

b quark mass effects in associated production

Davide Napoletano, HiggsTools Final Meeting, 14/09/2017

Intro

• m_b somewhere in $\Lambda_{QCD} < m_b < m_{V,H,t}$

• main production through $g \rightarrow bb$

Problems so far are only theoretical/MC

4FS vs 5FS

$m_b \neq 0$ (Everywhere)

• $\sim \alpha_S \log \frac{m_b^2}{q^2}$, can be O(1)

• $g \rightarrow b\bar{b}$, no problem

4FS vs 5FS

• $m_b = 0$

Logs resummed in b-pdf

• $g \rightarrow b\bar{b}$, depends on PS

Running...

4FS vs 5FS: running coupling

$pp \rightarrow VH(b\bar{b})$

arXiv:1612.04640

 Compare against Zbb data to understand Hbb

 As in Zbb, good shape agreement among schemes

Mass effects

There are regions in which they are important

The two massless description disagree with 4FS

Massive 5FS

- Flavour scheme with 5 active flavour, with massive-bs
- Problem(s):
 - Factorisation and IR cancellation beyond NLO
 - PDFs (must include massive splitting kernels)
 - Same for shower

Fixed Order

Fixed Order

MC@NLO

$$\mathrm{d}\sigma^{\mathrm{MC}@\mathrm{NLO}} = \mathrm{d}\Phi_N \,\overline{\mathcal{B}}(\Phi_N) \,\left[\Delta_N(t_0, \mu_Q^2) + \int_{t \in [t_0, \mu_Q^2]} \mathrm{d}\Phi_1 \,\mathrm{K}_N(\Phi_1) \,\Delta_N(t(\Phi_1), \mu_Q^2) \right] + \mathrm{d}\Phi_{N+1} \,\mathcal{H}(\Phi_{N+1})$$

$$\mathbf{k}_{\perp}^{2} = \frac{2 y \left(1 - x - y\right) p_{a} \cdot p_{b} - (1 - x - y)^{2} m_{a}^{2} - y^{2} m_{b}^{2}}{1 - \frac{m_{a}^{2} m_{b}^{2}}{(p_{a} \cdot p_{b})^{2}}}$$

Г

$$\frac{\mathrm{d}\mathbf{k}_{\perp}^2}{\mathbf{k}_{\perp}^2} = \frac{1 - x - 2y + (1 - x - y)\frac{m_a^2}{p_a \cdot p_b} - y\frac{m_b^2}{p_a \cdot p_b}}{1 - x - y - \frac{(1 - x - y)^2}{2y}\frac{m_a^2}{p_a \cdot p_b} - \frac{y}{2}\frac{m_b^2}{p_a \cdot p_b}} \frac{\mathrm{d}y}{y}$$

$$\mathcal{J}(x,y;\mathbf{k}_{\perp}^{2}) = \frac{1-x-y-\frac{(1-x-y)^{2}}{2y}\frac{m_{a}^{2}}{p_{a}\cdot p_{b}} - \frac{y}{2}\frac{m_{b}^{2}}{p_{a}\cdot p_{b}}}{1-x-2y+(1-x-y)\frac{m_{a}^{2}}{p_{a}\cdot p_{b}} - y\frac{m_{b}^{2}}{p_{a}\cdot p_{b}}} \frac{s_{ab}}{\sqrt{\lambda_{ab}}} \frac{1}{x} \frac{f_{a}(\eta/x)}{f_{a}(\eta)}$$

$$\Delta_{II}(\mathbf{k}_{\perp,max}^2,\mathbf{k}_{\perp,0}^2) = \exp\left\{-\sum_{ak}\sum_{b\neq ak}\frac{1}{\mathcal{N}_{spec}}\int_{\mathbf{k}_{\perp,0}^2}^{\mathbf{k}_{\perp,max}}\frac{\mathrm{d}\mathbf{k}_{\perp}^2}{\mathbf{k}_{\perp}^2}\int_{x_{-}}^{x_{+}}\mathrm{d}x\,\mathcal{J}(x,y;\mathbf{k}_{\perp}^2)\,\mathbf{V}^{ak,b}(p_a,p_b,p_k)\right\}$$

MC@NLO

MC@NLO

