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• What makes ttH(bb) interesting? 

• Results from CMS and discussion 

• Status and ongoing work 

• additional: what I did at Lingvist 
Technologies
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Outline



ttH(bb) motivation
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• Large top mass → Yukawa coupling yt  near unity 

• Measure H⬄t coupling directly instead of through 
loops 

• H→bb has the highest branching ratio 

• Goal: measure ttH production cross-section in Run II 

• ... and thus constrain the fundamental SM parameter 
yt



Challenges
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1 Introduction

Following the discovery of a new boson with mass around 125 GeV by the ATLAS and CMS
Collaborations [1–3] at the CERN LHC, the measurement of its properties has become an im-
portant task in particle physics. The precise determination of its quantum numbers and cou-
plings to gauge bosons and fermions will answer the question whether the newly discovered
particle is the Higgs boson (H) predicted by the standard model (SM) of particle physics, i.e.
the quantum of the field responsible for the spontaneous breaking of the electroweak symme-
try [4–9]. Conversely, any deviation from SM predictions will represent evidence of physics
beyond our present knowledge, thus opening new horizons in high-energy physics. While the
measurements performed with the data collected so far indicate overall consistency with the
SM expectations [3, 10–13], it is necessary to continue improving on the measurement of all
possible observables.

In the SM, the Higgs boson couples to fermions via Yukawa interactions with strength propor-
tional to the fermion mass. Direct measurements of decays into bottom quarks and t leptons
have provided the first evidence that the 125 GeV Higgs boson couples to down-type fermions
with SM-like strength [14]. Evidence of a direct coupling to up-type fermions, in particular
to top quarks, is still lacking. Indirect constraints on the top-quark Yukawa coupling can be
inferred from measuring either the production or the decay of Higgs bosons through effec-
tive couplings generated by top-quark loops. Current measurements of the Higgs boson cross
section via gluon fusion and of its branching fraction to photons are consistent with the SM ex-
pectation for the top-quark Yukawa coupling [3, 10–12]. Since these effective couplings occur
at the loop level, they can be affected by beyond-standard model (BSM) particles. In order to
disentangle the top-quark Yukawa coupling from a possible BSM contribution, a direct mea-
surement of the former is required. This can be achieved by measuring observables that probe
the top-quark Yukawa interaction with the Higgs boson already at the tree-level. The pro-
duction cross section of the Higgs boson in association with a top-quark pair (ttH) provides
an example of such an observable. A sample of tree-level Feynman diagrams contributing to
the partonic processes qq, gg ! ttH is shown in Fig. 1 (left and centre). The inclusive next-
to-leading-order (NLO) ttH cross section is about 130 fb in pp collisions at a centre-of-mass
energy

p
s = 8 TeV for a Higgs boson mass (mH) of 125 GeV [15–24], which is approximately

two orders of magnitude smaller than the cross section for Higgs boson production via gluon
fusion [23, 24].

q

q̄

t̄

H

t

g

g

t̄

H

t

g

g

t̄

t

b̄

b

Figure 1: Tree-level Feynman diagrams contributing to the partonic processes: (left) qq ! ttH,
(centre) gg ! ttH, and (right) gg ! tt+bb.

The first search for ttH events used pp collision data at
p

s = 1.96 TeV collected by the CDF ex-
periment at the Tevatron collider [25]. Searches for ttH production at the LHC have previously
been published for individual decay modes of the Higgs boson [26, 27]. The first combination of
ttH searches in different final states has been published by the CMS Collaboration based on the
full data set collected at

p
s = 7 and 8 TeV [28]. Assuming SM branching fractions, the results of

or
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signal background

• large background: mainly tt+jets production 

• σ(tt+jets) = 830 pb vs. σ(tt+Hbb) = 0.3 pb

• heavy flavour (tt+bb): irreducible, multiscale 
process, difficulties in modelling, combinatorial 
self-background for H(bb)

b-jets
light jets

lepton

both have the 
same final state
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Complicated multi-particle final state!
No clear resonant H(bb) peak.

semileptonic dileptonic

1 lepton, 6 jets, 4 b-tags 2 leptons, 4 jets, 4 b-tags

Final state



Key points
• tt→dilepton, lepton+jets 

topologies, ~10 jet/b-tag 
multiplicity categories 

• 4b final state: extensive b-
tagging 

• Major experimental uncertainties: 
jet energy corrections, b-tagging 

• Theoretical uncertainty: tt+bb 
(heavy flavour) modelling! 

• use multivariate classifiers 
against tt+bb: MEM, BDT, DNN...
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integrate over 
parton-level 
momenta p

(unlike MELA)

LO amplitude (signal 
or background)

detector transfer 
function

all jet-to-parton 
association 

combinations

MEM
Directly compute theory-motivated event likelihood 

from kinematics y only.
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Observed y under hypothesis 𝜽.



• CMS preliminary analysis with 12.9/fb [HIG-16-038] 

• μ < 1.5 (1.7), best fit μ = -0.19 ± 0.45 (stat.) ± 
0.68 (syst.)
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Run II CMS

https://cds.cern.ch/record/2231510/files/HIG-16-038-pas.pdf


Jet energy corrections
• Jets are not measured 

perfectly due to pileup, non-
uniform detector response 

• Need to correct jet energy, 
resolution ~10% @ 100GeV 

• Corrections have uncertainties 
of a few percent arising from 
various (~50) sources 

• Uncertainties have a complex 
correlation structure and 
significantly affect the analysis 
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CMS-JME-13-004

e.g. 5 different major 
uncertainty sources.

https://arxiv.org/pdf/1607.03663v1.pdf


Effect on analysis
• Mis-measured jet energies affect selection (event counts) and 

MVA discriminators (b-taggers, MEM) 

• Typically, just re-run analysis ~100x times, recomputing 
affected variables 

• Not feasible with MEM, which is already at ~1-2 minutes/event 
(mainly tt+jets MC) 

• Developed an approximation in evaluating the uncertainties in 
MEM using vector integration
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Machine learning
• Machine learning heavily used on object level: b-

tagging, lepton ID, ... 

• Also, ML complements MEM by using full 
simulation to discriminate tt+H(bb) vs tt+jets 
(inclusive) on event level in low-purity categories 

• Relies on precise modelling of (already 
multivariate) b-tagging discriminators 

• modeling problem: LO/PS precision for tt+HF in 
NLO POWHEG, assign ~50% uncertainties
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https://indico.cern.ch/event/651458/contributions/2651143/attachments/1488439/2314589/hxswg_july17.pdf


tt+heavy flavour
• Currently relying on tuned 

POWHEG simulation (5FS) 

• Major source of theory 
uncertainty 

• Significant discrepancy 
between MG5@NLO and 
Sherpa+OpenLoops 

• Looking to use data 
directly to constrain lack of 
knowledge about tt+bb 
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from talk by S. Pozzorini 
and LHC HIGGS XS WG

https://indico.cern.ch/event/651458/contributions/2651143/attachments/1488439/2314589/hxswg_july17.pdf
https://arxiv.org/abs/1610.07922


Ongoing work
• Executing on our plan presented at 

HiggsCouplings 2016, i.e. finalize measurement 
with ~36/fb data 

• Improving the treatment of experimental 
uncertainties (JEC, b-tagging) 

• Measurement of tt+bb along with tt+H(bb) 

• Analysis is systematically limited, need to address 
them with data! 

• Aiming to finish thesis by end of the year 🙂
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https://indico.cern.ch/event/477407/contributions/2200113/subcontributions/198573/attachments/1369935/2077138/ttH_Hbb_CMS_Kasieczka.pdf


Project at
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How it works
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• Users try to complete the 
sentence in a foreign language 

• We optimize the function that 
generates the study sequence



Background
• Premise: use scientifically 

studied methods to measure 
and improve learning 

• Modelling of mental processes 
(memory, acquisition, skill) 

• Specifically, given some data 
about users, wish to predict 
their future performance 

• O(105) users 

• Ideal for machine learning
16
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Example



Implementation
• Use guess sequences to predict future performance 

• based on Deep Knowledge Tracing (paper) 

• Represent each word numerically using compressed sensing 

• Encode guess sequences to latent vector using recurrent 
neural networks

18 source: WildML

https://web.stanford.edu/~cpiech/bio/papers/deepKnowledgeTracing.pdf
http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/09/rnn.jpg


Compressed sensing
• How to represent sparse high-dimensional vectors, e.g. words in 

a large dictionary? 

• k-sparse N dim → ~k log N dim random vectors [ref]
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http://ieeexplore.ieee.org/document/4286571/


Performance
• Decode latent 

representation to 
knowledge vector in 
word space using 
successive dense layers 

• Measure performance 
using correctly (wrongly) 
predicted words
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Summary
• Used data analysis & mathematical 

modeling on a complex practical 
problem 

• Was able to improve over existing 
methods by 50% 

• Learned a lot about open-ended 
problem solving and mathematical 
thinking 

• Machine learning complements 
detailed theoretical models in case 
you have lots of data 

• Will be useful in experimental analysis: 
e.g. representing N-particle final 
states, uncertainty estimation
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http://arxiv.org/abs/1506.02142


Final words

A big thank you to everyone involved in creating and 
nurturing HiggsTools! 

I have learned a lot and hope to keep learning.
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