

Doubly charmed hadrons at LHCb

Murdo Traill on behalf of the LHCb collaboration University of Glasgow

HF@LHC workshop, 6th - 8th September 2017 Durham, UK

- Overview of LHCb detector
- Introduction and history
- Observation of doubly charmed baryon Ξ_{cc}^{++} : <u>arXiv:1707.01621</u>
- Plans for the future
- Summary

LHCb detector

Main challenges in hadron spectroscopy include hadronic background and particle mis-ID

LHCb is well equipped to handle both!

VErtex LOcator (VELO):

- Vertex reconstruction
- > Impact parameter resolution: 20 μ m
- Decay time resolution: 45 fs
- Allows identification of weak decays

RICH sub-detectors:

- > K/ π /p separation
- \succ ε(*K* → *K*)~95% with ε(π → *K*)~5%
- \succ ε(*p* → *p*)~95% with ε(*π* → *p*)~5%
- \blacktriangleright Effectively distinguish *K* and *p* from π

Tracking system:

- $\succ \epsilon$ (Tracking)~96%
- ▶ δp/p~0.5-1% (5-200 GeV)
- Easily separate neighboring structures

Aiming for precision measurements in \boldsymbol{b} and \boldsymbol{c} flavor physics

Single forward arm detector covering 2 < η < 5

- Constituent-quark model predicts 3 SU(3) triplets with C=2; $\Omega_{cc}^+(ccs)$, $\Xi_{cc}^+(ccd)$, $\Xi_{cc}^{++}(ccu)$
- Excited decay to ground states via strong/electromagnetic interactions
- Ground states decay weakly with a charm quark transitioning into lighter quarks

SU(4) flavor multiplets, PDG Review of Particle Physics, Phys.Rev. D86, 010001.

Masses and lifetime of ground states

- Many models been applied to determine masses of ground state and excitations: QCD sum rules, (non-)relativistic QCD potential models, etc
- Most agree Ξ_{cc}^+ and Ξ_{cc}^{++} states between 3.5 3.7 GeV and $\Omega_{cc}^+(ccs) \approx \Xi_{cc}^+ 0.1$ GeV

• Mass splitting between Ξ_{cc}^+/Ξ_{cc}^{++} is only a few MeV due to approximate isospin symmetry

Great for testing HQET where two c quarks considered as heavy di-quark and baryon is similar to heavy meson Qq

• Recent lattice QCD computations: $m(\Xi_{cc}^+/\Xi_{cc}^{++}) \approx 3.6 \text{ GeV}, m(\Omega_{cc}^+) \approx 3.7 \text{ GeV}$

HF@LHC Durham

M.Traill (Glasgow)

5/19

All references

back-up slides

shown in

SELEX and Ξ_{cc}^+

- SELEX, a fixed-target Fermilab experiment, claimed first observation of Ξ_{cc}^+ state in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decays in 2002
- Followed by a confirmation in D⁺p⁺ K⁻mode in 2004:
 > Λ⁺_c K⁻π⁺: 15.9 signals over 6.1 bkg (6.3σ)
 > D⁺p⁺ K⁻: 5.62 signals over 1.38 bkg (4.8σ)
- Unexpected properties of this observation:

> Short lifetime: $\tau < 33$ fs at 90% C.L. (Strong decay?)

 \succ Large production of Λ_c^+ with 20% from Ξ_{cc}^+ decays

- Main problem with SELEX findings; never reproduced by other groups
- Unique production environment:
 - \blacktriangleright Hyperon beam is admixture of Σ^- , p^+ , π^- and target was Cu/diamond
 - Production cross-section could be much different than in p-p colliders

DS SELEX $\Lambda_c^+ K^- \pi^+$ and $D^+ p^+ K^-$ distributions superposed <u>Phys.Lett. B628 (2005) 18-24</u>

```
Combined mass:
3518.7 \pm 1.7(stat) MeV/c^2
```

LHCb search for Ξ_{cc}^+

- In 2013, LHCb searched for $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ decays with 0.65 fb⁻¹ of 2011 data
- Initial SELEX mode with a large expected BF
- Examined mass range 3.3-3.8 GeV but found no evidence of Ξ_{cc}^{+} production
- Experiment sensitivity strongly depends on Ξ_{cc}^+ lifetime however

$$R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi)}{\sigma(\Lambda_c^+)}$$
< 0.013 for $\tau(\Xi_{cc}^+) = 100$ fs
< 3.3 × 10⁻⁴ for $\tau(\Xi_{cc}^+) = 400$ fs

 Due to limited sensitivity at short lifetimes, this nonobservation is not inconsistent with the SELEX claim

R

R

Switch to Ξ_{cc}^{++}

- Searching for $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ decays: theorists suggest BF could as high as ~10%, see <u>arXiv:1703.09086</u>
- $\tau(\Xi_{cc}^{++}) >> \tau(\Xi_{cc}^{+})$; Ξ_{cc}^{++} travels further from PV making online selection better at observing Ξ_{cc}^{++} state
- Reconstruct Λ_c^+ through $p^+K^-\pi^+$ final state

Analysis strategy:

- Use ~1.7 fb⁻¹ 2016 Run2 data at \sqrt{s} = 13 TeV
- Dedicated exclusive trigger ensuring high efficiency
- Full event reconstruction done at trigger level
- 2 fb⁻¹ 2012 Run1 data also analysed to check results

 $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$

 Ξ_{cc}^{++}

- \mathcal{Z}_{cc}^{++} cross-section much smaller (~×10⁻⁵) than inelastic cross-section in pp so expecting large hadronic backgrounds LHCb has some of largest charm data sets in the world
- Expect high-pure sample of $\Lambda_c^+ \to p^+ K^- \pi^+$

 $\Lambda_c^+ \rightarrow p^+ K^- \pi^+$ selection:

- p^+ , K^- , π^+ tracks: positive particle ID and not produced from primary vertices
- Λ_c^+ : good vertex quality, separated from primary vertices
- Λ_c^+ , p^+ , K^- , π^+ tracks must have large p_T

Machine learning

- Λ_c^+ combined with PID-selected $K^-\pi^+\pi^+$ tracks to form Ξ_{cc}^{++} candidates
- Candidates with cloned tracks are removed

- Multivariate selector further explores:
 - > Decay Fit quality of \mathcal{Z}_{cc}^{++} candidates
 - Kinematics of final states
 - $\succ \Xi_{cc}^{++}$ vertex separation from PV

Neural-network selector trained on simulated signal and un-physical wrongsign (WS) data represented background as:

$$\Xi_{cc}^{++} \to \Lambda_c^+ \ K^- \pi^+ \pi^-$$

$\Lambda_c^+ K^- \pi^+ \pi^+$ Mass spectrum

- A significant structure in right sign (RS) data
- Not present in wrong sign (WS) combinations
- Not observed for Λ_c^+ background candidates
- Distributions similar except the peak in RS

Fitting the mass peak

Systematics	arXiv: 1707.01621
Source	Value $[MeV/c^2]$
Momentum-scale calibration	0.22
Selection bias correction	0.14
Unknown Ξ_{cc}^{++} lifetime	0.06
Mass fit model	0.07
Sum of above in quadrature	0.27
Λ_c^+ mass uncertainty	0.14

 $M(\Xi_{cc}^{++}) - M(\Lambda_c^{+}) = 1134.94 \pm 0.72 \text{(stat)} \pm 0.27 \text{(syst)} \text{ MeV}$ $M(\Xi_{cc}^{++}) = 3621.40 \pm 0.72 \text{ (stat)} \pm 0.27 \text{ (syst)} \pm 0.14 (\Lambda_c^{+}) \text{ MeV}$

Cross-checks

- Varying threshold value of MVA selector has no effect on signal significance
- MVA efficiency as a function of mass: very smooth, no biasing
- Multiple candidates do not create fake narrow structures
- Checking combinations of tracks from Λ_c^+ and Ξ_{cc}^{++} : again no peaking structures
- Varying particle ID selections: no peaking structure emerge in WS combinations but structure remains in RS sample
- Tried cut based selection instead of MVA:
 - requiring good vertex fit quality
 - \succ Ξ_{cc}^{++} vertex displaced
 - tracks are not produced from PV
 - \blacktriangleright Peak significance still > 12 σ

Confirmation in Run 1

LHCb ГНСр

- Similar search done with 2 fb⁻¹ of Run1 data recorded in 2012, $\sqrt{s} = 8$ TeV
- Different trigger and data processing configuration than in Run2
- But again a clear peak is seen in $\Lambda_c^+ K^- \pi^+ \pi^+$ mass spectrum
- Signal yield: 113 ± 21
- Local significance: >7 σ
- Resolution: $6.6 \pm 1.4 \text{ MeV}$

Weak Decay

LHCb

- Peaking structure remains significant after requiring minimum decay time, t > 5σ w.r.t PV:
 - Run1 significance: >7σ
 - Run2 significance: >12σ

Inconsistent with a strong decay

M.Traill (Glasgow)

Inconsistent with being isospin partners: E.g. Guo, Hanhart, and Meissner, PLB 698 251-255; Karliner and Rosner, arXiv:1706.06961

M.Traill (Glasgow)

• Searching for Ξ_{cc}^{++} in additional decay modes: $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \pi^{+}, \ \Xi_{cc}^{++} \rightarrow D^{+} p^{+} K^{-} \pi^{+}, \ \Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+} \pi^{+}$

Prospects

- Measurement of Ξ_{cc}^{++} lifetime is making good progress
- Production cross-section
- Confirming its spin-parity is $J^P = \frac{1^+}{2}$

- Searching for its isospin partner Ξ⁺_{cc} in larger sample than previous LHCb measurement
 - Also searching for Ω_{cc}^+ in the near future
 - The excited states?
- Now a new sector to study strong force and CP violation

Just the beginning. A long list of studies ahead.

M.Traill (Glasgow)

 Ξ_{cc}^{++}

U

С

Summary

- LHCb very active in hadron spectroscopy studies
- Observed narrow structure in the $\Lambda_c^+ K^- \pi^+ \pi^+$ mass spectrum this year
- Significant displacement consistent with a weakly decaying particle
- Observed in two LHCb data sets
- Consistent with $\Xi_{cc}^{++}(ccu)$
- Inconsistent with Ξ_{cc}^+ observed by SELEX being its isospin partner

Stay tuned for more doubly charming results

Thank you.

Back-up

Searches by other experiments

- FOCUS@Fermilab: Photon beam on Be fixed target
 - > Searched for both Ξ_{cc}^+ and Ξ_{cc}^{++} states
 - \succ 7 exclusive Ξ_{cc} → Λ⁺_cX modes
 - > 14 exclusive Ξ_{cc} → $D^{0,+}Y$ modes
 - > No evidence of a Ξ_{cc} state
- BaBar@SLAC: e^-e^+ at \sqrt{s} = 10.58 GeV
 - > Searched for both Ξ_{cc}^+ and Ξ_{cc}^{++} states
 - > Searched for $\Xi_{cc}^{+(+)} \rightarrow \Lambda_c^+ K^- \pi^+(\pi^+)$
 - > Searched for $\Xi_{cc}^{+(+)} \rightarrow \Xi_{c}^{0} \pi^{+} (\pi^{+})$
 - > No evidence of Ξ_{cc} states
- Belle@KEK: e^-e^+ at \sqrt{s} = 10.58 GeV
 - > Searched for $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$
 - > Found new Ξ_c^+ resonance decaying to $\Lambda_c^+ K^- \pi^+$
 - > But still no evidence of a Ξ_{cc} state

Nucl.Phys.Proc.Suppl. 115 (2003) 33-36

 $M(\Lambda_c^+)$ vs. $M(\Xi_{cc}^+)$

Intermediate resonances

LHCb THCp

RS, sideband-subtracted

M.Traill (Glasgow)

References (not exhaustive)

S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Spectroscopy of doubly heavy baryons*, Phys. Atom. Nucl. 63 (2000) 274, arXiv:hep-ph/9811212.

S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Spectroscopy of doubly charmed baryons:* Ξ_{cc}^+ and Ξ_{cc}^{++} , Mod. Phys. Lett. A14 (1999) 135, arXiv:hep-ph/9807375.

C. Itoh, T. Minamikawa, K. Miura, and T. Watanabe, *Doubly charmed baryon masses and quark wave functions in baryons*, Phys. Rev. **D61** (2000) 057502.

S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Spectroscopy of doubly heavy baryons*, Phys. Rev. **D62** (2000) 054021.

K. Anikeev et al., Workshop on B physics at the Tevatron: Run II and beyond, Batavia, Illinois, September 23-25, 1999, 2001. arXiv:hep-ph/0201071.

V. V. Kiselev and A. K. Likhoded, *Baryons with two heavy quarks*, Phys. Usp. 45 (2002) 455, arXiv:hep-ph/0103169.

D. Ebert, R. N. Faustov, V. O. Galkin, and A. P. Martynenko, *Mass spectra of doubly heavy baryons in the relativistic quark model*, Phys. Rev. D66 (2002) 014008, arXiv:hep-ph/0201217.

D.-H. He et al., Evaluation of the spectra of baryons containing two heavy quarks in a bag model, Phys. Rev. D70 (2004) 094004, arXiv:hep-ph/0403301.

C.-H. Chang, C.-F. Qiao, J.-X. Wang, and X.-G. Wu, *Estimate of the hadronic production of the doubly charmed baryon* Ξ_{cc} *in the general-mass variable-flavor-number scheme*, Phys. Rev. D73 (2006) 094022, arXiv:hep-ph/0601032.

More references (not exhaustive)

W. Roberts and M. Pervin, *Heavy baryons in a quark model*, Int. J. Mod. Phys. A23 (2008) 2817, arXiv:0711.2492.

A. Valcarce, H. Garcilazo, and J. Vijande, *Towards an understanding of heavy baryon spectroscopy*, Eur. Phys. J. A37 (2008) 217, arXiv:0807.2973.

J.-R. Zhang and M.-Q. Huang, *Doubly heavy baryons in QCD sum rules*, Phys. Rev. **D78** (2008) 094007, arXiv:0810.5396.

Z.-G. Wang, Analysis of the $\frac{1}{2}^+$ doubly heavy baryon states with QCD sum rules, Eur. Phys. J. A45 (2010) 267, arXiv:1001.4693.

M. Karliner and J. L. Rosner, *Baryons with two heavy quarks: masses, production, decays, and detection*, Phys. Rev. D90 (2014) 094007, arXiv:1408.5877.

K.-W. Wei, B. Chen, and X.-H. Guo, *Masses of doubly and triply charmed baryons*, Phys. Rev. **D92 (2015) 076008**, arXiv:1503.05184.

Z.-F. Sun and M. J. Vicente Vacas, *Masses of doubly charmed baryons in the extended on-mass-shell renormalization scheme*, Phys. Rev. **D93** (2016) 094002, arXiv:1602.04714.

C. Alexandrou and C. Kallidonis, *Low-lying baryon masses using* $N_f = 2$ *twisted mass clover-improved fermions directly at the physical point*, arXiv:1704.02647.

C.-W. Hwang and C.-H. Chung, *Isospin mass splittings of heavy baryons in heavy quark symmetry*, Phys. Rev. **D78** (2008) 073013, arXiv:0804.4044.

Even more references (not exhaustive)

S. J. Brodsky, F.-K. Guo, C. Hanhart, and U.-G. Meißner, *Isospin splittings of doubly heavy baryons*, Phys. Lett. **B698 (2011) 251**, arXiv:1101.1983.

M. Karliner and J. L. Rosner, *Isospin splittings in baryons with two heavy quarks*, arXiv:1706.06961.

B. Guberina, B. Melić, and H. Štefančić, *Inclusive decays and lifetimes of doubly charmed baryons*, Eur. Phys. J. **C9** (1999) 213, arXiv:hep-ph/9901323.

V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Lifetimes of doubly charmed baryons:* Ξ_{cc}^+ and Ξ_{cc}^{++} , Phys. Rev. **D60** (1999) 014007, arXiv:hep-ph/9807354.

C.-H. Chang, T. Li, X.-Q. Li, and Y.-M. Wang, *Lifetime of doubly charmed baryons*, Commun. Theor. Phys. 49 (2008) 993, arXiv:0704.0016.

A. V. Berezhnoy and A. K. Likhoded, *Doubly heavy baryons*, Phys. Atom. Nucl. 79 (2016) 260.

A. V. Berezhnoy, A. K. Likhoded, and M. V. Shevlyagin, *Hadronic production of B*⁺_c *mesons*, Phys. Atom. Nucl. 58 (1995) 672, arXiv:hep-ph/9408284.

K. Kolodziej, A. Leike, and R. Ruckl, *Production of B*⁺_c *mesons in hadronic collisions*, Phys. Lett. **B355 (1995) 337**, arXiv:hep-ph/9505298.

A. V. Berezhnoy, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, *Doubly charmed baryon production in hadronic experiments*, Phys. Rev. **D57** (1998) 4385, arXiv:hep-ph/9710339.