Higer Orders in Parton Showers

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

Heavy Flavour Production at the LHC (IPPP 2017)

F. Krauss Higer Orders in Parton Showers

・ロト ・同ト ・ヨト ・ヨ

Reminder: How parton showers work

• parton showers are approximations, based on

leading colour, leading logarithmic accuracy, spin-average

• parametric accuracy by comparing Sudakov form factors:

$$\Delta = \exp\left\{-\int \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \,\left[A\log\frac{k_{\perp}^2}{Q^2} + B\right]\right\}\,,$$

where A and B can be expanded in $\alpha_{S}(k_{\perp}^{2})$

• Q_T resummation includes $A_{1,2,3}$ and $B_{1,2}$

(transverse momentum of Higgs boson etc.)

イロト イヨト イヨト イヨト

• showers usually include terms $A_{1,2}$ and B_1

A= cusp terms ("soft emissions"), $B\sim$ anomalous dimensions γ

Matching at NLO and NNLO

- avoid double-counting of emissions
- two schemes at NLO: MC@NLO and POWHEG
 - mismatches of K factors in transition to hard jet region
 - MC@NLO: \longrightarrow visible structures, especially in $gg \rightarrow H$
 - POWHEG: \longrightarrow high tails, cured by *h* dampening factor
 - well-established and well-known methods

(no need to discuss them any further)

<ロ> (日) (日) (日) (日) (日)

- two schemes at NNLO: MINLO & UN²LOPS (singlets S only)
 - different basic ideas
 - MINLO: S + j at NLO with p^(S)_T → 0 and capture divergences by reweighting internal line with analytic Sudakov, NNLO accuracy ensured by reweighting with full NNLO calculation for S production
 - UN²LOPS identifies and subtracts and adds parton shower terms at FO from S + j contributions, maintaining unitarity
 - ullet available for two simple processes only: DY and gg
 ightarrow H

NNLOPS for *H* production: MINLO

K. Hamilton, P. Nason, E. Re & G. Zanderighi, JHEP 1310

< D > < B >

• also available for Z/W/VH production

-

NNLOPS for Z production: UN^2LOPS

S. Hoche, Y. Li, & S. Prestel, Phys.Rev.D90 & D91

<ロト <問ト < 注ト < 注

• also available for H production

A new shower implementation in DIRE

(S.Höche & S.Prestel, Eur.Phys.J. C75 (2015) 461)

• evolution and splitting parameter $((ij) + k \rightarrow i + j + k)$:

$$\kappa_{j,ik}^2 \ = \ \frac{4(p_i p_j)(p_j p_k)}{Q^4} \quad \text{and} \quad z_j \ = \ \frac{2(p_j p_k)}{Q^2}$$

• splitting functions including IR regularisation

(a la Curci, Furmanski & Petronzio, Nucl.Phys. B175 (1980) 27-92)

$$\begin{split} P_{qq}^{(0)}(z,\,\kappa^2) &= & 2C_F\left[\frac{1-z}{(1-z)^2+\kappa^2}-\frac{1+z}{2}\right]\,,\\ P_{qg}^{(0)}(z,\,\kappa^2) &= & 2C_F\left[\frac{z}{z^2+\kappa^2}-\frac{2-z}{2}\right]\,,\\ P_{gg}^{s(0)}(z,\,\kappa^2) &= & 2C_A\left[\frac{1-z}{(1-z)^2+\kappa^2}-1+\frac{z(1-z)}{2}\right]\,,\\ P_{gq}^{(0)}(z,\,\kappa^2) &= & T_R\left[z^2+(1-z)^2\right] \end{split}$$

- renormalisation/factorisation scale given by $\mu = \kappa^2 Q^2$
- combine gluon splitting from two splitting functions with different spectators k → accounts for different colour flows

LO results for Drell-Yan

(example of accuracy in description of standard precision observable)

- * ロ * * @ * * 注 * 注 * 三 * のへで

Including NLO splitting kernels

(Hoeche, FK & Prestel, 1705.00982, and Hoeche & Prestel, 1705.00742)

イロト イポト イヨト イヨト

expand splitting kernels as

$${\cal P}(z,\,\kappa^2)\,=\,{\cal P}^{(0)}(z,\,\kappa^2)\,+\,rac{lpha_{\,S}}{2\pi}\,{\cal P}^{(1)}(z,\,\kappa^2)$$

- aim: reproduce DGLAP evolution at NLO include all NLO splitting kernels
- three categories of terms in $P^{(1)}$:
 - cusp (universal soft-enhanced correction) (already included in original showers)
 - $\bullet~$ corrections to $1 \rightarrow 2$
 - ullet new flavour structures (e.g. $q \to q')$, identified as $1 \to 3$
- new paradigm: two independent implementations

Validation of $1 \rightarrow 3$ splittings

Impact of $1 \rightarrow 3$ splittings

Physical results: $e^-e^+ \rightarrow$ hadrons

(Hoeche, FK & Prestel, 1705.00982)

Physical results: DY at LHC

 $Z \rightarrow ee$ "dressed", Inclusive $0.0 < |y_Z| < 1.0$, "dressed" 0.0 - Data + Data 3 - NLO 1 0.0 - NLO $1/4t \le \mu_{\pi}^2 \le 4t$ $1/4t \le \mu_{y}^{2} \le 4t$ 0.0 - LO - LO $1/4t \le \mu_{\pi}^2 \le 4t$ $1/4t \le \mu_{y}^{2} \le 4t$ 0.0. 0.0 0.03 0.0 0.03 0.0 0.01 0.0 MC/Data MC/Data 1.0 ο. 0.8 0 ²⁵ Z p_T [GeV] 25 3 Z р_т [GeV] $1.0 < |y_Z| < 2.0$, "dressed" 2.0 < |u₇| < 2.4, "dressed" 0.0 + Data - Data 3 -- NLO 100 - NLO 0.0 $1/4t \le \mu_{W}^2 \le 4t$ $1/4t \le \mu_y^2 \le 4t$ - LO - LO 0.0 $1/4t \le \mu_R^2 \le 4t$ $1/4t \le \mu_R^2 \le 4t$ 0.04 0.0. 0.03 0.03 0.03 0.0 0.0 0.01 MC/Data 1.4 1.1 ο. 0.8 0.8 10 15 20 25 30 Z p_T [GeV] 15 20 25 3 Z pT [GeV]

(untuned showers vs. 7 TeV ATLAS data)

イロト イヨト イヨト イヨト

Physical results: differential jet rates at LHC

Summary

- implemented NLO DGLAP kernels into two independent showers will allow cross checks/validation of NP effects
- cross-validated implementations PYTHIA \longleftrightarrow SHERPA
- matching to NNLO/multijet merging at NLO ongoing work
- extension to include loop-corrections to 1*to*2 straightforward will allow to use triple-collinear splitting functions throughout
- future plans: soft-gluon emissions and non-trivial colour correlations

・ロト ・同ト ・ヨト ・ヨ

