Top P_T measurements at the LHC

Today's talk

Review of the Top pt saga:

- What do we actually measure?
- Review of the results from ATLAS, CMS
- Outlook

ATLAS + CMS measurements so far

- > Top Pt in tt events is one of the key observables measured by ATLAS+CMS
- > Its precise modeling is important
 - Largely defines the collimation of top decay products
 - Sensitive to M_{tt} among other search observables
 - Sensitive to kinematics of leptons, jets, -> crucial for triggering, reconstruction.
- Differential tt x-sections as a function of Top Pt are measured in multiple decay channels, kinematic regimes and top quark definitions

	parton-level	particle-level	boosted	2D
7 TeV	\checkmark	 Image: A second s		
8 TeV	 Image: A second s			✓
13 TeV			√	✓

> 7 TeV measurments revealed a clear mis-modelling of top pt

top pt softer in data than MC

Similar effect at 8 TeV

- top pt softer in data than MC
- higher-order pQCD works better >

CMS, 19.7 fb⁻¹ at $\sqrt{s} = 8$ TeV

LHCTOPWG provides comparisons between ATLAS+CMS

• Reasonable consistency w.r.t to uncertainties

Cross-checked with derived variables

Little change in disagreement

CMS, 19.7 fb⁻¹ at \s = 8 TeV

Data - MadGraph+Pythia6 - MC@NLO+Herwig6 - Powheg+Pythia6

- Powheg+Herwig6

leading top

×10⁻³

 e/μ + Jets

8

7 6

5

 $\frac{1}{\sigma} \frac{d\sigma}{dp_T^{t1}} [GeV^{-1}]$

Top Pt - the history (8 TeV, boosted)

- > Boosted (high-momentum) regime:
 - Top quarks recontructed as a single, large-area jet
- MC@NLO+HERWIG6 provides a reasonable description

boost

- Check of pt modelling in rapidity bins
 - double-differential cross sections
- Disagreement largely consistent vs rapidity
- Future 2D measurements will benefit from more data

Top Pt - 13 TeV

13 TeV

- Full NNLO+NNLL does a reasonable job •
- Powheg + pythia8, MG5 + pythia show mild trends

All MC setups show trends ٠

600

400

800

100

p^{t,had} [GeV]

200

ō

Top Pt @ 13 TeV - CMS Summary

Exponential fits to DATA/Prediction in I+jets and dilepton

Quantifies the effect for NLO+PS MC and NNLO

Top Pt - 13 TeV (boosted)

- Trend wrt all MC setups visible from resolved to boosted regimes
 - Powheg + pythia8, MG5 + pythia show mild trends

- Highly boosted region
- No sign of mis-modelling in MC

What about single top production?

- First differential results for t-channel single top production not precise enough to say much...
- Measurements with 2016 data should reveal a potential effect

Electroweak corrections

- Latest predictions including α³_{EW} corrections with LUXQED or NNPDF3.0QED PDFs promise a better description of data
- Need to be included in next round of comparisons

arXiv:1705.04105

Outlook

Discrepancies between data and predictions for the Top pt spectrum.

- Consistent across parton, particle levels and in boosted and resolved regimes.
- Effect persists in 2D measurements, in tt-rest frame, and in (sub-)leading cases.
- Effect is largest at 7 and 8 TeV w.r.t. MC predictions, NNLO improves agreement.
- Predictions including NNLO+NLLO+EW corrections could yield further improvement.
- Further measurements with more stats will be revealing in certain phase space regions:
 - Populate the boosted region
 - Allowss finer 2D binning
- Otherwise measurements limited by systematics
- > Detailed comparison to latest theory crucial, e.g., NNLO+NNLL+ α^{3}_{EW}

BACKUP

measuring tt differentially

Top quark definitions

Visible phase space: Kinematic region accessed by CMS detector

ATLAS + CMS measurements so far

> Top Pt measured in multiple decay channels, kinematic regimes and top quark definitions

NS	parton-level	particle-level	detector-level	boosted	2D
7 TeV	l+jets, dilepton				
8 TeV	l+jets, dilepton , all-hadronic	all-hadronic	all-hadronic	l+jets, all-hadronic	dilepton (parton)
13 TeV	l+jets, dilepton, all-hadronic	I+jets, dilepton	all-hadronic	all-hadronic	I+jets (parton, particle)
5			1		
LAS	parton-level	particle-level	detector-level	boosted	2D
7 TeV	parton-level dilepton, I+jets	particle-level I+jets	detector-level	boosted	2D
7 TeV 8 TeV	parton-level dilepton, I+jets dilepton	particle-level I+jets I+jets	detector-level	boosted I+jets	2D

LHCTOPWG provides comparisons between ATLAS+CMS

> LHCTOPWG provides comparisons between ATLAS+CMS

measuring tt differentially

Top quark definitions

Full phase space:

Covers all possible tt kinematics.

measuring tt differentially

Top quark definitions

Visible phase space = kinematic region accessed by CMS detector Fiducial phase space ~ Visible phase space

J. Keaveney | Top pt measurements at the LHC | 14-02-17 | Page 26

Default re-weighting parameterisations

- A parameterisation of the DATA/Powheg+P8 ratio is provided by the TOP-PAG
- 13 TeV parameterisation considers inter-bin correlations of each measurement but not between measurements
- Only valid up to ~700 GeV

