Off-shell $W^+W^-b\bar{b}$ production

Stefano Pozzorini

Zurich University

HF production at the LHC, IPPP Durham, 6 September 2017

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

$t\bar{t}$ production and decay

Vast $t\bar{t}$ physics program at LHC (~ 900 pb at 14 TeV)

- precision SM tests and measurements (m_t , PDFs)
- leading background to leptons + jets + missing $E_{\rm T}$ discovery signatures (top partners, $H \rightarrow W^+W^-, \dots$)
- ~30 years of precision calculations: NLO+NNLL QCD, NLO EW, NNLO QCD (mostly $t\bar{t}$ production...)

Full description of $t\bar{t}$ production and decay crucial for any experimental measurement

- cut efficiency
- jet vetoes for $t\bar{t}$ bckg. to $H \to WW$ and Wt
- *m_t* measurements, ...

(1) $pp \rightarrow W^+W^-b\bar{b}$ at NLO

2 NLO+PS matching with Powheg-RES method

3 Predictions for $t\bar{t}$ observables (Powheg-RES+Pythia8)

$pp \rightarrow W^+ W^- b \bar{b}$ at NLO QCD

Representative doubly- ($t\bar{t}$ like) singly- (tW like) and non-resonant (WW like) trees

NLO $t\bar{t}$ production×decay in NWA [Bernreuther et al. '04; Melnikov, Schulze '09]

 $\lim_{\Gamma_t \to 0} |\frac{1}{p_t^2 - m_t^2 + i\Gamma_t m_t}|^2 = \frac{\pi}{\Gamma_t m_t} \delta(p_t^2 - m_t^2) \quad \text{and simple factorisation at NLO}$

Full calculations of $pp \rightarrow W^+W^-b\bar{b}$ [Denner et al. '10; Bevilacqua et al. '10; Heinrich et al. '13; Cascioli et al '13; Frederix'13] **and** $WWb\bar{b}j$ [Bevilacqua et al.'15–'16]

- $t\bar{t}$ production and decays at NLO with off-shell effects
- $t\bar{t} + Wt$ and non-resonant channels with interference at NLO
- also 0- and 1-jet bins with $m_b > 0$ [Cascioli,Kallweit,Maierhöfer,S.P. '13; Frederix'13]

Finite-width corrections wrt NWA

10% of $\sigma_{t\bar{t}}$ with off-shellness $> 10 \,\mathrm{GeV}$

• deviations from NWA can be significant, depending on the observable

Finite-width effects

- inclusive $t\bar{t}$ observables (2 *b*-jets) receive only order $\Gamma_t/m_t \simeq \alpha \simeq 10^{-2}$ corrections
- sizable effects in 0- and 1-jet bins

 $W^+W^-b\bar{b}$ at NLO with $m_b>0$

$W^+W^-b\bar{b}$ cross section in jet bins

- first $t\bar{t}+tW$ NLO predictions for $n_{\rm jet}=0,1$
- crucial for suppression of $t\bar{t}$ backgrounds

Excellent convergence for $n_{jet} = 0, 1$

 small NLO correction and reduction of scale uncertainty from 40% to less than 10%

 $\mathcal{O}(\Gamma_t/m_t)$ effects (driven by Wt production)

strong enhancement in 0/1-jet bins! (up to 30%)

 $\Rightarrow W^+W^-b\bar{b}$ description needed and reliable $_{\rm S.\ Pozzorini}$

NLO(LO) 4F NNPDFSs, $p_{T,j} = 30 \, \text{GeV}$

(1) $pp \rightarrow W^+ W^- b \bar{b}$ at NLO

(2) NLO+PS matching with Powheg-RES method

Predictions for $t\bar{t}$ observables (Powheg-RES+Pythia8)

Motivation: precision m_t determination

Direct and indirect m_t determinations

- $\Delta m_t^{(\mathrm{exp})} \sim 0.5 \, \mathrm{GeV}$ but spread around 2 GeV
- EW precision fit ($m_t = 177 \pm 2.1 \,\text{GeV}$) 1.6 σ above world average

Kinematic m_t^{pole} determinations

- excellent experimental systematics
- require accurate theory understanding of $m_t^{\overline{\mathrm{MS}}} \leftrightarrow m_t^{\mathrm{pole}} \leftrightarrow \mathrm{observables}$

Non-perturbative (renormalon) ambiguity in $m_t^{\overline{\text{MS}}} \leftrightarrow m_t^{\text{pole}}$

• intrinsic $\mathcal{O}(\Lambda_{\rm QCD})$ ambiguity of pole mass small wrt m_t accuracy at LHC: $\Delta m_t^{\rm pole} \sim 110 \, {\rm MeV}$ [Beneke et al, 1605.03609]

Monte Carlo simulations with higher-order $pp \rightarrow WWb\bar{b}$ matrix elements

- well defined m_t^{pole} input (no MC mass!)
- systematic precision improvements in $m_t^{
 m pole} \leftrightarrow$ observables

NLO+PS matching for $pp \rightarrow W^+W^-b\bar{b}$

Standard Powheg method

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{B}}} = \underbrace{\left[B(\Phi_{\mathrm{B}}) + V(\Phi_{\mathrm{B}}) + \sum_{\alpha} \int R_{\alpha}(\Phi_{\mathrm{R}}^{\alpha}) \,\mathrm{d}\Phi_{\mathrm{rad}} \right]}_{\bar{B}(\Phi_{\mathrm{B}})} \underbrace{\left[\Delta(q_{\mathrm{cut}}) + \sum_{\alpha} \Delta(k_{T}^{\alpha}) \frac{R_{\alpha}(\Phi_{\mathrm{R}}^{\alpha})}{B(\Phi_{\mathrm{B}})} \,\mathrm{d}\Phi_{\mathrm{rad}} \right]}_{\mathrm{1st \ emission}}$$

• NLO accuracy based on factorisation of soft/collinear radiation with $k_{\rm T} \ll Q_{\rm hard}$ $R(\Phi_{\rm R}^{\alpha}) \rightarrow B(\Phi_{\rm B}) \otimes K(\Phi_{\rm rad})$

and smoothness of hard subprocess wrt recoil from soft/collinear radiation

Sharp resonances with $\Gamma_t \ll k_{\rm T}$ lead to unphysical effects

- recoil implemented in standard $\Phi_{\rm B} \rightarrow \Phi^{\alpha}_{\rm R}$ mappings induces unphysical distortions of Breit-Wigner shape and fake effects of order $\alpha^2_S \frac{m^2_t}{\Gamma^2_*} \sim 1$
- for example $\delta(p_t^2-m_t^2)$ distribution not respected in $\Gamma_t \to 0$ limit

S. Pozzorini

Resonance distortions in standard NLO+PS matching

Mismatch between resonances in $\Phi_{\rm B}$ and $\Phi_{\rm R}(\Phi_{\rm B},\Phi_{\rm rad})$ phase space

$$\begin{aligned} \frac{m_t^4}{\left[M_{Wbg}^2(\Phi_{\rm R}) - m_t^2\right]^2 + \Gamma_t^2 m_t^2} &- \frac{m_t^4}{\left[M_{Wb}^2(\Phi_{\rm B}) - m_t^2\right]^2 + \Gamma_t^2 m_t^2} \bigg|_{M_{Wb}(\Phi_{\rm B}) = m_t} \\ &= \frac{m_t^4}{\left[M_{Wbg}^2(\Phi_{\rm R}) - m_t^2\right]^2 + \Gamma_t^2 m_t^2} - \frac{m_t^2}{\Gamma_t^2} = -\frac{m_t^2}{\Gamma_t^2} \frac{\left[M_{Wbg}^2(\Phi_{\rm R}) - m_t^2\right]^2}{\left[M_{Wbg}^2(\Phi_{\rm R}) - m_t^2\right]^2 + \Gamma_t^2 m_t^2} \end{aligned}$$

- cancels only in soft/collinear limits, where $M_{Wbg}(\Phi_{\rm R}) \rightarrow M_{Wb}(\Phi_{\rm B})$
- \Rightarrow unphysical $\mathcal{O}\left(\alpha_S^2 \frac{m_t^2}{\Gamma_t^2}\right) = \mathcal{O}(1)$ distortions of top line shape in resonance region
- \Rightarrow highly inefficient integration and event generation

S. Pozzorini

Resonance aware Powheg matching [Jezo and Nason, 1509.09071]

Unphysical $\mathcal{O}\left(\alpha_S^2 \frac{m_t^2}{\Gamma_t^2}\right)$ effects avoided requiring consistent $\Gamma_t \to 0$ behaviour

- (A) all-order factorisation of top production $\times decay$
- (B) top on-shellness $(p_t^2 = m_t^2)$

Powheg-RES implementation

- probabilistic assignment of radiation to top production or decays ("resonance history") with correct $\Gamma_t \rightarrow 0$ limit (dictated by $p_t^2 = m_t^2$)
- modify $\Phi_B \to \Phi_R^{\alpha}$ mappings, subtraction terms and showering such as to preserve resonance virtualities (M_{Wb} or M_{Wbg} according to "resonance history")
- \Rightarrow consistent and efficient $\Gamma_t > 0$ continuation of NWA based on full WWbb MEs

see analogous approach in MC@NLO [Frederix et al, 1603.01178]

POWHEGBOX-RES+OPENLOOPS $b\bar{b}4\ell$ generator

[Jezo, Lindert, Nason, Oleari, S.P., 1607.04538]

http://powhegbox.mib.infn.it

Some key features

- dilepton process $pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$ including $t \bar{t} + t W$ and interference
- applicable to observables with unresolved b quarks (jet vetoes) thanks to $m_b > 0$
- interference between radiation from top production and decay
- quantum corrections to top propagators \Rightarrow well defined $M_t^{(OS)}$

Multi-radiation scheme based on [Campbell, Ellis, Nason, Re '15]

$$\mathrm{d}\sigma = \bar{B}(\Phi_{\mathrm{B}}) \,\mathrm{d}\Phi_{\mathrm{B}} \prod_{\alpha = \alpha_{b}, \alpha_{\bar{b}}, \alpha_{\mathrm{ISR}}} \left[\Delta_{\alpha}(q_{\mathrm{cut}}) + \Delta_{\alpha}(k_{T}^{\alpha}) \frac{R_{\alpha}(\Phi_{\mathrm{R}}^{\alpha})}{B(\Phi_{\mathrm{B}})} \,\mathrm{d}\Phi_{\mathrm{rad}}^{\alpha} \right]$$

 \Rightarrow triple radiation from $t\bar{t}$ production and decays at NLO based on full WWbb MEs

S. Pozzorini

HF@LHC 9 / 16

1 $pp \rightarrow W^+W^-b\bar{b}$ at NLO

(3) Predictions for $t\bar{t}$ observables (Powheg-RES+Pythia8)

Resonance aware vs resonance blind matching

res-default: resonance-aware throughout

res-off: resonance-blind throughout

res-guess: resonance-blind 1st emission + resonance-aware shower (kinematic guess)

Effects of naive (resonant-blind) matching of WWbb MEs

- unphysical smearing of top resonance and distortion of b-jet shape
- can be avoided only with rigorous treatment of 1st emission and shower

Multiple vs single NLO radiation

res-default: triple NLO radiation from $t\bar{t}$ production and decays (based on bb4l MEs) res-singlerad: single NLO radiation (most likely from $t\bar{t}$ production)

Radiation from top decays mostly from PY8 in res-singlerad

- minor impact on observables defined in terms of b-jets
- significant effects on b-jet substructure (e.g. softer $x_{\rm B}$ spectrum)
- despites ME corrections in PY8

$b\bar{b}4\ell$ vs $t\bar{t}$ Powheg generator (hvq)

 $b\bar{b}4\ell$: NLO+PS $e^+\mu^-\nu_e\bar{\nu}_\mu b\bar{b}$ [Jezo et al, 1607.04538]

tt: NLO+PS tt with LO+PS decays [Frixione, Nason, Ridolfi, '07]

Significant effects in b-jet properties

- bb4l predicts narrower/lighter b-jets and harder $x_{\rm B}$
- can be attributed to reduced radiation from b-quarks due to NLO top decays
- similar to res-default vs res-singlerad difference

 $b\bar{b}4\ell$: NLO+PS $e^+\mu^-\nu_e\bar{\nu}_\mu b\bar{b}$ [Jezo et al, 1607.04538]

tt: NLO+PS tt with LO+PS decays [Frixione, Nason, Ridolfi, '07]

Significant effects for m_t determination

- 10–30% asymmetric shape corrections to top resonance and $M_{\ell j_B}$ endpoint
- average $M_{W_{j_B}}$ roughly 0.5 GeV higher * (within ± 30 GeV around m_t) in $b\bar{b}4\ell$
- can be due to NLO radiation in decays, off-shell effects, Wt production
- * studies on implications for m_t determinations ongoing [talk by T.Jezo at QCD@LHC 2017]

Comparing against $t\bar{t} + Wt$ combination

 $b\bar{b}4\ell$: NLO+PS $e^+\mu^-\nu_e\bar{\nu}_\mu b\bar{b}$ [Jezo et al, 1607.04538]

tt: NLO+PS tt with LO+PS decays [Frixione, Nason, Ridolfi, '07]

 $t\bar{t} + Wt$: NLO+PS $t\bar{t}$ (hvq) and Wt (ST_wtch_DR) with LO+PS decays [Re '10]

Adding $t\bar{t} + Wt$ contributions

- improves agreement with $b\bar{b}4\ell$, especially for endpoint of $M_{\ell j_b}$
- $t\bar{t} + tW$ depends on prescription (DR or DS) to remove overlap at NLO

Wt enriched observables (jet-vetoed cross sections)

 $b\bar{b}4\ell$: NLO+PS $e^+\mu^-\nu_e\bar{\nu}_\mu b\bar{b}$ [Jezo et al, 1607.04538]

tt: NLO+PS tt with LO+PS decays [Frixione, Nason, Ridolfi, '07]

 $t\bar{t}\otimes$ decay: NLO+PS $t\bar{t}\times$ decays & LO WWbb reweighting [Campbell, Ellis, Nason, Re '14]

Exclusive cross sections with $n_{\rm j}$ jets and $n_{\rm b}$ b-jets above $p_T^{\rm thr}$

• inclusive regime (large p_T^{thr}): LO reweighting can account for Wt part (10%)

- Wt enriched regions (small p_T^{thr}): full $W^+W^-b\bar{b}$ at NLO needed (for correct radiation pattern of events with low- p_T b-jets)
- \Rightarrow relevant for Wt measurements
 - S. Pozzorini

Summary and Conclusions

WWbb vs standard $t\bar{t}$ prod× decay

- NLO decays with exact spin correlations and off-shell effects
- $t\bar{t} + Wt$ with interference at NLO
- quantum description of QCD radiation (production-decay interference)
- quantum description of top-resonance and top mass

$e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$ generator based on Powheg-RES+OpenLoops

- resonance-aware method to respect key theory properties of resonances
- multiple radiation scheme: triple NLO radiation from production and decays
- potentially large $\mathcal{O}(\Gamma_t/m_t)$ effects at large p_T , large MET, Wt-enriched regions, *b*-jet substructure, reconstructed top mass, ...
- especially relevant for interpretation of kinematic m_t measurements (ongoing studies)

Backup slides

Wt production in the 5F scheme [Demartin et al, 1607.05862]

Subtraction of $t\bar{t}$ and $t\bar{t}$ -tW interference crucial

σ_{tt̄}/σ_{tW} ~ 10 enhances interference and requires accurate tt̄ subtraction!
 standard (DR1, DS1) and modified (DR2,DS2) prescriptions

scheme	$2\operatorname{Re}(\mathcal{A}_{1t}\mathcal{A}_{2t})$	$ \mathcal{A}_{2t} ^2$
DR1	subtracted	subtracted
DR2	included	subtracted
DS1	included	CT subtraction
DS2	included	improved CT subtraction

differences reflect interference and uncertainties

pp ightarrow tW in 5F scheme at 13 TeV [Demartin et al, 1607.05862]

Inclusive cross sections: $t\bar{t}$ -tW interference amounts to -13%

standard subtractions (DR1, DS1) inconsistent with rigorous approach (GS)
 modified subtractions (DR2, DS2) more consistent

Distributions interference can grow and lead to negative cross section at high b-jet p_T

tW fiducial cuts ($n_{b-jets} = 1$): $\sigma_{t\bar{t}}/\sigma_{tW}$ reduced to ~ 2 and interference suppressed

 \Rightarrow more meaningful and accurate separation of tW from $t\bar{t}$

S. Pozzorini

Jet-Veto and Binning Effects

0-jet bin vs $p_{\rm T}$ -veto

- smooth inclusive limit at large p_T and very strong p_T sensitivity below 50 GeV:
 - FtW effects increase up to 50%
 - K-factor falls very fast
- ${\, \bullet \, }$ at low $p_{\rm T}$ IR singularity calls for NLO+PS matching
- typical veto $p_{\rm T} \sim 30 \, {\rm GeV}$ yields 98% suppression and still decent NLO stability $(K \sim 1)$

1-jet bin vs p_{T} threshold

- low $p_{\rm T}$ behaviour driven by veto on 2nd jet and analogous to 0-jet case
- high $p_{\rm T}$ region driven by 1st jet and NLO radiation dominates over b-jets from $W^+W^-b\bar{b}$

WWbb cross section in b-jet bins

- NLO radiation doesn't change b-jet multiplicity ⇒ rather stable K-factor and uncertainties
- ullet single-top and off-shell effects still enhanced at small b-jet p_{T}

In general: nontrivial interplay of NLO and off-shell/single-top effects

Finite-width effects vs NWA

Separation of narrow- and finite-top-width parts

• via numerical $\Gamma_t \to 0$ extrapolation

 $\lim_{\xi_t \to 0} \mathrm{d}\sigma_{W^+W^-b\bar{b}}(\xi_t \Gamma_t) = \xi_t^{-2} \left[\mathrm{d}\sigma_{t\bar{t}} + \xi_t \, \mathrm{d}\sigma_{\mathrm{FtW}} \right]$

⇒ permille-level convergence demonstrates nontrivial cancellation of soft-gluon $\ln(\Gamma_t/m_t)$ singularities

 $\sigma_{t\bar{t}} = \text{ on-shell } t\bar{t} \text{ production} \times \text{decay}$

 $pp \rightarrow \nu_{\phi} e^{+} \mu^{-} \bar{\nu}_{\mu} b\bar{b} + X @ 8 \text{ TeV}$

 $\sigma_{\rm FtW} = \mathcal{O}(\Gamma_t/m_t)$ effects dominated by Wt + interference + off-shell $t\bar{t}$ +...

= 6-8% of $\sigma_{\text{inclusive}}$ (cf. sub-percent effect with $t\bar{t}$ cuts!)

$pp ightarrow e^+ u_e \mu^- ar{ u}_\mu b ar{b}$ at NLO EW [Denner and Pellen '16]

Representative doubly- ($t\bar{t}$ like) singly- (tW like) and non-resonant (WW like) trees

Exact $2 \rightarrow 6$ NLO EW calculation

- fully differential 6-particle final state
- NLO EW top decays
- off-shell $t\bar{t} + Wt$ + non-resonant contributions

Applicable only with $t\bar{t}$ **type cuts** ($m_b = 0 \Rightarrow$ no unresolved *b*-quarks)

- 2 *b*-jets ($p_T > 25 \text{ GeV}$, $|\eta| < 2.5$)
- 2 charged leptons ($p_T>20\,{
 m GeV}$, $|\eta|<2.5$) and missing $E_T>20\,{
 m GeV}$

NLO EW corrections and γg contributions [Denner and Pellen '16]

NLO EW corrections

- up to -10-15% at $p_T\sim 800~{\rm GeV}$
- qualitatively consistent with [Pagani et al '16] for reconstructed top p_T

γ -induced contributions (γg at LO and γq at NLO EW included)

- 5–6% at $p_T \sim 800 \, {\rm GeV}$
- smaller wrt [Pagani et al '16] due to fixed $\mu_F = m_t$

S. Pozzorini

Exact $pp \rightarrow b\bar{b} + 4\ell$ vs double-pole approximation

Double-pole approximation (similar to $t\bar{t}$ MC generators!)

- on-shell $t\bar{t} \rightarrow b\bar{b} + 4\ell$ matrix elements
- approx. off-shell effects via $1/[(p^2 m_t^2)^2 + \Gamma_t^2 m_t^2]$ distributions

Genuine off-shell and Wt effects (see deviations wrt LO $t\bar{t}$)

- +3% for $\sigma_{
 m tot}$ and +5% in tail of reconstructed top p_T
- beyond 20–30% in p_T -tails of individual top-decay products

$\Rightarrow \underset{\text{S. Pozzorini}}{\text{NLO EW}} \text{ and } \mathcal{O}\left(\Gamma_t/m_t\right) \text{ effects mandatory for precision at high } p_T \\ \underset{\text{HF@LHC}}{\xrightarrow{}}$