Electron charge identification and study of the electroweak $W^{\pm}W^{\pm}jj$ production with the ATLAS detector at 13 TeV

Giulia Gonella Albert-Ludwigs-Universität Freiburg

The Final HiggsTools Meeting Durham, UK - September 12th, 2017

Overview

Vector boson scattering

The role in the EWK simmetry breaking investigation

Features

The WW channel

Background composition

Electron charge mis-identification: efficiencies measurement

Analysis overview

Electron charge mis-identification: background in the $W^{\pm}W^{\pm}jj$ analysis

Summary

Giulia Gonella - $W^{\pm}W^{\pm}jj$ production

Why keeping working after the Higgs boson discovery?

- Is this the only Higgs boson in Nature?
- Is it doing the Higgs boson's job?

Different paths to follow to answer (one or more of) these questions

Why keeping working after the Higgs boson discovery?

- Is this the only Higgs boson in Nature?
- Is it doing the Higgs boson's job?

Different paths to follow to answer (one or more of) these questions

Many tools for the higgs investigation

- · Measuring with higher precision its properties and couplings
- Investigating the high mass region
- Measuring the electroweak (EWK) vector boson interactions

The Standard Model (SM) lagrangian predicts *triple* (TGC) and *quartic* (QGC) gauge bosons vertices

$$\begin{split} \mathcal{L}_{gauge} &= -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^a_{\mu\nu} W^{\mu\nu}_a \\ &= \mathcal{L}_{GC} + \mathcal{L}_{TGC} + \mathcal{L}_{QGC} \end{split}$$

Pure EWK verteces are suppressed by $\alpha_{EWK} \rightarrow$ rare processes Ultimately: aiming to study quartic couplings Many tools for the higgs investigation

- Measuring with higher precision its properties and couplings
- Investigating the high mass region
- Measuring the electroweak (EWK) vector boson interactions

The Standard Model (SM) lagrangian predicts *triple* (TGC) and *quartic* (QGC) gauge bosons vertices

$$\begin{split} \mathcal{L}_{gauge} &= -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^a_{\mu\nu} W^{\mu\nu}_a \\ &= \mathcal{L}_{GC} + \mathcal{L}_{TGC} + \mathcal{L}_{QGC} \end{split}$$

Pure EWK verteces are suppressed by $\alpha_{EWK} \rightarrow$ rare processes Ultimately: aiming to study quartic couplings

Vector boson scattering

- CERN Large Hadron Collider is providing promising statistics to access these processes
- quartic couplings can be accessed in Vector Boson Scattering signatures

At hadron colliders VBS can be idealized as VVjj

at leading order (LO):

- two vector bosons (i.e. their respective decay products)
- two outgoing jets

BUT

VBS diagrams are not separately gauge invariant and must be studied in conjunction with additional Feynman diagrams leading to the same VV_{jj} final state.

VVjj final state diagrams

Theoretically there are two classes of physical processes.

- Electroweak production: Only Weak interaction
 - O(α⁶_{EWK})
 - VBS signal in it

• It contains also:

purely EWK process which give the same final state processes with 3 decaying vector boson (only 1 decaying hadronically)

Theoretically there are two classes of physical processes.

- Electroweak production: Only Weak interaction
- Strong production: Both strong and EWK interaction
 - $O(\alpha_{EWK}^4 \alpha_S^2)$

The WW channel

Without a light SM Higgs boson the VBS amplitude of longitudinally polarized W bosons increases with \sqrt{s} and **violates unitarity** at energies around 1 TeV.

The SM Higgs boson should avoid this problem

WW scattering is a key process to probe EWKSB We can establish if the Higgs boson can preserve unitarity of the VBS at all energies

- Test of the Higgs boson nature
 - The discovered Higgs boson contribute fully to the EWKSB

WW interaction remain weak at high energies

- Model independent research of alternative theory
 - The discovered Higgs boson is partially responsible for the EWKSB

WW interaction get strong at high energy <u>Giulia Gonella - $W^{\pm}W^{\pm}$ ii production</u>

final state	sensitive to	σ^{EWK} [fb]		σ^{QCD} [fb]		
	$VV \rightarrow$	$8 { m TeV}$	$13 { m TeV}$	$8 { m TeV}$	$13 { m TeV}$	
$\ell^+\ell^-\ell'^+\ell'^-jj$	ZZ	0.027	0.098	0.024	0.100	
$\ell^+\ell^-\ell'^\pm\nu' jj$	$W^{\pm}Z$	0.571	2.34	1.12	4.38	
$\ell^+\ell'^- \nu \nu' j j$	W^+W^-, ZZ	3.64	12.3	5.51	21.8	
$\ell^{\pm}\ell'^{\pm}\nu\nu'jj$	$W^{\pm}W^{\pm}$	1.13	3.97	0.110	0.346	
$\ell^{\pm} \nu \nu' \nu' j j$	$W^{\pm}Z$	1.81	7.64	3.78	15.5	
$\nu\nu\nu'\nu'jj$	ZZ	0.484	1.68	0.294	1.38	

C. Gumpert, PhD Thesis, CERN-THESIS-2014-290

$W^{\pm}W^{\pm}jj$ production:

• lower background from QCD production: $\sigma_{EWK}/\sigma_{QCD} \simeq 11$ ($\sigma_{EWK}/\sigma_{QCD} \simeq 0.6$ for opposite sign)

The same-charge selection restricts the number of diagrams involved

final state	sensitive to	σ^{EWK} [fb]		σ^{QCD} [fb]		
	$VV \rightarrow$	$8 { m TeV}$	$13 { m TeV}$	$8 { m TeV}$	$13 { m TeV}$	
$\ell^+\ell^-\ell'^+\ell'^-jj$	ZZ	0.027	0.098	0.024	0.100	
$\ell^+\ell^-\ell'^\pm\nu' jj$	$W^{\pm}Z$	0.571	2.34	1.12	4.38	
$\ell^+\ell'^- \nu \nu' j j$	W^+W^-, ZZ	3.64	12.3	5.51	21.8	
$\ell^{\pm}\ell'^{\pm}\nu\nu'jj$	$W^{\pm}W^{\pm}$	1.13	3.97	0.110	0.346	
$\ell^{\pm} \nu \nu' \nu' j j$	$W^{\pm}Z$	1.81	7.64	3.78	15.5	
$\nu\nu\nu'\nu'jj$	ZZ	0.484	1.68	0.294	1.38	

C. Gumpert, PhD Thesis, CERN-THESIS-2014-290

$W^{\pm}W^{\pm}jj$ production:

• lower background from QCD production: $\sigma_{EWK}/\sigma_{QCD} \simeq 11$ ($\sigma_{EWK}/\sigma_{QCD} \simeq 0.6$ for opposite sign)

The same-charge selection restricts the number of diagrams involved

Background composition

Background composition

SM processes can mimic the signature $\ell\ell' + E_T^{\textit{miss}}{+}2$ jets

Туре	Sources	Reduction
1 SC leptons	WZ+jets ZZ+jets $t\overline{t}V$	veto on third lepton
2 OC charge mis-ID	$egin{array}{ll} tar{t} ightarrow \ell u \ell u bar{b} \ W^{\pm} W^{\mp} + { m jets} \ Z/\gamma^* + { m jets} ightarrow \ell^{\pm} \ell^{\mp} + { m jets} \end{array}$	<i>b</i> -jet veto +SC req. large $E_T^{miss} + m_Z$ peak excl.
3 Jets, γ mis-reco	$W+ ext{jets}$ $tar{t} ightarrow\ell u ext{jb}ar{b}$ single top $W\gamma+ ext{jets}$	<i>b</i> -jet veto+ E_T^{miss} tight isolation+veto on third lepton

It's important to keep in mind that the other SM processes have much larger cross section compared to our signal!

The challenges

Many challenges enter this analysis:

- very low cross-section compared to other SM processes
- many SM backgrounds can be reduced with dedicated cuts, but still some of them need to be estimated
- big impact of background from non-prompt leptons (fakes)
- big impact of background from charge mis-reconstruction

Ļ

always better to estimate these backgrounds with **data-driven** methods (*"Data model data better than Monte Carlo"*)

In the following focus on charge mis-identification background

In order to estimate the charge mis-ID background it's important to precisely know the probability of an electron to have its charge wrongly reconstructed:

- measurement of electron charge mis-identification efficiencies
- data-driven estimation of background from charge mis-identification

Electron charge mis-identification: efficiencies measurement

The source of charge mis-ID

- very rare effects
- very hard to properly model in detector simulation
- the effect have to be measured on data

In ATLAS objects measurements are performed inside *Combined Performance* groups. This one in particular has been carried out in the *Electron-photon* CP group

The source of charge mis-ID

- very rare effects
- very hard to properly model in detector simulation
- the effect have to be measured on data

In ATLAS objects measurements are performed inside *Combined Performance* groups. This one in particular has been carried out in the *Electron-photon* CP group

The source of charge mis-ID

- very rare effects
- very hard to properly model in detector simulation
- the effect have to be measured on data

In ATLAS objects measurements are performed inside *Combined Performance* groups. This one in particular has been carried out in the *Electron-photon* CP group

Measuring the efficiencies

- Double differential measurement in 4×6 bins in $p_T \times |\eta|$
- measured in $Z
 ightarrow e^+e^-$ events

ϵ_i probability electron charge mis-reconstructed in bin *i*. Assume *ϵ_i* independent

$$N_{sc}^{exp} = np = n \left[(1 - \epsilon_i) \epsilon_j + (1 - \epsilon_j) \epsilon_i \right]$$

Building likelihood function:

- binomial counting: probability of *nsc* SC events: $\binom{n}{nsc}p^{nsc}(1-p)^{n-nsc}$
- approximated Poisson distribution

$$P\left(nsc|\epsilon_{i},\epsilon_{j}\right) = \frac{\left(N_{sc}^{exp}\right)^{nsc}e^{-N_{sc}^{exp}}}{nsc!} \equiv L(\epsilon_{i},\epsilon_{j})$$

• $L = \prod_{i,j} L(\epsilon_i, \epsilon_j)$

Efficiencies obtained by minimizing -In(L)

Measuring the efficiencies

- Double differential measurement in 4×6 bins in $p_T \times |\eta|$
- measured in $Z
 ightarrow e^+e^-$ events

ϵ_i probability electron charge mis-reconstructed in bin *i*. Assume *ϵ_i* independent

$$N_{sc}^{exp} = np = n \left[(1 - \epsilon_i) \epsilon_j + (1 - \epsilon_j) \epsilon_i \right]$$

Building likelihood function:

- binomial counting: probability of *nsc* SC events: $\binom{n}{nsc}p^{nsc}(1-p)^{n-nsc}$
- approximated Poisson distribution

$$P\left(nsc|\epsilon_{i},\epsilon_{j}\right) = \frac{\left(N_{sc}^{exp}\right)^{nsc}e^{-N_{sc}^{exp}}}{nsc!} \equiv L(\epsilon_{i},\epsilon_{j})$$

• $L = \prod_{i,j} L(\epsilon_i, \epsilon_j)$

Efficiencies obtained by minimizing -In(L)

- efficiencies highly dependent on process and kinematic selection
- scale factors are produce where these effects cancel
- they can also be used to study the effeiciencies of other processes
- scale factors are derived for right charge and wrong charge electrons to correct MC

- $\bullet\,$ corrections for wrong charge electrons up to ${\sim}30\%$
- corrections for right charge electrons never bigger than 0.5% \$12.09.2017\$ $$14\/\/24$$

SF SS

Analysis overview

Prelude: $W^{\pm}W^{\pm}jj$ analysis topology

- 2 high-p_T jets in the forward regions
 (2 jets with highest p_T)
- No color exchange in the hard scattering process → rapidity gap in the central part of the detector
- large m_{jj} and m_{WWjj}

Two analysis regions could be defined, using the EWK specific topologies as discriminant cuts:

- Inclusive region: signal = EWK+QCD
- VBS region: signal = EWK \rightarrow additional cut on $|\Delta y_{jj}| > 2.4$

Giulia Gonella - $W^{\pm}W^{\pm}jj$ production

Prelude: $W^{\pm}W^{\pm}jj$ analysis topology

- 2 high-p_T jets in the forward regions
 (2 jets with highest p_T)
- No color exchange in the hard scattering process → rapidity gap in the central part of the detector
- large m_{jj} and m_{WWjj}

Two analysis regions could be defined, using the EWK specific topologies as discriminant cuts:

- Inclusive region: signal = EWK+QCD
- VBS region: signal = EWK \rightarrow additional cut on $|\Delta y_{jj}| > 2.4$

Giulia Gonella - $W^{\pm}W^{\pm}jj$ production

Studies of EWK-QCD separation and interference

Interference between $\mathcal{O}\left(\alpha_{QCD}^{4}\right)$ strong and $\mathcal{O}\left(\alpha_{EWK}^{6}\right)$ electroweak $W^{\pm}W^{\pm}jj$ production to be studied:

$$\left|\mathcal{M}_{SM}^{WWjj}\right|^{2} = \left|\mathcal{M}_{QCD}^{WWjj} + \mathcal{M}_{EWK}^{WWjj}\right|^{2} = \left|\mathcal{M}_{QCD}^{WWjj}\right|^{2} + \left|\mathcal{M}_{EWK}^{WWjj}\right|^{2} + \left|\mathcal{M}_{INT}^{WWjj}\right|^{2}$$

- interference varies from few percent to few ten-percent
- negative in some regions
- will be included as systematic uncertainty on the EWK signal

Contributions at final selection

- analysis performed in four channels: $e\mu$, μe , $\mu\mu$ and ee
- different background composition between channels
- main backgrounds: WZ, fakes and charge mis-ID (not $\mu\mu$ channel)

and the charge mis-identification one

Giulia Gonella - $W^{\pm}W^{\pm}jj$ production

Electron charge mis-identification: background in the $W^{\pm}W^{\pm}jj$ analysis

Charge mis-ID background

The technique

- charge mis-ID background estimated from data
- same-charge events are estimated from opposite-charge events
- opposite charge data are scaled with

$$w = \frac{\epsilon_1 + \epsilon_2 - 2\epsilon_1\epsilon_2}{1 - (\epsilon_1 + \epsilon_2 - 2\epsilon_1\epsilon_2)}$$

- *ϵ*_{1,2}: charge mis-ID rates for *e*_{1,2}
 *e*_{1,2}
- rates appear to be process dependent

The data-driven estimate

The final aim

We want a data-driven estimation of the charge mis-identification background remaining in the ${\sf SR}$

where

 $\epsilon_{1,2}$: charge misID rates. \mathcal{P} for $\ell_{1,2}$ charge to be mis-identified

 \rightarrow rates from data are needed to build the weights

From SF to rates

- apply the SF to MC so that it matches the probability of mis-identification of data
- get rates from MC using the truth information

$$\epsilon = \frac{\text{wrong charge ele}}{\text{all ele}}$$

Giulia Gonella - $W^{\pm}W^{\pm}jj$ production

Energy corrections needed

Up to this point of the workflow a simple *scaling* is applied to OC data:

- the integral is modified
- the distribution of charge flip estimation is identical to OC data one
- SC events have lower energy wrt OC one, because of the energy leakage due to Bremsstrahlung emission

Energy corrections needed

Up to this point of the workflow a simple *scaling* is applied to OC data:

- the integral is modified
- the distribution of charge flip estimation is identical to OC data one
- SC events have lower energy wrt OC one, because of the energy leakage due to Bremsstrahlung emission

Energy corrections needed

Up to this point of the workflow a simple *scaling* is applied to OC data:

- the integral is modified
- the distribution of charge flip estimation is identical to OC data one
- SC events have lower energy wrt OC one, because of the energy leakage due to Bremsstrahlung emission

The scaling and the smearing

The four-momentum of OC data used for the estimation is modified

- *p_T* is shifted towards smaller values
- *p_T* is smeared to match the worse resolution

$$p_T^{corrected} = p_T^{scaled} + dE$$

The scaling is based on the energy response

$$response = rac{p_T^{reco}}{p_T^{truth}} - 1$$

which is different for correctly reconstructed and wrongly reconstructed electrons

The scaling and the smearing

The four-momentum of OC data used for the estimation is modified

- *p_T* is shifted towards smaller values
- *p_T* is smeared to match the worse resolution

$$p_T^{corrected} = p_T^{scaled} + dE$$

The scaling is based on the energy response

$$response = rac{p_T^{reco}}{p_T^{truth}} - 1$$

which is different for correctly reconstructed and wrongly reconstructed electrons

Giulia Gonella - $W^{\pm}W^{\pm}jj$ production

The estimation in the ee channel

- the ee channel is dominated by charge mis-ID background
- the estimation seems to match quite nicely with data
- studies and optimizations ongoing

Summary

Summary

Two main working areas have been shown...

- \rightarrow electron charge mis-ID SF measurement
 - performed within the ATLAS e/γ combined performance group
 - official recommendations provided to physics analyses inside the collaboration
 - the work will be documented in the e/γ paper
- \rightarrow estimation of the charge mis-ID background in the $W^{\pm}W^{\pm}jj$ analysis
 - process of estrapolation of the rates for the analysis has been shown
 - the impact of this background is huge in the SR, much work needed to get a precise estimation
 - the technique for this has been studied and implemented inside the analysis framework
 - further corrections have been performed

$W\!W$ scattering is a key process for SM and EWSB mechanism

- same charge final state is a clean signature of electroweak production
- on the other side the low cross-section and the large background from charge mis-identification make the W[±]W[±]jj analysis a difficult path

Very challenging time yet to come to put Standard Model to stringent test

Thank you!

Backup

- Sherpa
- defined at parton level
- $p_T^{lep} \ge 25 \text{ GeV}$
- $|\eta^{\textit{lep}}| \le 2.5$
- $\Delta R^{lep} \ge 0.3$
- minimum $m_{\ell\ell}$ of all charged lepton pair combinations \geq 20 GeV
- at least 2 jets $p_T^{jet} \ge 30 \text{ GeV}$
- $|\eta^{jet}| \leq 4.5$
- $\Delta R^{lep,jet} \ge 0.3$
- $m_{jj} \ge 500 \text{ GeV}$
- $|\Delta \eta| \ge 2.4$

First evidence for $W^{\pm}W^{\pm}jj$ production and EWK-only $W^{\pm}W^{\pm}jj$ production @ 8 TeV

PRL 113, 141803 (2014)

PHYSICAL REVIEW LETTERS

week ending OCTOBER 201

Evidence for Electroweak Production of $W^{\pm}W^{\pm}jj$ in *pp* Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

G. Aad et al." (ATLAS Collaboration) (Received 23 May 2014: published 3 October 2014)

This Letter presents the first study of $W^{\pm}W^{\pm}jj$, same-electric-charge diboson production in association with two jets, using 20.3 ht⁻¹ of prior proton-proton collision data at $\sqrt{s} = 8$ TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two reconstructed same-charge leptons ($c^{+}c^{+}, c^{+}p^{\pm}$

- $\sigma_{\it incl}^{\it fid}=$ 2.1 \pm 0.5 (stat) \pm 0.3 (syst) fb
 - Significance: 4.5σ
 - $\sigma_{exp} = 1.52 \pm 0.11$ fb

• Significance: 3.6σ

•
$$\sigma_{exp} = 0.95 \pm 0.06$$
 fb

Goal for Run 2

Measurement of the EWK production cross section $\rightarrow 5\sigma$ observation reachable within LHC operation plans

		Inclusive regior	1	VBS region			
	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	
₩ [±] ₩ [±] jj QCD	0.89 ± 0.15	2.5 ± 0.4	1.42 ± 0.23	0.25 ± 0.06	0.71 ± 0.14	0.38 ± 0.08	
<i>W[±]W[±]jj</i> EWK	3.07 ± 0.30	9.0 ± 0.8	4.9 ± 0.5	2.55 ± 0.25	7.3 ± 0.6	4.0 ± 0.4	
Total background	6.8 ±1.2	10.3 ± 2.0	3.0 ± 0.6	5.0 ± 0.9	8.3 ± 1.6	2.6 ± 0.5	
Total predicted	10.7 ± 1.4	21.7 ± 2.6	9.3 ± 1.0	7.6 ± 1.0	15.6 ± 2.0	6.6 ± 0.8	
Data	12	26	12	6	18	10	

50 signal candidates with 20 background expectation for ISR 34 signal candidates with 16 background expectation for VBS

Two fiducial regions are defined to follow the selections applied in the analysis

- Inclusive region:
 - 2 same sign leptons with
 - p_T > 25 GeV
 - $|\eta| < 2.5$
 - $m_{\ell\ell} > 20 \text{ GeV}$
 - $\Delta R_{\ell\ell} = \sqrt{(\Delta \Phi)^2 + (\Delta \eta)^2} > 0.3$
 - At least 2 anti-k_t jets with
 - R = 0.4
 - p_T > 30 GeV
 - $|\eta| < 4.5$
 - $\Delta R_{\ell j} > 0.3$
 - m_{jj} (highest p_T jets) > 500 GeV
 - $E_T^{miss} > 40 \text{ GeV}$
- VBS region: cuts above + rapidity cut
 |Δy_{ii}| > 2.4

Events selection used for the analysis:

- event cleaning
- exactly two selected leptons with $m_{\ell\ell}>$ 20 GeV
- · veto events with additional veto leptons
- $q_{\ell_1} \times q_{\ell_2} > 0$
- $p_T > 25 \text{ GeV}$
- $|m_{\ell\ell}-m_Z|>$ 10 GeV in the *ee* channel
- $E_T^{miss} \ge 40 \text{ GeV}$
- at least two jets with $p_T>$ 30 GeV and $|\eta|<$ 4.5
- *b*-jet veto
- m_{jj} > 500 GeV
- $|\Delta y_{jj}| > 2.4$ VBS analysis region

Signal samples generated with Sherpa 2.1.1, LO up to 3 additional partons:

		QC	D		EW	К
	8 TeV	13 TeV	13 TeV/8 TeV	8 TeV	13 TeV	13 TeV/8 TeV
σ_{prod} [fb]	10.1	25.9	2.6	16.4	43.0	2.6

• Rate of wrongly reconstructed charge strongly depends on material distribution:

Z and R for the first detector interaction using Z MC truth: wrong sign interact primarily with beam pipe and pixel

Right reconstructed sign

Wrong reconstructed sign

- $p_T^{\ell 1,\ell 2} > 27 \text{ GeV} \rightarrow \text{under optimization studies}$
- $m_{\ell\ell} > 20 \text{ GeV}
 ightarrow$ under optimization studies
- $q_{\ell_1} \times q_{\ell_2} > 0$
- 3rd lepton veto
- $p_T^j > 30 \text{ GeV} \rightarrow \text{under optimization studies}$
- $|\eta|^{j} < 4.5$
- $E_T^{miss} \ge 30 \text{ GeV}$
- $m_{jj} > 500 \text{ GeV} \rightarrow \text{under optimization studies}$
- $|\Delta y_{jj}| > 2.4 \rightarrow$ under optimization studies

• response is derived

$$response = rac{p_T^{reco}}{p_T^{truth}} - 1$$

for right charge and wrong charge electrons, differentially in $\boldsymbol{\eta}$

 $\bullet~{\rm defining}~\alpha$ as

$$\alpha = \frac{1 + \textit{response}^{\textit{right}}}{1 + \textit{response}^{\textit{wrong}}}$$

• *p_T* is corrected as:

$$p_T^{scaled} = rac{p_T^{old}}{lpha}$$

• smearing is based on *dE*, random number in Gauss distribution:

$$dE = \text{Gauss}\left(0, \text{sqrt}\left(\frac{err_{wrong}^2}{(1 + response^{wrong})^2} - \frac{err_{right}^2}{(1 + response^{right})^2}\right)\right) p_T^{scaled}$$

Acceptances and efficiencies for $W^{\pm}W^{\pm}jj$

- Calculated on Sherpa 2.2.1
- $\sigma_{EWK}^{tot} = 37.4 {\rm fb}$ and $\sigma_{QCD}^{tot} = 23.5 {\rm fb}$
- acceptance on fiducial selection is a few percent

$$ightarrow \sigma_{\it EWK}^{\it fid} = 1.97$$
fb and $\sigma_{\it QCD}^{\it tot} = 0.30$ fb

ssWW EW:

	$\sum w_{i,fid}$	N _{fid}	А	rel. stat. uncertainty [%]	$\sum w_{i,signal}$	Nsignal	С	rel. stat. uncertainty [%]	A x C	rel. stat. uncertainty [%]
ee	6513.4	6468	0.0132	1.24	1937.7	2180	0.2975	1.91	0.0039	2.28
em	12967.7	12946	0.0263	0.87	6868.7	7638	0.5297	0.83	0.014	1.20
mm	6506.5	6487	0.0132	1.24	4545.4	5061	0.6986	0.82	0.0092	1.48
nn	6551.3	6525	0.0133	1.23	3586	3979	0.5474	1.13	0.0073	1.67
pp	19436.2	19376	0.0395	0.71	9765.9	10900	0.5025	0.71	0.0198	1.01
combined	25987.5	25901	0.0528	0.61	13351.8	14879	0.5138	0.60	0.0271	0.86

ssWW QCD:

	$\sum w_{i,fid}$	N _{fid}	А	rel. stat.	$\sum w_{i,signal}$	Nsignal	С	rel. stat.	A x C	rel. stat.
				uncertainty [%]				uncertainty [%]		uncertainty [%]
ee	1516.1	1511	0.0031	2.57	246.2	290	0.1624	5.84	0.0005	6.38
em	3162.2	3144	0.0064	1.77	1169	1286	0.3697	2.33	0.0024	2.92
mm	1513.9	1510	0.0031	2.57	1051.8	1173	0.6947	1.71	0.0021	3.08
nn	1591.7	1591	0.0032	2.51	726.5	818	0.4565	2.74	0.0015	3.71
pp	4600.6	4574	0.0093	1.47	1740.4	1931	0.3783	1.9	0.0035	2.4
combined	6192.3	6165	0.0126	1.26	2466.9	2749	0.3984	1.57	0.0050	2.01

CMS analysis - Selection and yields

	$\mu^+\mu^+$	e^+e^+	$e^+\mu^+$	$\mu^{-}\mu^{-}$	e^e^	$e^-\mu^-$	Total
Data	40	14	63	26	10	48	201
Signal+Total bkg.	44.1 ± 3.4	19.0 ± 1.9	67.6 ± 3.8	23.9 ± 2.8	11.8 ± 1.8	38.9 ± 3.3	204.8 ± 7.2
Signal	18.3 ± 0.4	6.2 ± 0.2	24.7 ± 0.4	6.5 ± 0.2	2.5 ± 0.1	8.7 ± 0.2	66.9 ± 0.7
Total bkg.	25.7 ± 3.4	12.8 ± 1.9	42.9 ± 3.8	17.4 ± 2.8	9.4 ± 1.8	30.2 ± 3.3	137.9 ± 7.1
Non-prompt	18.4 ± 3.3	5.6 ± 1.7	24.9 ± 3.6	14.2 ± 2.8	5.0 ± 1.6	19.9 ± 3.2	87.9 ± 6.9
WZ	4.4 ± 0.2	3.0 ± 0.2	8.5 ± 0.3	2.2 ± 0.1	1.9 ± 0.2	5.2 ± 0.3	25.1 ± 0.6
QCD WW	1.3 ± 0.1	0.6 ± 0.1	1.7 ± 0.1	0.4 ± 0.1	0.2 ± 0.1	0.6 ± 0.1	4.8 ± 0.2
Wγ	0.2 ± 0.2	1.4 ± 0.5	3.6 ± 0.9	-	0.8 ± 0.4	2.3 ± 0.7	8.3 ± 1.3
Triboson	1.2 ± 0.3	0.8 ± 0.2	2.2 ± 0.4	0.5 ± 0.2	0.3 ± 0.1	0.9 ± 0.3	5.8 ± 0.7
Wrong sign	-	1.5 ± 0.6	1.4 ± 0.4	-	1.1 ± 0.5	1.2 ± 0.4	5.2 ± 1.0

With respect to ATLAS analysis:

- less WZ background
- higher non-prompt

Zeppenfeld variable
$$z^* = \frac{\left|\eta_{\ell} - \left(\eta_{j1} \mid \eta_{j2}\right)/2\right|}{\left|\Delta \eta_{jj}\right|}$$

	ATLAS	CMS
dataset	2015+2016	2016
$\mathcal{L}dx$	36.1 fb ⁻¹	35.9 fb ⁻¹
p_T^{ℓ}	26 GeV	25/20 GeV
$ \eta $	2.5	2.4/2.5
p_T^j / E_T^j	25/30 GeV	30 GeV
$m_{\ell\ell}$	20 GeV	20 GeV
ET	30 GeV	40 GeV
Z-veto (ee)	15 GeV	15 GeV
m _{jj}	500 GeV	500 GeV
$\Delta y_{jj} / \Delta \eta_{jj}$	2.4	2.5
$\max(z_{\ell}^*)$	-	0.75
veto 3ℓ	< 10 GeV	< 10 GeV
veto τ_{had}	-	>18 GeV
veto <i>b</i> -jet	1	1

CMS analysis - Some details

General information

- charge flip rate: 0.01% in the barrel, 0.3% in the endcap (ATLAS: 0.07% barrel, 3.5% endcap)
- charge flip contribution estimated from MC with data scale factors
- fake-factor method yields 30% uncertainty
- third lepton CR (with Z mass window) yields 20%-40% uncertainty
- significance extracted from 2-dim fit in $m_{\ell\ell}$ and m_{jj}

Signal:

- purely EWK6, contributions from EWK4 are subtracted
- theoretical uncertainties 12% (α_s), 5% (PDF) and 4.5% (EWK6-EWK4 interference)
- LO cross-section from Madgraph (also signal sample): $\sigma_{\rm fid}^{\rm theo}=4.25\pm0.21~{\rm fb}^{-1}$

Cross section result:

$$\sigma_{fid}(W^{\pm}W^{\pm}jj) = 3.83 \pm 0.66(\text{stat.}) \pm 0.35(\text{syst.}) \,\text{fb}$$

Anomalous	Quartic	Couplings
-----------	---------	-----------

	Observed limits	Expected limits	Run-I limits
	(TeV -4)	(TeV -4)	(TeV -4)
f_{S0}/Λ	[-7.7, 7.7]	[-7.0, 7.2]	[-38, 40] [11]
f_{S1}/Λ	[-21.6,21.8]	[-19.9,20.2]	[-118 , 120] [11]
f_{M0}/Λ	[-6.0, 5.9]	[-5.6, 5.5]	[-4.6 , 4.6] [29]
f_{M1}/Λ	[-8.7,9.1]	[-7.9, 8.5]	[-17, 17] [29]
f_{M6}/Λ	[-11.9,11.8]	[-11.1,11.0]	[-65 , 63] [11]
f_{M7}/Λ	[-13.3,12.9]	[-12.4,11.8]	[-70,66][11]
f_{T0}/Λ	[-0.62,0.65]	[-0.58,0.61]	[-3.8 , 3.4] [30]
f_{T1}/Λ	[-0.28,0.31]	[-0.26,0.29]	[-1.9 , 2.2] [11]
f_{T2}/Λ	[-0.89,1.02]	[-0.80,0.95]	[-5.2 , 6.4] [11]

• EFT lagrangian of nine C- and P-conserving dim-8 operators modifying quartic couplings Doubly charged Higgs boson

- Doubly charged Higgs bosons predicted by models with Higgs triplet field
- couplings depend on $m(H^{\pm})$ and $\sin^2 \theta_H$
- Georgi-Machacek model of Higgs triplet considered
- limits presented for $\sigma_{VBF}(H^{\pm\pm}) \times B(H^{\pm\pm} \rightarrow W^{\pm}W^{\pm})$ and $s_H \equiv \sin \theta_H$

Four sources:

- $m_{\ell\ell}$ variation (nominal: 15GeV)
- trigger matchig requirement on sub-leading candidate
- background subtraction on/off
- truth matching comparison

These are combined and propagated in the derivation of the data-driven background

- \rightarrow variation up/down (7-15%)
- \rightarrow energy correction on/off (2-7%)