

Top quark pair production with additional jets (heavy flavor) from CMS and ATLAS

Tae Jeong Kim (Hanyang University)

For Heavy Flavour Production workshop at the LHC (HF@LHC) workshop at IPPP, Durham, UK September 6 in 2017

Motivation of $t\bar{t}$ + additional jets

- $t\bar{t}b\bar{b}$ is the main irreducible background for $t\bar{t}H(b\bar{b})$ searches
 - NLO calculation still has an uncertainty of around 30%.
- $t\bar{t}jj(c\bar{c})$ is the reducible background faking b jets
- It is crucial to understand precisely the $t\bar{t}jj$ and $t\bar{t}b\bar{b}$ processes as these are also the main background for most of new physics searches such as four top search, FCNC, SUSY,...
- In particular, differential distributions will allow us to check the validity of the QCD calculation involving top quark pair plus additional quarks or gluons. (two different scales)

MC samples at 13 TeV

• ATLAS	Event generator	Parton shower		
	POWHEG (v2)	Pythia 6 / Pythia 8	Default	
	POWHEG	Herwig++/Herwig7		
	MadGraph5_aMC@NLO	Pythia 8 / Herwig++/Herwig7		
	SHERPA	SHERPA		
• CMS	Event generator	Parton shower		
Cirio	POWHEG (v2)	Pythia 8		Defaul
	POWHEG	Herwig++		
	MadGraph5_aMC@NLO	Pythia 8 with FxFx ($t\bar{t}$ + 0, 1, 2j)		
	MadGraph5 (LO)	Pythia 8 with MLM ($t\bar{t}$ + 0, 1, 2, 3j)		
	MadGraph5_aMC@NLO	Herwig++		
	$t\bar{t}$ +heavy flavour events are extracted from inclusive $t\bar{t}$ sample			

Particle-level objects

- Decrease MC uncertainty from extrapolating to unmeasurable phase space
- Particle-level objects
 - Electrons and muons : p_T > 25 GeV and $|\eta|$ < 2.5
 - not originate from a hadron, Adding the four-momentum of all photons within $\Delta R = 0.1$
 - Jets : p_T > 25 GeV and $|\eta|$ < 2.5
 - clustering all stable particle except the selected e, μ and radiated photons as well as neutrinos using the anti- k_t algorithm with R=0.4.
 - Neutrinos from hadron decay are included
 - **b** jets : ghost matching technique b hadron momentum is scaled down to a negligible value and included in the jet clustering.
- Particle level top quark
 - Take the jet permutation by minimizing following quantity in the lepton + jets mode.

$$egin{aligned} &K^2 = [M(p_
u + p_\ell + p_{b_\ell}) - m_t]^2 \ &+ [M(p_{j_1} + p_{j_2}) - m_W]^2 \ &+ [M(p_{j_1} + p_{j_2} + p_{b_h}) - m_t]^2 \end{aligned}$$

CMS NOTE-2017/004 based on LHCTopWG

Event categorization

• Particle level signal definition for $t\bar{t}$ +heavy flavor

CMS event categorization (dilepton)

Visible phase space

$$t\bar{t}jj : n_{leptons} = 2, n_{b-jets} \ge 2 \text{ and } n_{jets} \ge 4$$

$$t\overline{t}b\overline{b}$$
 : $t\overline{t}jj + n_{b-jets} \ge 4$

$$t\bar{t}bj:t\bar{t}jj+n_{b-jets}=3$$

$$t\bar{t}c\bar{c}:t\bar{t}jj + n_{c-jets} \ge 2$$

$$t\bar{t}LF:t\bar{t}jj - t\bar{t}b\bar{b} - t\bar{t}bj - t\bar{t}c\bar{c}$$

Full phase space

 $t\bar{t}jj: n_{jets \ not \ from \ top} \ge 2$

$$t\bar{t}b\bar{b}$$
 : $t\bar{t}jj + n_{b-jets \ not \ from \ top} \ge 2$

ATLAS event categorization

Shorthand notation	Particle-level event requirements		
for the templates			
<i>ttb</i> lepton-plus-jets			
ttb	$n_{\text{leptons}} = 1, n_{\text{jets}} \ge 5 \text{ and } n_{b-\text{jets}} \ge 3$		
ttc	$n_{\text{leptons}} = 1, n_{\text{jets}} \ge 5 \text{ and } n_{b-\text{jets}} = 2 \text{ and } n_{c-\text{jets}} \ge 1$		
ttl	other events		
$ttb \ e\mu$			
ttb	$n_{\text{jets}} \ge 3 \text{ and } n_{b-\text{jets}} \ge 3$		
ttc	$n_{\text{jets}} \ge 3 \text{ and } n_{b-\text{jets}} \le 2 \text{ and } n_{c-\text{jets}} \ge 1$		
ttl	other events		
ttbb dilepton fit-based			
ttbb	$n_{\text{jets}} \ge 4 \text{ and } n_{b-\text{jets}} \ge 4$		
ttbX	$n_{b-jets} = 3$		
ttcX	$\mid n_{b-\text{jets}} = 2 \text{ and } n_{c-\text{jets}} \ge 1$		
ttlX	ttlX other events		

has to rely on MC mother particle information

$t\bar{t}$ + Heavy flavor measurement (ATLAS)

 Using the third and fourth highest MV1c b tagging discriminant labelled with the upper edge of the efficiency, it has the significant shape differences between the tt components.

$t\bar{t}$ + Heavy flavor measurement (ATLAS)

 Compared with various samples in the massive 4F scheme (MG5_aMC@NLO) and 5F scheme (POWHEL) Eur. Phys. J. C76 (2016) 11

- Fiducial phase space regions
- $t\bar{t}H$ and $t\bar{t}V$ contributions are removed for direct comparison

$t\bar{t}$ + Heavy flavor measurement (CMS)

- Rearrange jets in b-tagging algorithm discriminator
- Using b-tagging algorithm discriminator of third and fourth jets in 2D fitting.

한양

arXiv:1705.10141

$t\bar{t}$ + Heavy flavor measurement (CMS)

• Full phase space

arXiv:1705.10141

no cut on the top quark decay products and additional b jet p_T > 20 GeV

Differential $t\bar{t}b\bar{b}$ cross sections (ATLAS)

- b jets are identified using $\Delta R < 0.4$ matching with a B-hadron
- NLO predictions with 4F scheme (massive b-quarks) are compared
 - Sherpa + OpenLoops, MG5_aMC@NLO + Herwig++/Pythia8

Differential $t\bar{t}b\bar{b}$ cross sections (CMS)

- Correct assignment is difficult in case of 4 b jets
 - typically ~50% correct assignment in case of 4 b jets
- Need more statistics

한 양

ΔR_{jj} and m_{jj} distribution of additional jets (CMS)

8 TeV

Normalized $t\bar{t}$ cross sections in bins of invariant mass and the angular distance of the leading and second leading additional jets

CMS-PAS-TOP-16-021

Data is from Eur. Phys. J. C 76 (2016) 379

12

$t\bar{t}$ + additional jets at 13 TeV (ATLAS)

- Recoiling objects depend on the transverse momentum of $t\bar{t}$ system
- Resolved topology in the combined *I+jets* channel at detector level

- Overall prediction underestimates data
- The largest uncertainty comes from JES/JER and flavour tagging

arXiv:1708.00727

Highly boosted top in hadronic channel (ATLAS)

large-R jet : 300 GeV < p_T < 1500 GeV, m > 50 GeV and $|\eta|$ <2. top-tagged jets : if m(large-R jet) > 100 GeV, τ_{32} < 0.75

- All hadronic channel
- p_T^1 > 500 GeV, p_T^2 > 350 GeV
- Boosted top quark S/B ~ 3
- Conceivable to pursue more

detailed study for high p_T SM

$p_T(t\bar{t})$ spectrum comparisons (ATLAS)

• electron and muon of opposite sign, at least two jets, one b jet

- POWHEG + Pythia 6 and Pythia 8 predict a softer spectrum than the data but consistent within the experimental uncertainties
- MG5_aMC@NLO, POWHEG + Herwig++ do not describe data well.

15

Eur. Phys. J. C77 (2017) 299

$t\bar{t}$ + additional jets at 13 TeV (ATLAS)

Eur. Phys. J. C77 (2017) 220

- Sherpa overshoots data
 - Powheg+Pythia6 (low radiation variation of the Perugia 2012 tune) is a way lower than data in high multiplicity

$t\bar{t}$ + additional jets at 13 TeV (ATLAS)

- Herwig7 does not really describe the jet multiplicity
- MG5_aMC@NLO requires more work

$t\bar{t}$ + additional jets at 13 TeV (CMS)

PRD 95, 092001 (2017)

- Data has softer $t\bar{t}$ system p_T spectrum
- Most of MC predictions overshoot data

Tuning with α_S^{ISR} and h_{damp}

POWHEG : h_{damp} = controls of the p_T of the first additional emission beyond the Born configuration (default is top quark mass 172.5 GeV) \rightarrow regulate the high- p_T emission against top quark pair system recoils

PYTHIA 8: α_S^{ISR} is the value of the strong coupling at m_Z (default is 0.1365)

damping real emission generated by POWHEG h_{damp}^2 with a factor

CMS-PAS-TOP-16-021

$t \bar{t} p_T$ spectrum and jet multiplicity (CMS)

CMS-PAS-TOP-16-021

CUETP8M2T4 is new tune CUETP8M1 is old tune

CMS Preliminary 2.3 fb^{-1} (13 TeV) CMS Preliminary 2.3 fb^{-1} (13 TeV) CMS Preliminary 2.3 fb⁻¹ (13 TeV) $\frac{1}{\sigma} \frac{d\sigma}{dp_{\rm T}({\rm tft})} \left[{\rm GeV}^{-1}\right]_{\rm c}$ $\frac{1}{\sigma} \frac{d\sigma}{d \text{ n-jet}}$ CMS Data $\frac{1}{\sigma} \frac{d\sigma}{d \text{ n-je}}$ - CMS Data Powheg v2 $h_{damn} = 0$ Powheg v2 P8M2T4 0.5 Powheg v2 P8M2T4 owhere $v_2 h_{damm} = 1.581 m_{to}$ MG5_aMC@NLO [MLM] P8M2T4 MG5_aMC@NLO [MLM] P8M2T4 the vy $h_{down} = 0.9m_{\mu}$ aMC@NLO P8M2T4 0.4 aMC@NLO P8M2T4 0.4 owheg v2 $h_{damv} = 2.2m_{tot}$ MG5_aMC@NLO [FxFx] P8M2T4 MG5_aMC@NLO [FxFx] P8M2T4 CMS Data Powheg v2 P8M1 owheg v2 P8M1 0.3 0.3 MG5_aMC@NLO [MLM] P8M1 10^{-3} MG5_aMC@NLO [MLM] P8M1 aMC@NLO P8M1 aMC@NLO P8M1 MG5_aMC@NLO [FxFx] P8M1 0.2 0.2 MG5_aMC@NLO [FxFx] P8M1 0.1 0.1 0 1.15 1.15 1.15 1.11.1----1.1 1.05 $\begin{array}{c} 1.05 \\ 1.0 \\ 0.95 \\ 0.95 \end{array}$ 1.05 1.05 theory data theory data 1.0 0.95 0.95 0.9 0.9 0.9 0.85 0.85 0.85 0.8 0.8 0.8 0 100 200 300 400 500 2 3 2 3 $p_{\rm T}(t\bar{t})$ [GeV] additional jets additional jets

- NLO generators agree with data within uncertainty
- LO order of MG5_aMC@NLO (MLM configuration) and aMC@NLO do not agree with data
- Data disfavors vanishing h_{damp}

Jet multiplicity in lepton + jets with 36 fb^{-1}

CMS-PAS-TOP-16-014

- POWHEG+Pythia8 prediction of the jet multiplicity is consistent with data
- The jet multiplicity from previous 8 TeV measurements was used for CUETP8M2T4 tune
- The tune accurately described the jet multiplicity on a larger dataset with a higher \sqrt{s}

Conclusion

- We are towards very precision measurement in top quark measurement, in particular, using differential distributions.
- $t\bar{t}$ +X is the main background for many new physics searches. It is crucial to control experimental and theoretical systematic uncertainties.
- More interaction between theory and experiments is required.
- A bunch of ATLAS and CMS differential measurements are available and need to be compared in details.
- Differential $t\bar{t}b\bar{b}$ cross section measurement with more data of 36 fb^{-1} is in progress.

Differential $t\overline{t}b\overline{b}$ cross sections

Eur. Phys. J. C 76 (2016) 379

8 TeV

GUNI

한 양

$t\bar{t}$ + Heavy flavor (ATLAS)

Eur. Phys. J. C76 (2016) 11

	ttbb	ttb Lepton-plus-	ttb eµ	<i>R</i> _{ttbb}
	[fb]	jets [fb]	[fb]	(%)
Observed	(cut-based) 18.2 ±3.5 ±5.7 (fit-based) 12.4 ±3.3 ±3.6	$930 \pm 70 {}^{+240}_{-190}$	$48 \pm 10 {}^{+15}_{-10}$	1.20 ±0.33 ±0.28
	10 1+8.4	870+300	5 1+21	
MADGRAPHS_AIMC @ NLO (μ_{BDDP})	19.1_6.1	870-270	31_{-16}	_
Madgraph5_aMC@NLO ($\mu_{H_T/4}$)	$12.3^{+4.2}_{-3.6}$	520^{+170}_{-150}	30^{+10}_{-9}	_
Powhel	$8.8^{+4.4}_{-2.2}$	430^{+250}_{-140}	28^{+16}_{-9}	_
Madgraph5+Pythia 6	$13.3^{+3.8}_{-3.3}$	790^{+270}_{-170}	43^{+13}_{-8}	$1.29^{+0.15}_{-0.13}$
Pythia 8 (wgtq=3)	30.1	1600	88	2.50
Pythia 8 (wgtq=5)	12.8	740	42	1.10
Pythia 8 (wgtq=6,sgtq=0.25)	16.1	930	53	1.37
Powheg+Pythia 6 (hdamp= m_{top})	11.2	690	37	1.16

$t\bar{t}b\bar{b}(jj)$ cross sections (CMS)

arXiv:1705.10141

Full phase space vs Visible phase space

Phase Space (PS)	Parton level	Particle level
Visible PS Full PS	– t, t and 2 (b) jets (not from t or t)	4 (b) jets and 2 leptons (e, μ) –
leptons : p_T > 20 GeV, $ \eta$	$ $ < 2.4 / Jets : p_T > 20 GeV, $ \eta $ < 2.5	

Results

Pł	nase space	σ _{tībb̄} [pb]	$\sigma_{t\bar{t}jj}$ [pb]	$\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$
Visible	Measurement	$0.088 \pm 0.012 \pm 0.029$	$3.7\pm0.1\pm0.7$	$0.024 \pm 0.003 \pm 0.007$
	SM (powheg)	0.070 ± 0.009	5.1 ± 0.5	0.014 ± 0.001
Full	Measurement	$4.0\pm0.6\pm1.3$	$184\pm 6\pm 33$	$0.022 \pm 0.003 \pm 0.006$
	SM (powheg)	3.2 ± 0.4	257 ± 26	0.012 ± 0.001

lepton + jets at 13 TeV (CMS)

PRD 95, 092001 (2017)

NNLO has a better agreement with data

$t\bar{t} p_T$ spectrum in 2D (CMS)

 $p_{\rm T}(t\bar{t})$ [GeV] (2 additional jets)

CMS-PAS-TOP-16-021

The 0-additional jet case has the worst agreement data and theory predictions.