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Why keeping working after the Higgs boson discovery?

• Is this the only Higgs boson in Nature?

• Is it doing the Higgs boson’s job?

Different paths to follow to answer (one or more of) these questions
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Many tools for the higgs investigation

• Measuring with higher precision its properties and couplings

• Investigating the high mass region

• Measuring the electroweak (EWK) vector boson interactions

The Standard Model (SM)

lagrangian predicts triple (TGC)

and quartic (QGC) gauge bosons

vertices

Lgauge = −
1

4
BµνBµν −

1

4
W a
µνWµν

a

= LGC + LTGC + LQGC

! Pure EWK verteces are suppressed by αEWK → rare processes

Ultimately: aiming to study quartic couplings
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Vector boson scattering



The role of Vector Bosons Scattering

• CERN Large Hadron Collider is providing promising statistics to access these

processes

• quartic couplings can be accessed in Vector Boson Scattering signatures

At hadron colliders VBS can be idealized as VVjj

at leading order (LO):

• two vector bosons (i.e. their respective decay products)

• two outgoing jets

BUT

VBS diagrams are not separately gauge invariant and must be studied in conjunction

with additional Feynman diagrams leading to the same VVjj final state.
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VVjj final state diagrams

Theoretically there are two classes of physical processes.

• Electroweak production: Only Weak interaction

• O(α6
EWK )

• VBS signal in it

• It contains also:

purely EWK process which give the same final state

processes with 3 decaying vector boson (only 1 decaying hadronically)
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VVjj final state diagrams

Theoretically there are two classes of physical processes.

• Electroweak production: Only Weak interaction

• Strong production: Both strong and EWK interaction

• O(α4
EWKα

2
S )
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The WW channel



WW scattering

Without a light SM Higgs boson the VBS amplitude of longitudinally polarized W

bosons increases with
√

s and violates unitarity at energies around 1 TeV.

↓

The SM Higgs boson should avoid this problem

WW scattering is a key process to probe EWKSB
We can establish if the Higgs boson can preserve unitarity of the VBS at all energies

• Test of the Higgs boson nature

• The discovered Higgs boson

contribute fully to the EWKSB

↓

WW interaction remain weak at high

energies

• Model independent research of
alternative theory

• The discovered Higgs boson is

partially responsible for the EWKSB

↓

WW interaction get strong at high

energy

arXiv:1412.8367
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Choosing the right process: W±W±jj channel

C. Gumpert, PhD Thesis, CERN-THESIS-2014-290

W±W±jj production:

• lower background from QCD production: σEWK/σQCD '11 ( σEWK/σQCD '0.6

for opposite sign)

The same-charge selection restricts the number of diagrams involved
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Background composition



Background composition

SM processes can mimic the signature ``′ + E miss
T +2 jets

Type Sources Reduction

1 SC leptons

WZ+jets

veto on third leptonZZ+jets

tt̄V

2 OC charge mis-ID

tt̄ → `ν`νbb̄ b-jet veto +SC req.

W±W∓ + jets

Z/γ∗+jets→ `±`∓+jets large E miss
T +mZ peak excl.

3 Jets, γ mis-reco

W +jets

tt̄ → `νjjbb̄
b-jet veto+E miss

Tsingle top

Wγ+jets tight isolation+veto on third lepton
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It’s important to keep in mind that the other SM processes have much
larger cross section compared to our signal!
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The challenges

Many challenges enter this analysis:

• very low cross-section compared to other SM processes

• many SM backgrounds can be reduced with dedicated cuts, but still some of

them need to be estimated

• big impact of background from non-prompt leptons (fakes)

• big impact of background from charge mis-reconstruction

↓

always better to estimate these backgrounds with data-driven methods (“Data model

data better than Monte Carlo”)

In the following focus on charge mis-identification background

In order to estimate the charge mis-ID background it’s important to precisely know

the probability of an electron to have its charge wrongly reconstructed:

• measurement of electron charge mis-identification efficiencies

• data-driven estimation of background from charge mis-identification
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Electron charge mis-identification:
efficiencies measurement



The source of charge mis-ID

Charge (mis-)reconstruction

• Conversion of bremsstrahlung photon

e-
primary electron

conversion electron

γbrem

e+

e-
primary electron

reconstructed electron
with wrong charge

γbrem

e+

• Wrong track reconstruction

primary electron

reconstructed electron
with wrong charge

• very rare effects

• very hard to properly model in detector simulation

• the effect have to be measured on data

In ATLAS objects measurements are performed inside Combined Performance groups. This one in particular has

been carried out in the Electron-photon CP group
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Measuring the efficiencies

GeVllM
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310×

OS events

SS events

ATLAS Work in progress

• Double differential measurement in

4×6 bins in pT × |η|

• measured in Z → e+e− events

• εi probability electron charge mis-reconstructed in

bin i . Assume εi independent

Nexp
sc = np = n

[
(1− εi ) εj +

(
1− εj

)
εi

]
Building likelihood function:

• binomial counting: probability of nsc SC events:( n
nsc

)
pnsc (1− p)n−nsc

• approximated Poisson distribution

P
(
nsc|εi , εj

)
=

(Nexp
sc )nsc e−Nexp

sc

nsc!
≡ L(εi , εj )

• L =
∏

i,j L(εi , εj )

Efficiencies obtained by minimizing −ln(L)
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arxiv:1612.01456
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Scale factors
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• efficiencies highly dependent on process and kinematic

selection

• scale factors are produce where these effects cancel

• they can also be used to study the effeiciencies of other

processes

• scale factors are derived for right charge and wrong

charge electrons to correct MC
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1− εdata

1− εMC

0.8506 1.0662 0.8508 1.0948

0.7524 0.6884 0.7634 1.1763

0.6716 0.7525 0.9382 0.9647

0.6803 0.6679 0.7773 0.9437

0.9007 1.0002 0.9707 1.0326

0.9095 1.0091 1.1332 0.9740

 GeV
T

p
40 60 80 100 120 140

|η|

0

0.5

1

1.5

2

2.5

0.7

0.8

0.9

1

1.1

1.0000 1.0000 1.0003 0.9997

1.0002 1.0007 1.0010 0.9989

1.0007 1.0012 1.0006 1.0006

1.0021 1.0047 1.0052 1.0023

1.0010 1.0000 1.0011 0.9979

1.0024 0.9995 0.9894 1.0030

 GeV
T

p
40 60 80 100 120 140

|η|

0

0.5

1

1.5

2

2.5

0.7

0.8

0.9

1

1.1

• corrections for wrong charge electrons up to ∼30%

• corrections for right charge electrons never bigger than 0.5%
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Analysis overview



Prelude: W±W±jj analysis topology

• 2 high-pT jets in the forward regions

(2 jets with highest pT )

• No color exchange in the hard

scattering process → rapidity gap in

the central part of the detector

• large mjj and mWWjj
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Plot: "CutNJets/DYjj"
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Plot: "CutNJets/Mjj"

Two analysis regions could be defined, using the EWK specific topologies as

discriminant cuts:

• Inclusive region: signal = EWK+QCD

• VBS region: signal = EWK → additional cut on |∆yjj | > 2.4
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Studies of EWK-QCD separation and interference

Interference between O
(
α4

QCD

)
strong and O

(
α6

EWK

)
electroweak W±W±jj

production to be studied:

∣∣∣MWWjj
SM

∣∣∣2 =
∣∣∣MWWjj

QCD +MWWjj
EWK

∣∣∣2 =
∣∣∣MWWjj

QCD

∣∣∣2 +
∣∣∣MWWjj

EWK

∣∣∣2 +
∣∣∣MWWjj

INT

∣∣∣2

• interference varies from few percent to few ten-percent

• negative in some regions

• will be included as systematic uncertainty on the EWK

signal
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Contributions at final selection

• analysis performed in four channels: eµ, µe, µµ and ee

• different background composition between channels

• main backgrounds: WZ , fakes and charge mis-ID (not µµ channel)

As anticipated the main challenges in this analysis are related to the fake background

and the charge mis-identification one
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Electron charge mis-identification:
background in the W±W±jj analysis



Charge mis-ID background

The technique

• charge mis-ID background estimated from data

• same-charge events are estimated from opposite-charge events

• opposite charge data are scaled with

w =
ε1 + ε2 − 2ε1ε2

1− (ε1 + ε2 − 2ε1ε2)
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ATLAS Work in progress
-1= 13 TeV, 36.1  fbs

• ε1,2: charge mis-ID rates for e1,2

• rates appear to be process

dependent
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The data-driven estimate

The final aim

We want a data-driven estimation of the charge mis-identification background

remaining in the SR

opposite-charge data

same-charge estimation

where

ε1,2: charge misID rates. P for `1,2 charge to be mis-identified

→ rates from data are needed to build the weights
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From SF to rates
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↓

• apply the SF to MC so that it matches the probability of mis-identification of data

• get rates from MC using the truth information

ε =
wrong charge ele
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Energy corrections needed

Up to this point of the workflow a simple scaling is applied to OC data:

• the integral is modified

• the distribution of charge flip estimation is identical to OC data one

• SC events have lower energy wrt OC one, because of the energy leakage due to

Bremsstrahlung emission
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Energy corrections needed

Up to this point of the workflow a simple scaling is applied to OC data:

• the integral is modified

• the distribution of charge flip estimation is identical to OC data one

• SC events have lower energy wrt OC one, because of the energy leakage due to

Bremsstrahlung emission
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The scaling and the smearing

The four-momentum of OC data used for the estimation is modified

• pT is shifted towards smaller values

• pT is smeared to match the worse resolution

pcorrected
T = pscaled

T + dE

The scaling is based on the energy response

response =
preco

T

ptruth
T

− 1

which is different for correctly reconstructed and wrongly reconstructed electrons
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The estimation in the ee channel
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• the ee channel is dominated by charge mis-ID background

• the estimation seems to match quite nicely with data

• studies and optimizations ongoing
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Summary



Summary

Two main working areas have been shown...

→ electron charge mis-ID SF measurement

• performed within the ATLAS e/γ combined performance group

• official recommendations provided to physics analyses inside the collaboration

• the work will be documented in the e/γ paper

→ estimation of the charge mis-ID background in the W±W±jj analysis

• process of estrapolation of the rates for the analysis has been shown

• the impact of this background is huge in the SR, much work needed to get a

precise estimation

• the technique for this has been studied and implemented inside the analysis

framework

• further corrections have been performed

WW scattering is a key process for SM and EWSB mechanism

• same charge final state is a clean signature of electroweak production

• on the other side the low cross-section and the large background from charge

mis-identification make the W±W±jj analysis a difficult path

Very challenging time yet to come to put Standard Model to stringent test
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Thank you!



Backup



Phase space for fiducial cross sections (slide 8)

• Sherpa

• defined at parton level

• plep
T ≥ 25 GeV

• |ηlep | ≤ 2.5

• ∆R lep ≥ 0.3

• minimum m`` of all charged lepton pair combinations ≥ 20 GeV

• at least 2 jets pjet
T ≥30 GeV

• |ηjet | ≤ 4.5

• ∆R lep,jet ≥ 0.3

• mjj ≥ 500 GeV

• |∆η| ≥ 2.4



ATLAS Run 1 results in the W±W±jj channel

First evidence for W±W±jj production and EWK-only W±W±jj production @ 8 TeV

σfid
incl = 2.1 ± 0.5 (stat) ± 0.3 (syst) fb

• Significance: 4.5σ

• σexp = 1.52 ± 0.11 fb

σfid
VBS = 1.3 ± 0.4 (stat) ± 0.2 (syst) fb

• Significance: 3.6σ

• σexp = 0.95 ± 0.06 fb

Goal for Run 2

Measurement of the EWK production cross section → 5σ observation reachable within

LHC operation plans



Yields Run 1 analysis

Inclusive region VBS region

e±e± e±µ± µ±µ± e±e± e±µ± µ±µ±

W±W±jj QCD 0.89 ± 0.15 2.5 ± 0.4 1.42 ± 0.23 0.25 ± 0.06 0.71 ± 0.14 0.38 ± 0.08

W±W±jj EWK 3.07 ± 0.30 9.0 ± 0.8 4.9 ± 0.5 2.55 ± 0.25 7.3 ± 0.6 4.0 ± 0.4

Total background 6.8 ±1.2 10.3 ± 2.0 3.0 ± 0.6 5.0 ± 0.9 8.3 ± 1.6 2.6 ± 0.5

Total predicted 10.7 ± 1.4 21.7 ± 2.6 9.3 ± 1.0 7.6 ± 1.0 15.6 ± 2.0 6.6 ± 0.8

Data 12 26 12 6 18 10

50 signal candidates with 20 background expectation for ISR

34 signal candidates with 16 background expectation for VBS



Fiducial regions Run 1 analysis

Two fiducial regions are defined to follow the selections applied in the analysis

• Inclusive region:
• 2 same sign leptons with

• pT > 25 GeV

• |η| < 2.5

• m`` > 20 GeV

• ∆R`` =
√

(∆Φ)2 + (∆η)2 > 0.3

• At least 2 anti-kt jets with

• R = 0.4

• pT > 30 GeV

• |η| < 4.5

• ∆R`j > 0.3

• mjj (highest pT jets) > 500 GeV

• E miss
T > 40 GeV

• VBS region: cuts above + rapidity cut

|∆yjj | > 2.4



Run 1 event selection

Events selection used for the analysis:

• event cleaning

• exactly two selected leptons with m`` > 20 GeV

• veto events with additional veto leptons

• q`1
× q`2

> 0

• pT > 25 GeV

• |m`` −mZ | > 10 GeV in the ee channel

• E miss
T ≥ 40 GeV

• at least two jets with pT > 30 GeV and |η| < 4.5

• b-jet veto

• mjj > 500 GeV

• |∆yjj | > 2.4 - VBS analysis region



Cross section changes from 8 TeV to 13 TeV

Signal samples generated with Sherpa 2.1.1, LO up to 3 additional partons:

QCD EWK

8 TeV 13 TeV 13 TeV/8 TeV 8 TeV 13 TeV 13 TeV/8 TeV

σprod [fb] 10.1 25.9 2.6 16.4 43.0 2.6



Rates dependency on material

• Rate of wrongly reconstructed charge strongly depends on material distribution:

Z and R for the first detector interaction using Z MC truth:

wrong sign interact primarily with beam pipe and pixel



Current selection

• p`1,`2T >27 GeV → under optimization studies

• m`` > 20 GeV → under optimization studies

• q`1
× q`2

> 0

• 3rd lepton veto

• pj
T > 30 GeV → under optimization studies

• |η|j < 4.5

• E miss
T ≥ 30 GeV

• mjj > 500 GeV → under optimization studies

• |∆yjj | > 2.4 → under optimization studies



Energy correction derivation

• response is derived

response =
preco

T

ptruth
T

− 1

for right charge and wrong charge electrons, differentially in η

• defining α as

α =
1 + responseright

1 + responsewrong

• pT is corrected as:

pscaled
T =

pold
T

α

• smearing is based on dE , random number in Gauss distribution:

dE = Gauss

(
0 ,sqrt

(
err2

wrong

(1 + responsewrong )2
−

err2
right

(1 + responseright )2

))
pscaled

T



Acceptances and efficiencies for W±W±jj

• Calculated on Sherpa 2.2.1

• σtot
EWK = 37.4fb and σtot

QCD = 23.5fb

• acceptance on fiducial selection is a few percent

→ σfid
EWK = 1.97fb and σtot

QCD = 0.30fb



CMS analysis - Selection and yields

ATLAS CMS

dataset 2015+2016 2016

Ldx 36.1 fb−1 35.9 fb−1

p`T 26 GeV 25/20 GeV

|η| 2.5 2.4/2.5

pj
T /E j

T 25/30 GeV 30 GeV

m`` 20 GeV 20 GeV

E miss
T 30 GeV 40 GeV

Z -veto (ee) 15 GeV 15 GeV

mjj 500 GeV 500 GeV

∆yjj/∆ηjj 2.4 2.5

max(z∗` ) - 0.75

veto 3` < 10 GeV <10 GeV

veto τhad - >18 GeV

veto b-jet 3 3

With respect to ATLAS analysis:

• less WZ background

• higher non-prompt

Zeppenfeld variable z∗ =

∣∣∣η`−(ηj1|ηj2

)
/2
∣∣∣∣∣∣∆ηjj

∣∣∣



CMS analysis - Some details

General information

• charge flip rate: 0.01% in the barrel, 0.3% in the endcap (ATLAS: 0.07% barrel,

3.5% endcap)

• charge flip contribution estimated from MC with data scale factors

• fake-factor method yields 30% uncertainty

• third lepton CR (with Z mass window) yields 20%-40% uncertainty

• significance extracted from 2-dim fit in m`` and mjj

Signal:

• purely EWK6, contributions from EWK4 are subtracted

• theoretical uncertainties 12% (αs ), 5% (PDF) and 4.5% (EWK6-EWK4

interference)

• LO cross-section from Madgraph (also signal sample): σtheo
fid = 4.25± 0.21 fb−1

Cross section result:

σfid (W±W±jj) = 3.83± 0.66(stat.)± 0.35(syst.) fb



CMS analysis - BSM interpretation

Anomalous Quartic Couplings

• EFT lagrangian of nine C- and

P-conserving dim-8 operators

modifying quartic couplings

Doubly charged Higgs boson

• Doubly charged Higgs bosons

predicted by models with Higgs triplet

field

• couplings depend on m(H±) and

sin2 θH

• Georgi-Machacek model of Higgs

triplet considered

• limits presented for

σVBF (H±±)× B(H±± →W±W±)

and sH ≡ sin θH



Scale factor systematics

Four sources:

• m`` variation (nominal: 15GeV)

• trigger matchig requirement on sub-leading candidate

• background subtraction on/off

• truth matching comparison

These are combined and propagated in the derivation of the data-driven background

→ variation up/down (7-15%)

→ energy correction on/off (2-7%)
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