Analysis of $t\bar{t}H(b\bar{b})$ in single lepton channel with run II data

ATLAS-CONF-2016-080

<u>Tim Wolf</u>

September 12, 2017 HiggsTools closing meeting Durham

Introduction

ICHEP result for $t\bar{t}H(b\bar{b})$

b-tagging ICHEP and beyond

Conclusion

Introduction I

Tim Wolf

Higgs discovery big success for the Standard Model (SM) Open question now:

- Is the found boson the SM-Higgs boson?
- How compatible are its features with the SM-Higgs boson?

 $t\bar{t}H$ provides access to the **top Yukawa coupling** Y_t

 Y_t is sensitive to new physics \rightarrow deviations of SM value might have dramatic consequences for vacuum stability of the universe

Measurement of ttH-signal strength $(\mu_{t\bar{t}H})$ in LHC run I: 4.4 sigma combined significance, cross-section above SM value but consistent within large uncertainty.

Why ttH in run II?

 \rightarrow *large increase* of the *t* $\bar{t}H$ cross-section! though backgrounds increase at a comparable rate in the signal regions...

Cross section (fb)

@NLO	tτΗ	tŦW	tτΖ	tīt(NNLO)
8 TeV	133	232	206	2,53E+05
13 TeV	507	566	760	8,32E+05
13 TeV / 8TeV	3.8	2.4	3.7	3.3
<i>→ tī̄H</i> -production cr	oss-se	ction is	s < 1% o	of ggF

production x-section

*t*t̄*H* **in Atlas run II**

Higgs decay mode	Branching ratio [%]
$H \rightarrow bb$	58.1
$H \rightarrow WW$	21.5
$H \rightarrow \tau \tau$	6.3
$H \rightarrow ZZ$	2.6
$H \rightarrow yy$	0.23

Dedicated analysis for all channels but:

 \rightarrow focus on $H \rightarrow b\bar{b}$ decay!

It has:

- largest branching ratio
- offers sensitivity to bottom Yukawa coupling

Goal of this talk: summarize public material by Atlas in $t\bar{t}H(b\bar{b})$, a.k.a. ICHEP result.

$tar{t} H(bar{b})$ in ICHEP - Event selection

Event selection:

Single Lepton

- one electron or muon
- at least 4 jets
- at least 2 b-tagged jets

What is a jet in Atlas?

- \rightarrow reconstructed objects from
 - calorimeter hits
- anti- k_t algorithm with r = 0.4After calibration jets are required to have:
 - ▶ p_T > 25Gev
 - η < 2.5

Signal region Control region

- \rightarrow Categorize according to nb. of jets and nb. of b-jets
 - ► $t\bar{t}$ + ≥ 1*b*, $t\bar{t}$ + ≥ 1*c*, $t\bar{t}$ + light are main backgrounds
 - target different background composition in fit to reduce uncertainties

$t\bar{t}H(bar{b})$ in ICHEP - Event selection

Event selection:

Single Lepton

- one electron or muon
- at least 4 jets
- at least 2 b-tagged jets

What is a jet in Atlas?

- \rightarrow reconstructed objects from
 - calorimeter hits
 - anti- k_t algorithm with r = 0.4

After calibration jets are required to have:

▶ p_T > 25Gev

Signal region Control region

- \rightarrow Categorize according to nb. of jets and nb. of b-jets
 - ▶ $t\bar{t}$ + ≥ 1*b*, $t\bar{t}$ + ≥ 1*c*, $t\bar{t}$ + light are main backgrounds
 - target different background composition in fit to reduce uncertainties

- Using MC prediction for tt

 +jets from Powheg+Pythia6 at NLO
- Correcting top and $t\bar{t}$ - p_T to NNLO calculation
- ► Reweight the $t\bar{t}$ + ≥ 1*b*-category in PP6 to 4-flavor Sherpa+OpenLoops calculation
- Systematic uncertainties of different kinds considered, e.g. generator, parton shower, PDF, ...

Uncertainty source	Δ	.μ
$t\bar{t} + \ge 1b$ modelling	+0.53	-0.53
Jet flavour tagging	+0.26	-0.26
$t\bar{t}H$ modelling	+0.32	-0.20
Background model statistics	+0.25	-0.25
$t\bar{t} + \ge 1c$ modelling	+0.24	-0.23
Jet energy scale and resolution	+0.19	-0.19
$t\bar{t}$ +light modelling	+0.19	-0.18
Other background modelling	+0.18	-0.18
Jet-vertex association, pileup modelling	+0.12	-0.12
Luminosity	+0.12	-0.12
$t\bar{t}Z$ modelling	+0.06	-0.06
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05
Total systematic uncertainty	+0.90	-0.75
$t\bar{t}+ \ge 1b$ normalisation	+0.34	-0.34
$t\bar{t}+ \ge 1c$ normalisation	+0.14	-0.14
Statistical uncertainty	+0.49	-0.49
Total uncertainty	+1.02	-0.89

study of different generators for prediction of the irreducible background ttbb in LHC yellow report 4 arXiv:1610.07922v1

- \rightarrow ongoing discussion how to treat $t\bar{t}b\bar{b}$
- \rightarrow bottleneck for measurement of $t\bar{t}H$, theo. uncertainty $\mathcal{O}(40\%)$ at NLO Multiscale problem: What scale to use in simulation?

Time	1		
	νv	1011	

2-step BDT approach (boosted decision tree)

- ambiguities in the assignment of b-jets to Higgs or top
- target to overcome this ambiguity with a BDT
- "signal" in training step is the correct combination and background the rest

12% correctly assigned jets 8% without Higgs information

Fit model

- fit in 14 regions
- \blacktriangleright $t\bar{t}$ + > 1b and $t\bar{t}$ + > 1c normalisation taken as free parameters from the fit
- variable in SR: BDT
- variable in CR: H_{τ} (scalar sum of all jets)

Fit model

- fit in 14 regions
- ► $t\bar{t}+\geq 1b$ and $t\bar{t}+\geq 1c$ normalisation taken as free parameters from the fit
- variable in SR: BDT
- variable in CR: H_τ (scalar sum of all jets)

Fit result in single lepton

$$\mu_{t\bar{t}H} = 1.6^{+1.1}_{-1.1}(\text{ stat.}^{+0.5}_{-0.5} \text{ sys.}^{+1.0}_{-0.9})$$

result is:

- compatible with SM expectation
- ► systematically dominated $\rightarrow t\bar{t} + \ge 1b$ and $t\bar{t} + \ge 1c$ normalisation and modeling are main systematics
- \rightarrow adding just more data does not help

more accurate and precise description of phase $t\bar{t}H(b\bar{b})$ -phase space is needed, especially for main backgrounds

points to improve on **theory:**

- more accurate $t\bar{t}b\bar{b}$ -prediction, better $t\bar{t}$ +jets modeling
- clear(er) prescription how to use 4-flavor prediction in experiment
- in general: how to construct a better tt̄-model for that specific phase space

experiment:

- ▶ regions (more) enriched in $t\bar{t}+ \ge 1b$, $t\bar{t}+ \ge 1c$ and $t\bar{t}H$ → more accurate measurement of normalisation factors
- better b-tagging performance

b-tagging: identification of jets originating from b-quarks Mainly 3 different ideas:

- 1. Secondary vertices
- 2. Impact parameter of tracks
- 3. Decay chain of a B-hadron

 \rightarrow Result is a powerful variable to separate b-jets from other jets

Tim Wolf

Traditional b-tagging vs continuous b-tagging

Traditional b-tagging: uses 2 bins of the distribution

Arbitrary units ATLAS Simulation Preliminary √s = 13 TeV, tī - b jets Light-flavour jets 10 10-4 10-3 ot tadded -0.4 -0.2 0 0.2 0.4 0.6 0.8 MV2c10 BDT Output

Continuous b-tagging: attempt to use more bins and gain more information

- Need to convert fixed-cut calibration into (pseudo-)continuous calibration
- Underlying calibrations need to be present

ttH-analysis with run II data

result is compatible with SM expectation

 $t\bar{t}H(b\bar{b})$ -ICHEP analysis is systematics dominated

 \rightarrow The time for improvements of the analysis is now

Complicated analysis with many different objects

possible improvements in:

- MC prediction for $t\bar{t} + \ge 1b$ -backgrounds
- b-tagging
- analysis strategy which exploits improvements in b-tagging

Stay tuned for more news!

Hopefully really, really soon...

BACKUP

Simulation of *tt*+jets:

ME gen.	Powheg-Box	Powheg-Box	MG5_aMC	Powheg-Box	Powheg-Box
PS/UE gen.	Pythia 6.428	Herwig++ 2.7.1	Herwig++ 2.7.1	Pythia 6.428	Pythia 6.428
Ren. scale	$\sqrt{m_t^2 + p_{T,t}^2}$	$\sqrt{m_t^2 + p_{T,t}^2}$	$\sqrt{m_t^2 + \frac{1}{2}(p_{T,t}^2 + p_{T,\bar{t}}^2)}$	$\frac{1}{2} \cdot \sqrt{m_t^2 + p_{T,t}^2}$	$2 \cdot \sqrt{m_t^2 + p_{T,t}^2}$
Fact. scale	$\sqrt{m_t^2 + p_{T,t}^2}$	$\sqrt{m_t^2 + p_{T,t}^2}$	$\sqrt{m_t^2 + \frac{1}{2}(p_{T,t}^2 + p_{T,\bar{t}}^2)}$	$\frac{1}{2} \cdot \sqrt{m_t^2 + p_{T,t}^2}$	$2 \cdot \sqrt{m_t^2 + p_{T,t}^2}$
hdamp	m _t	m_t	_	$2 \cdot m_t$	m _t
ME PDF	CT10	CT10	CT10	CT10	CT10
PS/UE PDF	CTEQ6L1	CTEQ6L1	CTEQ6L1	CTEQ6L1	CTEQ6L1
Tune	P2012	UE-EE5	UE-EE5	P2012 radHi	P2012 radLo

Simulation details for *ttbb*:

ME gen.	MG5_aMC	MG5_aMC	SherpaOL
PS/UE gen.	Herwig++ 2.7.1	Pythia 8.210	Sherpa
Renorm. scale	$\mu_{\rm CMMPS}$	$\mu_{\rm CMMPS}$	$\mu_{\rm CMMPS}$
Fact. scale	$H_{\rm T}/2$	$H_{\rm T}/2$	$H_{\rm T}/2$
Resumm. scale	$f_{ m Q}\sqrt{\hat{s}}$	$f_{\rm Q}\sqrt{\hat{s}}$	$H_{\rm T}/2$
ME PDF	NNPDF3.0 4F	NNPDF3.0 4F	CT10 4F
PS/UE PDF	CTEQ6L1	NNPDF2.3	
Tune	UE-EE-5	A14	Author's tune

Reco BDT details single lepton

Variable	$\geq\!\!6j,\geq\!\!4b$	$\geq\!\!6j,=\!\!3b$	=5j, \geq 4b
Topological information from $t\bar{t}$:			
t _{lep} mass	√	✓	~
t _{had} mass	\checkmark	\checkmark	-
Incomplete t_{had} mass	-	-	√
W_{had} mass	√	\checkmark	-
Mass of W_{had} and b from t_{lep}	√	\checkmark	-
Mass of q from W_{had} and b from t_{lep}	_	-	√
Mass of W_{lep} and b from t_{had}	~	~	√
$\Delta R(W_{had}, b \text{ from } t_{had})$	\checkmark	✓	-
$\Delta R(q \text{ from } W_{\text{had}}, b \text{ from } t_{\text{had}})$	_	-	√
$\Delta R(W_{had}, b \text{ from } t_{lep})$	~	\checkmark	-
$\Delta R(q \text{ from } W_{\text{had}}, b \text{ from } t_{\text{lep}})$	-	_	√
$\Delta R(\text{lep}, b \text{ from } t_{\text{lep}})$	~	~	√
$\Delta R(\text{lep}, b \text{ from } t_{\text{had}})$	~	\checkmark	√
$\Delta R(b \text{ from } t_{\text{lep}}, b \text{ from } t_{\text{had}})$	1	\checkmark	~
$\Delta R(q_1 \text{ from } W_{\text{had}}, q_2 \text{ from } W_{\text{had}})$	✓	\checkmark	-
$\Delta R(b \text{ from } t_{\text{had}}, q_1 \text{ from } W_{\text{had}})$	✓	\checkmark	-
$\Delta R(b \text{ from } t_{\text{had}}, q_2 \text{ from } W_{\text{had}})$	✓	\checkmark	-
min. $\Delta R(b \text{ from } t_{\text{had}}, q \text{ from } W_{\text{had}})$	✓	\checkmark	-
$\Delta R(\text{lep, } b \text{ from } t_{\text{lep}}) - $ min. $\Delta R(b \text{ from } t_{\text{had}}, q \text{ from } W_{\text{had}})$	~	\checkmark	_
$\frac{\Delta R(\text{lep, } b \text{ from } t_{\text{lep}})}{\Delta R(b \text{ from } t_{\text{had}}, q \text{ from } W_{\text{had}})}$	-	-	√
Topological information from Higgs :			
Higgs mass	~	~	~
Mass of Higgs and q_1 from W_{had}	\checkmark	\checkmark	√
$\Delta R(b_1 \text{ from Higgs}, b_2 \text{ from Higgs})$	\checkmark	\checkmark	√
$\Delta R(b_1 \text{ from Higgs, lep})$	\checkmark	\checkmark	\checkmark
$\Delta R(b_1 \text{ from Higgs}, b \text{ from } t_{\text{lep}})$	_	\checkmark	√
$\Delta R(b_1 \text{ from Higgs}, b \text{ from } t_{\text{had}})$	-	\checkmark	\checkmark

Classification BDT details single lepton

Variabla	riable Definition		Region			
variable	Demition	$\geq 4j, \geq 4b$	\geq 4j, 3b	3j, 3b		
General kinen						
$\Delta \eta_{bb}^{\text{avg}}$	Average $ \Delta \eta $ among pairs of b-jets	✓	-	-		
$\Delta \eta_{\rm bb}^{\rm max}$	Maximum $\Delta \eta$ between any two b-jets	-	V	✓		
$\Delta \eta_{jj}^{avg}$	Average $\Delta \eta$ among jet pairs	-	 ✓ 	-		
$\Delta R_{bb}^{\max \ p_T}$	ΔR between the two <i>b</i> -tagged jets with the largest vector sum $p_{\rm T}$	~	~	1		
$\Delta R_{\rm bb}^{\rm Higgs}$	ΔR between the two <i>b</i> -tagged jets with mass closest to the Higgs boson mass	~	-	-		
$\Delta R_{\rm bb}^{\rm max~m}$	ΔR between the two <i>b</i> -jets with the largest invariant mass	~	~	1		
$m_{\rm bb}^{\max p_T}$	Mass of the two b-tagged jets with the largest vector sum p_T	-	-	1		
$m_{\rm bb}^{\rm Higgs}$	Mass of the two b-tagged jets closest to the Higgs boson mass	~	~	1		
m_{bb}^{min}	Minimum mass of two b-tagged jets	-	-	1		
$m_{\rm bb}^{\rm min\ \Delta R}$	Mass of the combination of the two <i>b</i> -tagged jets with the smallest ΔR	~	~	~		
$p_{T,b}^{\min}$	Minimum b-tagged jet p_T	-	-	 ✓ 		
$H_{\mathrm{T}}^{\mathrm{all}}$	Scalar p_T sum of all leptons and jets	-	 ✓ 	1		
$\rm N_{bb}^{Higgs\ 30}$	Number of b -jet pairs with invariant mass within 30 GeV of the Higgs boson mass	~	-	1		
$\rm N_{jj}^{Higgs\ 30}$	Number of jet pairs with invariant mass within 30 GeV of the Higgs boson mass	-	~	-		
Aplanarity	$1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor [42] built with all jets	~	~	~		
Centrality	Sum of the p_T divided by sum of the E for all jets and both leptons	~	-	~		
$H2_{jets}$	Third Fox–Wolfram moment computed using all jets	-	1	-		
$H4_{\rm all}$	Fifth Fox–Wolfram moment computed using all jets and leptons	-	-	~		
Variables from reconstruction BDT output						
BDT output		√*	√*	-		
$m_{\rm H}$	Higgs boson mass	√ ^(*)	√(*)	-		
$\Delta \eta_{\mathrm{H},l}^{\mathrm{min}}$	Minimum $\Delta \eta$ between the Higgs boson and a lepton	√*	 ✓ 	-		
$\Delta \eta_{\mathrm{H},l}^{\mathrm{max}}$	Maximum $\Delta \eta$ between the Higgs boson and a lepton	√*	 ✓ 	-		
$\Delta \eta_{H,b}^{min}$	Minimum $\Delta \eta$ between the Higgs boson and a b-jet	√*	-	-		