m_{top}^{pole} measurement using $tar{t}{+}1$ jet events at 8 TeV

under the supervision of R.Pittau^a and J. Fuster^b ^aUniversidad de Granada, ^bIFIC Valencia

D. Melini^{a, b}

Final HiggsTools meeting

12th September 2017

Universidad

- Motivations.
- The observable.
- Event selection and system reconstruction.
- Unfolding.
- Detector and particle levels.
- Alternative renormalisation schemes.
- Conclusions.

Motivations

- The only (almost)free quark
- Plays a role in EW vacuum stability.
- Important in EWSB mechanism:
 - Strongest coupling to Higgs boson.
 - M_{top}, M_W, M_H test the SM.
- Important in many new physics (NP) models.
- In the SM, $m_t^{\text{pole}} \propto y_t$ (Yukawa coupling)

Measuring the Top-quark properties with high accuracy is a test on the validity of the SM.

Ph.Lett. B 716 (2012) 214-219

The top-quark mass

Quarks masses are parameters of the SM Lagrangian:

- They are not observables, due to confinement.
- Some observables depend on these parameters \rightarrow fit is possible!.
- Precise values depend on the renormalization scheme used.
- NLO is required to fix renormalization scheme.

Two most used mass definitions, related one to eachother through QCD:

The top-quark mass

Quarks masses are parameters of the SM Lagrangian:

- They are not observables, due to confinement.
- Some observables depend on these parameters \rightarrow fit is possible!.
- Precise values depend on the renormalization scheme used.
- NLO is required to fix renormalization scheme.

Two most used mass definitions, related one to eachother through QCD:

- pole mass $\rightarrow m^{\text{pole}}$
 - on-shell renormalization (free particles =physical mass, quarks $\mathcal{O}(\Lambda_{QCD}) \approx 0.2 GeV$ ambiguity)
 - pole of the propagator

The top-quark mass

Quarks masses are parameters of the SM Lagrangian:

- They are not observables, due to confinement.
- Some observables depend on these parameters \rightarrow fit is possible!.
- Precise values depend on the renormalization scheme used.
- NLO is required to fix renormalization scheme.

Two most used mass definitions, related one to eachother through QCD:

- pole mass $\rightarrow m^{\text{pole}}$
 - on-shell renormalization (free particles =physical mass, quarks ${\cal O}(\Lambda_{QCD})\approx 0.2GeV$ ambiguity)
 - pole of the propagator
- running mass $\rightarrow m(\mu)$
 - MS or $\overline{\text{MS}}$ renormalization
 - scale dependent
 - quite far from the pole of the propagator

NLO is necessary to have a consistent mass definition.

$t\bar{t} + 1$ jet advantages

Why using $t\bar{t} + 1$ jet events

- Large sample (pprox 30% of $tar{t}$ events) ightarrow high enough statistics
- $\bullet~$ NLO calculations available $\rightarrow~$ fixed renormalisation scheme
- $\bullet~$ NLO corrections small \rightarrow theoretical errors under control
- Jet radiation depends on $m_{top}^{pole}
 ightarrow$ differential distribution enhance sensitivity

arXiv:1303.6415

First time analysis by ATLAS @ 7 TeV (JHEP 10 (2015) 121) :

 $m_{top}^{pole}~=173.7\pm1.5~({
m stat.})\pm1.4~({
m syst.})^{+1.0}_{-0.5}~({
m theo.})~{
m GeV}$

8 TeV improvements

- 8 TeV increased statistics:
 - Smaller statistical errors
 - Allow rebinning to increase sensitivity (reduce systematics)

$t\overline{t}+1$ jet system reconstruction

Pre-selection cuts

- = 1 good lepton
- \geq 4 good jets (p_T > 25 GeV, η < 2.5)
- ≥ 1 b-tagged jets (MV1 at 70% eff.)
- e+jets:
 - MET> 30 GeV
 - MWT> 30 GeV
- μ +jets:
 - MET> 20 GeV
 - (MET+MWT)> 60 GeV

$t\bar{t}+1$ jet system cuts

- ullet \geq 5 good jets
- = 2 b-tagged jets
- MET> 30 GeV , MWT> 30 GeV
- Reconstruct neutrino and leptonic W $(W_{lep} = l + \nu, M_W^{lep} = M_W^{PDG})$
- Reconstruct the hadronic W $0.9 < \frac{M_{PDG}}{M_W^{1/1/2}} < 1.25$, $\Delta K_T < 90$
- Combine *W*s with *b*-jets, minimising top candidates mass difference

• Improve truth matching: $\frac{M_{top}^{lep}}{M_{t}^{had}} > 0.9$

• Extra-jet $p_T > 50 \text{ GeV}$

Unfolding to parton level

Strategy - (same as 7 TeV)

- Unfold using migration matrix, M_{ij}
- Apply acceptance factor to parton level, ϵ_i

$$\mathcal{R}^{\mathsf{parton}} = \left(\mathcal{M}^{-1} \otimes \mathcal{R}^{\mathsf{detector}} \right) \cdot \epsilon \qquad \qquad \epsilon = \frac{\mathcal{R}_{\mathsf{parton cuts}}^{t\bar{t}+1\,\mathsf{jet}}}{\mathcal{R}_{\mathsf{parton+detector cuts}}^{t\bar{t}+1\,\mathsf{jet}}}$$

- Unfolding algorithm: iterative Bayesian (SVD method in the 7 TeV analysis)
- crosschecked with SVD algorithm
- result stable on the choice of unfolding regulator

 m_{top}^{pole} obtained by minimising a χ^2 function ($\Delta\chi^2=\pm 1$ for statistical error):

$$\chi^{2} = \sum_{\text{bins}} \left[\mathcal{R}^{\text{data}} - \mathcal{R}^{\text{theo}}(m_{top}^{pole}) \right]_{i} \text{COV}_{ii}^{-1} \left[\mathcal{R}^{\text{data}} - \mathcal{R}^{\text{theo}}(m_{top}^{pole}) \right]_{j}$$

Uncertainties - summary

Main contributions to total error come from $t\bar{t}$ MC modelling and theory scale uncertainties.

Detector and particle levels expectations

Observable loses sensitivity to m_{top}^{pole} at particle and detector level

Explanation

- High sensitivty at parton level from events with $\rho_s > 0.775$
- In particle and det. levels, bins are a mix of high sensitive events with low sensitivity ones.

detailed example follows...

Detailed two-bins example

Two-bins example explains better the big change in sensitivity. Remember :

$$\mathcal{S}_{\Delta}(
ho_s) = rac{|\mathcal{R}(m_0+\Delta)-\mathcal{R}(m_0-\Delta)|}{2\Delta\cdot\mathcal{R}(m_0)}$$

Sensitivity in the second bin

 $S_{
m 2nd\ bin}^{
m folded} << S_{
m 2nd\ bin}$

Detector level analysis

Particle level analysis

Particle level definition

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ParticleLevelTopDefinitions

Strategy

- Correct data (via unfolding) & fold theoretical prediction

Top pole-mass using tt+1jet at 8TeV

Our analysis: Parton level has smallest error because of the higher sensitivity

Other analysis (ATLAS, CMS, D0):

reference	\sqrt{s}	m_{top}^{pole} [GeV]	error [GeV]
ATLAS-CONF-2017-044	8 TeV	173.2	±1.7
CMS-PAS-TOP-13-006	8TeV	169.9	$^{+2.2}_{-2.5}$
FERMILAB-CONF-16-383-PPD	1.96 TeV	169.1	± 2.5

Summarising:

- Top quark mass is a fundamental parameter of SM.
- m_{top} needs to be computed in a well defined theoretical framework.
- Measurement performed at parton, particle and detector levels.
- Best result at parton level (higher sensitivity).
- Most precise measurement of m_{top}^{pole} so far.

Back-up

$\overline{\text{MS}}$ mass

Alternative renormalisation scheme: $m_t^{\overline{MS}}$

From: arXiv:1704.00540

Use m_{top}^{pole} $(m_t^{\overline{\text{MS}}})$ relation to obtain $\sigma_{t\bar{t}+1 \text{ jet}}(m_t^{\overline{\text{MS}}})$ @NLO+PS

Method applied to 7 TeV data:

- No changes in data correction procedure.
- Just need to produce theoretical template and redo fits.
- No big changes expected in systematics

Possible to measure the top quark running mass with $\approx 1 \text{ GeV}$ error.

 $m_t^{\overline{\text{MS}}} = 165.9^{+2.4}_{-2.0} \text{ GeV}$

 $m_{top}^{pole} = 173.7^{+2.3}_{-2.1} \text{ GeV}$

Detailed sensitivity example

Two-bins example explains better the big change in sensitivity. Remember :

$$\mathcal{S}_{\Delta}(
ho_s) = rac{|\mathcal{R}(m_0+\Delta)-\mathcal{R}(m_0-\Delta)|}{2\Delta\cdot\mathcal{R}(m_0)}$$

In general:

$$egin{aligned} S^{ ext{folded}}_i &= w_{ii}S_i + \sum_{j
eq i} w_{ij}S_j \ \end{aligned}$$
 with $w_{ij} &= M_{ij}rac{R_j}{R^{ ext{folded}}_i} \qquad, \sum_j w_{ij} = 1 \end{aligned}$

• If perfectly diagonal matrix: $w_{ij} = \{ \begin{array}{c} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j \end{array}, R_i^{\text{folded}} = R_i \longrightarrow S_i^{\text{folded}} = S_i \}$

• If bin i has maximum sensivity $(S_i > S_j \ , \ \forall j \neq i) \longrightarrow S_i^{ ext{folded}} < S_i$