Tau Identification and Search for SM $H \to \tau \tau$ with ATLAS

Théo MEGY Albert-Ludwigs-Universität Freiburg 12.09.2017

- $1 \ \tau_{\textit{had}}$ identification
 - Reconstruction
 - Identification
 - Measurement
- 2 SM $\mathrm{H}{\rightarrow}\,\tau\tau$ Analysis
 - Motivation
 - Run 2 analysis
 - Impact of τ_{had} identification
- 3 Conclusion

τ_{had} reconstruction

- Hadronic decay in 65% of cases
- Forms a narrow jet
 - 1 or 3 charged pions (prong)

τ_{had} reconstruction

- Hadronic decay in 65% of cases
- Forms a narrow jet
 - 1 or 3 charged pions (prong)

• τ_{had} candidate reconstruction:

- Seed: jet formed using anti-k_t algorithm
- Track matched to τ_{had} if $\Delta R < 0.2$ and $p_T > 1$ GeV
- Other leptons or jets can be reconstructed as $au_{had} \Rightarrow$ Fakes

au_{had} identification

Identification:

- Discriminate against jet fakes
- Boosted Decision Tree using info from internal structure of τ_{had} candidate
- True τ_{had} : low track multiplicity, narrow calorimeter activity, etc

• Examples of input variable:

• Fraction of tracks p_T in isolation region

Separate BDT for 1 and 3 prong

au_{had} identification efficiency measurement

• Measure the identification efficiency from ATLAS data

- Signal: $Z \rightarrow \tau \tau$
- Tag-and-probe approach:
 - Select events triggered by a muon (tag) and containing a τ_{had} candidate (probe) before ld
- Backgrounds: W+jet, $Z \rightarrow II$, top (t \overline{t}), Multijet
- Extract efficiency:
 - Compare number of reconstructed τ_{had} before and after identification

- Goal: Select $Z \rightarrow \tau (\rightarrow \mu \nu_{\mu} \nu_{\tau}) \tau_{had}$ events
- Pre-selection applied:
 - 1 single trigger matched muon with $p_{T} \geq$ 22 GeV
 - Electron veto
 - At least 1 τ_{had} candidate with |q|=1, 1 or 3 tracks and $p_T \ge 20$ GeV
 - ightarrow Pick candidate with highest $p_{\mathcal{T}}$

- Goal: Select $Z o au (o \mu
 u_{\mu}
 u_{ au}) au_{had}$ events
- Pre-selection applied:
 - 1 single trigger matched muon with $p_{T} \geq$ 22 GeV
 - Electron veto
 - At least 1 au_{had} candidate with $|\mathsf{q}|{=}1,\,1$ or 3 tracks and $p_{ au}\geq$ 20 GeV
 - ightarrow Pick candidate with highest $p_{\mathcal{T}}$
- Signal Region:

 $egin{array}{lll} M_{
m T} \leq 50 \ {
m GeV} \ {
m SumCosDPhi} \geq -0.1 \ {
m 42} \leq {
m visible} \ {
m mass} \ (\mu, au) \leq 82 \ {
m GeV} \end{array}$

- Goal: Select $Z o au (o \mu
 u_{\mu}
 u_{ au}) au_{had}$ events
- Pre-selection applied:
 - 1 single trigger matched muon with $p_{T} \geq$ 22 GeV
 - Electron veto
 - At least 1 au_{had} candidate with $|{
 m q}|{=}1,\,1$ or 3 tracks and $p_{ au}\geq$ 20 GeV
 - ightarrow Pick candidate with highest $p_{\mathcal{T}}$
- Signal Region:

 $M_{
m T} \leq 50 ~{
m GeV}$ SumCosDPhi \geq -0.1 42 \leq visible mass (μ, τ) \leq 82 GeV

• W+jet Control Region:

 $egin{array}{l} M_{
m T} \geq 60 \ {
m GeV} \ E_{
m T}^{
m miss} \geq 30 \ {
m GeV} \ {
m SumCosDPhi} \leq 0 \end{array}$

- Goal: Select $Z o au (o \mu
 u_{\mu}
 u_{ au}) au_{had}$ events
- Pre-selection applied:
 - 1 single trigger matched muon with $p_{\mathcal{T}} \ge$ 22 GeV
 - Electron veto
 - At least 1 au_{had} candidate with $|{f q}|{=}1,\,1$ or 3 tracks and $p_{\mathcal{T}}\geq$ 20 GeV
 - ightarrow Pick candidate with highest $p_{\mathcal{T}}$
- Signal Region:

 $M_{
m T} \leq 50 ~{
m GeV}$ SumCosDPhi \geq -0.1 42 \leq visible mass (μ, τ) \leq 82 GeV

• W+jet Control Region:

 $egin{aligned} M_{\mathrm{T}} &\geq 60 \ \mathrm{GeV} \ E_{\mathrm{T}}^{\mathrm{miss}} &\geq 30 \ \mathrm{GeV} \ \mathrm{SumCosDPhi} &\leq 0 \end{aligned}$

Multijet Control Region
 SR with inverted muon isolation

Track multiplicity fit method

Track multiplicity =

 $\begin{array}{l} \text{Core tracks } + \\ \text{Outer tracks satisfying} \\ \min(\frac{p_T^{core}}{p_T^{outer}} \times \Delta R(\textit{core, outer})) \leq 4 \end{array}$

Core: $0 \le \Delta R \le 0.2$ Outer: $0.2 \le \Delta R \le 0.6$

Track multiplicity fit method

Track multiplicity =

 $\begin{array}{l} \text{Core tracks } + \\ \text{Outer tracks satisfying} \\ \min(\frac{p_T^{core}}{p_T^{outer}} \times \Delta R(\textit{core, outer})) \leq 4 \end{array}$

Core: $0 \le \Delta R \le 0.2$ Outer: $0.2 \le \Delta R \le 0.6$

- Definition of 3 templates:
 - Tau template = MC $Z \rightarrow \tau \tau$ and top(t \overline{t}) with truth matched τ 's
 - Lepton template = MC $Z \rightarrow II$, top and $Z \rightarrow \tau \tau$ with lepton fake τ 's
 - Jet template (W+jet and Multijet) ⇒ Data driven

Construction of the Jet template

Construction of the Jet template

Pre-ID fit - Results

• Fit in pre-ID region

- Float Tau templates with 1 common parameter
- Float Jet template
- Constrain Lepton template to MC prediction

Pre-ID fit - Results

Fit in pre-ID region

- Float Tau templates with 1 common parameter
- Float Jet template
- Constrain Lepton template to MC prediction

 $\chi^2 / ndf = 1.278$

Tau normalisation factor = 0.960 \pm 0.015 Jet normalisation factor = 0.970 \pm 0.011

τ_{had} identification efficiency

- To get Tau ID efficiency:
 - Build templates in passed ID region (1 and 3 prong)
 - Apply jet normalisation factor extracted from pre-ID fit
 - Tau = data jet lepton

τ_{had} identification efficiency

- To get Tau ID efficiency:
 - Build templates in passed ID region (1 and 3 prong)
 - Apply jet normalisation factor extracted from pre-ID fit
 - Tau = data jet lepton

Currently:

- New method being developed
- Simultaneous fit in all ID regions
- SF binned in $\mathsf{p}_{\mathcal{T}}^{ au}$

1 $\tau_{\textit{had}}$ identification

- Reconstruction
- Identification
- Measurement

2 SM H $\rightarrow \tau \tau$ Analysis

- Motivation
- Run 2 analysis
- Impact of τ_{had} identification
- 3 Conclusion

SM $H \rightarrow \tau \tau$ Analysis - Motivation

- Why searching for $H \rightarrow \tau \tau$?
 - Want to measure Higgs boson coupling to fermions
 - Clear signature \Rightarrow Exploit gluon Fusion (ggF) + Vector Boson Fusion (VBF)

SM $H \rightarrow \tau \tau$ Analysis - Tau decay

Leptonic decay

Hadronic decay

3 channels to investigate and combine

- ATLAS Run 1 analysis \Rightarrow 4.5 σ significance ; ATLAS + CMS \Rightarrow 5.5 σ
- Run 2: Rediscover Hightarrow au au with ATLAS at \sqrt{s} = 13 TeV
 - \Rightarrow Cut-based and multivariate analysis pursued
- CMS Run 2 \Rightarrow 4.9 σ ; Run 1 + Run 2 \Rightarrow 5.9 σ

SM $H \rightarrow \tau \tau$ Analysis - Analysis categories

VBF category

Particular topology: 2 forward high p_T jets

- N_{jets} \geq 2, p_T^{jet0} > 40 GeV and p_T^{jet1} > 30 GeV
- $\Delta\eta_{jj} \geq$ 3, m $_{jj} \geq$ 400 GeV
- Taus between jets' pseudo-rapidity gap

Boosted category

Enriched in ggF events

- Failing VBF selection
- $p_T^H > 100 \text{ GeV}$

- 1 $\tau_{\textit{had}}$ identification
 - Reconstruction
 - Identification
 - Measurement
- 2 SM $\mathrm{H}{\rightarrow}\,\tau\tau$ Analysis
 - Motivation
 - Run 2 analysis
 - Impact of $\tau_{\rm had}$ identification
- 3 Conclusion

Impact of au_{had} identification

- Can we improve the sensitivity/significance by changing au_{had} ID conditions ?
- Study performed in semi-leptonic channel with 2015+2016 dataset

- Currently used: Medium WP (cut at au jet BDT score pprox 0.6)
- Suppress fakes with tighter cut
- Try to apply Continuous tau ID Split SR in Tight ID and Medium not Tight ID

Tight

Tight

- Perform fit in the semi-leptonic channel
 - Tau ID syst. for Medium and Tight treated independently
- Expected significance:
 - Increase in VBF from Medium to Continuous identification
 - Stable in Boosted
 - Few percent increase in combined fit

- Perform fit in the semi-leptonic channel
 - Tau ID syst. for Medium and Tight treated independently
- Expected significance:
 - Increase in VBF from Medium to Continuous identification
 - Stable in Boosted
 - Few percent increase in combined fit
- But: low statistics in Medium not Tight region
 - \Rightarrow Especially dramatic in Low VBF SR

Impact on the Fit:

- Automatic procedure for Nuisance Parameter treatment: prune, use shape and/or normalisation information
- Compare treatment in Medium not Tight/Tight with Medium (Z ightarrow au au)
- Medium not Tight: several NP using only norm., instead of norm+shape
- Tight: only few NP not using shape anymore

Continuous Tau ID - Very Tight ID

• Define tighter Tau ID cut

- Split Medium region evenly
 - + suppress fakes further
- Scanned a few values
- Optimal split obtained for BDT score > 0.73
- Simplified case: specific 1/3 prong cuts normally needed
- No corresponding SF
 - Use Tight SF for Very Tight
 - Use Medium SF for Medium not Very Tight

Continuous Tau ID - Very Tight ID

• Low VBF signal region:

- Better fakes rejection in Very Tight region
- Improved statistics in Medium not Very Tight
- Treatment of Nuisance Parameters $(Z \rightarrow \tau \tau)$:
 - Still lots of NP losing shape information (Low VBF SR)

Continuous Tau ID - Very Tight ID

• Expected significance:

- Increase in both VBF and Boosted
- 6% increase in the combined significance
- Caveats:
 - Non-optimised WP
 - Need dedicated tau ID SF
 - NP treatment \rightarrow still suffer from low statistics

Conclusion

• Tau identification in ATLAS:

- Select true τ_{had} and discriminate against jet fakes
- Using multivariate algorithm
- Need of dedicated measurement in ATLAS data

• $\mathbf{H} \rightarrow \tau \tau$ and tau identification:

- Expected significance raised by using continuous tau identification
- Attempt to define tighter ID cut to fight low stats
- Potential improvement of significance by 6%

Next steps:

- Define of fully optimised WPs (1 and 3 prong)
- Derive corresponding SFs
- Use continuous tau identification in MVA analysis

Backup

SM $H \rightarrow \tau \tau$ Analysis - Analysis categories

	VBF	Boost	
	At least two jets with p_T^{j1} $>$ 40 GeV and p_T^{j2} $>$ 30 GeV	Failing VBF selection	
	$\Delta \eta_{jj} > 3, m_{jj} > 300 \text{GeV}$	$p_T^H > 100{ m GeV}$	
	leptons,taus between jets' pseudo-rapidity gap		

SM $H \rightarrow \tau \tau$ Analysis - Analysis categories

	VBF			Boost	
	At least two jets with p_T^{j1} > 40 GeV and p_T^{j2} > 30 GeV			Failing VBF selection	
	$\Delta \eta_{jj} > 3, m_{jj} > 300 \text{GeV}$			$p_T^H > 100{ m GeV}$	
	leptons,taus betwee	en jets' pseudo-rapidity gap			
11	VBF High-pt	VBF Low-pt		Boost High-pt	Boost Low-pt
	$p_T^H > 100{ m GeV}$	$p_T^H < 100{\rm GeV}$		$p_T^H > 140{ m GeV}$	$p_T^H < 140{ m GeV}$
	and $m_{jj} > 400 \mathrm{GeV}$	and $m_{jj} > 400 \text{GeV}$			
lh	VBF Tight	VBF Loose		Boost High-pt	Boost Low-pt
	$m_{jj} > 500 { m GeV}$	$m_{jj} < 500 { m GeV}$		$p_T^H > 140 \mathrm{GeV}$ and	$p_T^H < 140 \mathrm{GeV}$ or
	and $p_T^H > 100 \mathrm{GeV}$	or $p_T^H < 100{ m GeV}$		$\Delta R_{l\tau} < 1.5$	$\Delta R_{l\tau} > 1.5$
hh	VBF High-pt	VBF Low-pt Tight	VBF Low-pt Loose	Boost High-pt	Boost Low-pt
$p_T^{j1} > 70 \mathrm{GeV}$	$p_T^H > 140 \mathrm{GeV}$ and	$p_T^H <$ 140 GeV or $\Delta R_{ au au} <$ 1.5 and		$p_T^H > 140 \mathrm{GeV}$ and	$p_T^H < 140 \mathrm{GeV}$ or
	$\Delta R_{ au au} < 1.5$	$m_{jj} > (-250\Delta\eta_{jj} + 1550)\mathrm{GeV}$	$m_{jj} < (-250\Delta\eta_{jj} + 1550)\mathrm{GeV}$	$\Delta R_{ au au} < 1.5$	$\Delta R_{\tau\tau} > 1.5$

SM $H \rightarrow \tau \tau$ Analysis - Fit Model

Impact of τ_{had} identification

- Apply tight tau ID
- Inclusive VBF signal region: Medium 400 Events / 10 GeV # Bkg (stat) in Progress Fake $Z \rightarrow \tau \tau$ 350 Top DiBoson √s = 13 TeV 36 1 fb Z→ II C Signal x20 300 $H\!\!\rightarrow\!\!\tau_{lep}^{}\tau_{had}^{}$ 250 200 150 100 50 Data / Bkg 40 60 80 100 120 140 160 180 200 220 m_{TT}^{MMC} [GeV]
- Statistics reduced, but fakes also

- Statistical power increased with tight ID working point
- Does it propagate to final significance ?
- Perform fit in the semi-leptonic channel

- Statistical power increased with tight ID working point
- Does it propagate to final significance ?
- Perform fit in the semi-leptonic channel
- Loss in significance
- Next step: Also use information from medium not tight ID
 ⇒ Continuous tau ID

Fitting studies - Split Tau ID

• Inclusive VBF signal region:

Fitting studies - Split Tau ID

• Loose VBF signal region:

Fitting studies - Split Tau ID

• Low Boosted signal region:

m^{MMC} [GeV]

Bko (sti Fake Z→tt

m^{MMC} [GeV

tot: "CutOBBOOSTHEGHSR_MMC_B

Signal x20

+ Data 🗰 Bkg (stat)

Fake Z→tt DiBoson Signal x2

Top DiBoson Z→II Signal x20

Fitting studies - Very Tight Tau ID

• Inclusive VBF signal region:

Fitting studies - Very Tight Tau ID

• Loose VBF signal region:

12.09.2017 32 / 22

mMMC [GeV]

 Data e Bkg (stat

120

140

m^{MMC} [GeV]

Fake Z→ tt Top DiBoson Z→II Signal x20

Fitting studies - Very Tight Tau ID

• Low Boosted signal region:

mMMC [GeV]

Théo MEGY

m^{MMC} [GeV]