻¹ Sherpa: 10⁵ $1.56 < |\eta^{\gamma}| < 2.37$ $+ b = 0.026 \pm 0.004$ $300 < E_{\tau}^{\gamma} < 350 \text{ GeV}$ $c = 0.073 \pm 0.022$ 10⁴ + light = 0.901 ± 0.020 Systematic Uncertainty 10^{3} 10² 10 Data/MC 1.4 1.2 0.8 100-80% 80-70% 60-50% 70-60% 50-0% MV1c b-jet efficiency 0.25 HF jet fraction **ATLAS** Preliminary γ+b central $\sqrt{s} = 8 \text{ TeV}, 4.58 \text{ pb}^{-1} - 20.2 \text{ fb}^{-1}$ γ+c central 0.2 γ+b forward γ+c forward 0.15 0.1 0.05 0 300 30 40 50 100 200 E_{T}^{γ} [GeV]

HF@LHC 17, 6-8 Sept 2017

CERN-EP-2017-217

p+p→γ+b and **p+p→γ+c**

 Fiducial differential cross sections as a function of E_T^Y in two Iŋ^YI regions

• Fiducial region:

5

- Isolated photon: $E_T > 25$ GeV and $|\eta| < 1.37$ or $1.56 < |\eta| < 2.37$
- One b- or c-jet (anti-kt R=0.4):
 p_T > 20 GeV and lηl < 2.5
- Angular separation: $\Delta R_{\gamma-jet} > 1$
- Also ratio of central / forward $|\eta^{v}|$ regions
- Both signals simultaneously extracted from fit to the MV1c b-tagging discriminant
 - Correlates the two measurements

γ +b: E_T^γ cross section

- Predictions
 - Sherpa 1: LO 2→2,3,4,5 in massive 5F
 - Pythia 8: LO 2→2 in 5F
 - Madgraph5_aMC@NLO + Pythia 8: NLO in 4F and 5F
- Better agreement from 5F NLO than 4F NLO
 - Still, both underestimate data at high E_T, where gluon-splitting dominates
- Best agreement from Sherpa

Intrinsic charm

- Intrinsic charm: non-perturbative charm (non PC) component in proton
 - $c(x,Q=m_c) \neq 0$
 - Different parameterization: valence-like (BHPS), sea-like (SEA), fitted to data (FC)
- Would be manifest at large $E_T{}^{\gamma}$ and large $|\eta^{\gamma}|$

γ +c: E_T^{γ} cross section

- Predictions:
 - Sherpa 1:
 LO 2→2,3,4,5 in massive 5F
 - Pythia 8: LO 2→2 in 5F
 - Madgraph5_aMC@NLO + Pythia 8: NLO (5F) with PDFs including intrinsic charm contributions (FC, BHPS1,2)

γ+c: **Larger** measurement **uncertainties** than γ+b

- Agreement will all predictions, within uncertainties
- BHPS2, containing large intrinsic charm contributions, deviates from nominal predictions at high E_T

 γ +b, γ +c cross-section ratios

CMS Z+b(b) @ 8 TeV

Z+b(b)

• p+p $\rightarrow Z(\rightarrow \ell \overline{\ell})+b(b)$

Data/MC

- Fiducial region:
 - Two electrons or muons:
 p_T > 20 GeV and lηl < 2.4,
 within 20 GeV of Z mass window
 - One or two b-jets (anti-kt R=0.5):
 p_T > 30 GeV and lηl < 2.4
 - Angular separation: $\Delta R_{\ell-jet} > 0.5$
- Also Z+b / Z+jets ratio
- Signal extracted by fitting the jet secondary vertex mass

Z+b: p^{TZ} cross section

2

- p_Tz and p_Tbjet sensitive to PDF and flavour scheme
- Predictions:
 - LO Madgraph5 + Pythia 6: 2→2,3,4,5 in 4FS and 5FS
 - NLO Madgraph5_aMC@NLO + Pythia 8 (5FS): FxFx-merged samples of 0, 1 and 2 partons
 - NLO Powheg + Pythia 8 (5FS):
 Scale choice based on MINLO
- LO and NLO Madgraph show overall good agreement
- Better shape description by Madgraph 4FS than 5FS below 130 GeV

Z+b: p_T^{bjet} cross section

Z+bb: ΔR_{bb} cross section

- ΔR_{bb} sensitive to bb production mechanism
 - Small values: gluon-splitting
 - Large values: hard process
- Z+bb: Larger experimental uncertainties than Z+b
- Agreement will all predictions, within uncertainties
 - Similar for other Z+bb observables

Z+bb: $p_T^{\text{leading bjet}}$, p_T^{Z} cross sections

CMS Z+c @ 8 TeV

CMS-PAS-SMP-15-009

• p+p $\rightarrow Z(\rightarrow \ell \overline{\ell})+c$

 Fiducial differential cross sections as function of p_T^z, p_T^{jet}

• Fiducial region:

- Two electrons or muons:
 p_T > 20 GeV and lηl < 2.1,
 within 20 GeV of Z mass window
 One c-jet (anti-kt R=0.5):
 - $p_T > 25$ GeV and $|\eta| < 2.5$
- Angular separation: $\Delta R_{\ell-jet} > 0.5$
- Also Z+c / Z+b ratio
- Differential signal extracted from fit to jet secondary vertex mass for semileptonic decays

Z+c: p_T^Z cross section

- Predictions:
 - LO Madgraph5 + Pythia 6: 2→2,3,4,5
 - NLO Madgraph5_aMC@NLO + Pythia 8: FxFx-merged samples of 0, 1 and 2 partons
 - NLO MCFM 7 with different PDFs: Parton-level corrected for hadronization
- Madgraph predictions in agreement with data
- MCFM underestimates the data, no matter the PDF
- Intrinsic charm effects beyond measurement range

Z+c: p_T^{jet} cross section

19

CMS W+bb @ 8 TeV

W+bb

- p+p \rightarrow W($\rightarrow \ell \nu$)+bb
 - Fiducial integrated cross section
 - Fiducial region:
 - Exactly one muon or electron: pT > 30 GeV and lηl < 2.1
 - Exactly two b-jets (anti-kt R=0.5): pT > 25 GeV and lηl < 2.4
 - Angular separation: $\Delta R\ell$ -jet > 0.5
- Signal extracted from fit to the transverse mass of the W boson
- Electron and muon channels
 combined for final results

W+bb: cross section

- Reduced relative uncertainty compared to 7 TeV measurement
 - σ(pp → W + bb) × B(W → µv) =
 0.53 ± 0.05 (stat) ± 0.09 (syst)
 ± 0.06 (theo.) ± 0.01 (lumi) pb
- Predictions:
 - NLO MCFM 7: Parton-level + hadronization
 - LO Madgraph5 + Pythia 6 and 8: in 5F and 4F
- Good agreement with theory,
 within 1σ

22

Conclusion

- Extensive kinematic description of V+HF at 8 TeV: CMS Z+b(b)
- Three measurements sensitive to the b-PDF and to 4F vs 5F:
 ATLAS γ+b and CMS Z+b(b) and W+bb
- Two measurements probing the c-PDF and intrinsic charm: ATLAS γ+c and CMS Z+c
- Overall good agreement with theory predictions, but with some discrepancies
 - Hopefully these measurements can help theory developments

γ +b: E_T^{γ} cross section, forward region

γ +c: E_T^{γ} cross section, central region

26

Z+b: p_T^Z cross section, ratio

Z+b: $|\eta|^{bjet}$ cross section, ratio

Z+b: H_T cross section, ratio

Z+b: $\Delta \varphi_{Zb}$ cross section, ratio

subleading bjet Z+bb: p_T , $\Delta \varphi_{bb}$ cross sections

Z+bb: M_{bb} , M_{Zbb} cross sections

Z+bb: ΔR_{Zb}^{min} , A_{Zbb} cross sections

Sebastien Prince, McGill

Z+c: p_T^Z cross section, ratio

