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  Intro

•       somewhere in  

• main production through 

• Problems so far are only theoretical/MC

mb ⇤QCD < mb < mV ,H,t

g ! bb̄



  4FS vs 5FS

4F Scheme : VH

•                    (Everywhere)  

•                   , can be O(1)  

•               , no problem

mb 6= 0
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g ! bb̄



  4FS vs 5FS

5F Scheme : VH

•                

•  Logs resummed in b-pdf 

•              , depends on PS

mb = 0

g ! bb̄



  Running…

4FS vs 5FS: running coupling 4FS vs 5FS: g PDF(x=0.01)



pp ! VH(bb̄)
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• Compare against Zbb data to 
understand Hbb

arXiv:1612.04640

• As in Zbb, good shape 
agreement among schemes



  Mass effects
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• There are regions in which they are important

• The two massless description disagree with 4FS



  Massive 5FS

• Flavour scheme with 5 active flavour, with massive-bs 

• Problem(s):  

• Factorisation and IR cancellation beyond NLO 

• PDFs (must include massive splitting kernels) 

• Same for shower



  Fixed Order 

bb̄ ! H @ NLO :

= =

- +=



  Fixed Order



  MC@NLO

Particles emitted from the fixed order matrix element with an initial scale µ
Q

undergo a backward evolution
towards a lower cuto↵ scale t0 ⇠ 1 GeV. At each stage an extra branching occurs, or not, depending on the
relative probability, or weight, of the Sudakov at that given scale. As the splitting kernels are derived in the
soft and collinear limit of matrix elements, this procedure then retains and resum, the leading logarithmic
term of each branching.

At the leading order, the showered di↵erential cross section Eq. (??) becomes
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An important feature of the parton shower, that comes from its probabilistic interpretation, is that it is
unitary. That means that
Z

d�LO⌦PS =

Z
d�LO (2.6)

2.1 MC@NLO

Having used Catani-Seymour dipole as splitting kernels, we can extend the picture presented to next-to-
leading order matrix elements. For convenience, we define
Z
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) . (2.7)

The MC@NLO matching, is most conveniently expressed in terms of a NLO-weighted Born cross section,
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and a hard remainder,
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Note that the ordering variable t is defined di↵erently for each dipole as it depends on the various phase
space mappings. Using the same definition of the Sudakov form factor given in Eq. (2.4), we have that
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As in the leading order case, it can be shown that
Z

d�MC@NLO =

Z
d�NLO

. (2.11)

Note that this last relation implies that a MC@NLO observable has the same fixed order accuracy as a NLO
one.

3 Initial state splitter with initial state spectator

this part needs to be restructured

We start by reporting some useful definitions that are used throughout,
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in the case where the splitting is b ! gb. The transformations are given by,
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It is straightforward to check that these relations fulfill the mass-shell conditions, such that ep2
a
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2
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2, and that they possess the right infra-red and collinear asymptotic limits. All other momenta,
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We further need to calculate the extra-emission phase space. In particular, we have
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where x dependent momenta can be obtained from ep
a

and e
Q upon replacing Q
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3.1 Sudakov form factor
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  MC@NLO



  MC@NLO


