Forward heavy quark production

Rhorry Gauld

HF workshop - Durham Sept 2017

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Heavy quark-pair production

dominant subprocess at LHC

- x_i : momentum fraction
- y_j : rapidity
- \sqrt{S} : hadronic COM
- m_T : transverse mass

LO PDF sampling occurs at $x_{1,(2)} = \frac{m_T}{\sqrt{S}} \left(e^{(-)y_3} + e^{(-)y_4} \right)$

LHCb detector provides unique information

- 1. Can reconstruct D/B hadrons from $p_T > 0 \ (m_T \sim m_Q)$
- 2. Forward LHCb acceptance extends kinematic sensitivity

Heavy quark-pair production

dominant subprocess at LHC

- x_i : momentum fraction
- y_j : rapidity
- \sqrt{S} : hadronic COM
- m_T : transverse mass

Require a D hadron within LHCb acceptance at 7 TeV

 $x \ge 3 \cdot 10^{-5}$ PDF constraints from HERA charm data

 $x \le 3 \cdot 10^{-5}$

Shape/uncertainty determined by parameterisation of non-pert. gluon PDF

NNPDF3.0 NLO dataset

Kinematic coverage of Global Fit

Scale uncertainties at low energy scales overwhelming

$$\mu \sim \sqrt{m_Q^2 + p_{T,Q}^2} \sim 2.2 \,\text{GeV} \qquad \qquad \alpha_s (2.2 \,\text{GeV}) \sim 0.3$$

Measurements performed double differentially in p_T^D and y_D $N_X^{ij} = \frac{d^2\sigma(\text{X TeV})}{dy_i^D d(p_T^D)_j} / \frac{d^2\sigma(\text{X TeV})}{dy_{\text{ref}}^D d(p_T^D)_j}$

Measurements performed at multiple hadronic CoM values

$$R_{13/X}^{ij} = \frac{d^2\sigma(13 \text{ TeV})}{dy_i^D d(p_T^D)_j} \left/ \frac{d^2\sigma(X \text{ TeV})}{dy_i^D d(p_T^D)_j} \right|$$

pros: theoretical (and experimental) uncertainties highly correlated

cons: PDF uncertainties <u>also</u> correlated (lose sensitivity to PDFs)

Absolute cross-section

Normalised cross-section

Summary of LHCb data

Prompt charm production at 13 TeV (and 13/7 ratio), arXiv:1510.01707 Erratum: September 2016 Erratum: May 2017 Prompt charm production at 5 TeV (and 13/5 ratio), arXiv:1610.02230 Erratum: May 2017 Prompt charm production at 7 TeV, arXiv:1302.2864

Prompt B production at 13 TeV (and 13/7 ratio), arXiv:1612.05150 Erratum: September 2017 Prompt B production at 7 TeV, arXiv:1306.3663

Summary of PDF analyses

NLO analysis, HERA + LHCb B/D 7 TeV data, arXiv:1503.04581 Prosa Collaboration NNPDF3.0 NLO Global fit + LHCb D 7 TeV data, arXiv:1506.08025 RG, Rojo, Rottoli, Talbert NNPDF3.0 NLO Global fit + LHCb D 13, 7, 5 TeV data, arXiv:1610.09373 RG, Rojo (updated May 2017) The LHCb B and D hadron data is wrong paper, arXiv:1703.03636 RG Analyses of absolute D cross section data, arXiv:1705.08845 12 Martin, Oliviera, Ryskin

$N_5(84)$	$N_7(79)$	$N_{13}(126)$	$R_{13/5}(107)$	$R_{13/7}(102)$
1.97	1.21	2.36	1.36	0.80
0.86	0.72	1.14	1.35	0.81
1.31	0.91	1.58	1.36	0.82
0.74	0.66	1.01	1.38	0.80
1.08	0.81	1.27	1.29	0.80
1.53	0.99	1.73	1.30	0.81
1.07	0.81	1.34	1.35	0.81
0.82	0.70	1.07	1.35	0.81
0.84	0.71	1.10	1.36	0.81

TABLE I: The χ^2/N_{dat} for the LHCb *D* meson measurements considered, N_5 , N_7 , N_{13} , $R_{13/7}$ and $R_{13/5}$, for various combinations of input to the PDF fit (highlighted in boldface).

 $2.0 < y_D < 4.5$

Applications I

Ultra High Energy (UHE) neutrino-nucleon cross section

Applications II

Atmospheric production of heavy quarks

Applications III

LHeC, High energy pp collider, forward photons at the LHC, ...

* Depends on beam energy, polarisation, ... etc.

Summary

- Dust settling on the LHCb data now....
- Normalised cross section/ratio data lead to consistent results
- Low-x gluon PDF previously unknown

Disclaimer: Didn't discuss exclusive J/Psi - Jones et al. arXiv: 1610.02272

Our LHgrids (100 member replica set) are available here: 5 flavour PDFs

http://pcteserver.mi.infn.it/~nnpdf/NNPDF30LHCb/NNPDF30_nlo_as_0118_L13L7L5.tar.gz

3 flavour PDFs

http://pcteserver.mi.infn.it/~nnpdf/NNPDF30LHCb/NNPDF30_nlo_as_0118_L13L7L5_nf3.tar.gz

Bunch of `useful' plots below

Neutrino flux from prompt charm

From KM3NeT Letter of intent - arXiv:1601.07459 all-x gluon, evaluated at Q = 2 GeV, comparing the baseline

$$\alpha_{\rm g}^{\rm eff.}(x,Q^2) = \frac{\partial \ln \left[xg(x,Q^2) \right]}{\partial \ln x}$$

What do normalised cross section and ratios probe?

Essentially the rate of change of the gluon PDF within an x-range

UHE CC neutrino cross section

$$\frac{\mathrm{d}^2 \sigma(\nu(\bar{\nu})N)}{\mathrm{d}x \,\mathrm{d}Q^2} = \frac{G_{\mathrm{F}}^2 M_W^4}{4\pi (Q^2 + M_W^2)^2 x} \sigma_{\mathrm{r}}(\nu(\bar{\nu})N)$$
1000

 $\sigma_{\rm r}(\nu N) = \left[Y_+ F_2^{\nu}(x, Q^2) - y^2 F_{\rm L}^{\nu}(x, Q^2) + Y_- x F_3^{\nu}(x, Q^2)\right]$ $\sigma_{\rm r}(\bar{\nu}N) = \left[Y_+ F_2^{\bar{\nu}}(x, Q^2) - y^2 F_{\rm L}^{\bar{\nu}}(x, Q^2) - Y_- x F_3^{\bar{\nu}}(x, Q^2)\right]$

Gluon PDF extraction at 7 TeV

PROSA results:

- HERA+LHCb Data PDF fit
- FFS, NF=3
- Normalise to 'middle' rapidity bin for each pT
- HERAfitter framework
- Also LHCb B data

GRRT results:

- NNPDF3.0 Global fit
- input set is VFNS
- Normalise to max pT / min rapidity bin
- Bayesian Reweighting

Gluon PDF correlation with inclusive LHCb 13/7 Charm ratio measurement

PDF correlation matrix

