Higgs Boson Pair Production: Monte-Carlo Generator Interface & Parton Shower

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Stephen Jones

Borowka, Greiner, Heinrich, Kerner, Luisoni, Schlenk, Schubert, Vryonidou, Zirke

JHEP 08 (2017) 088 [1703.09252] JHEP 10 (2016) 107 [1608.04798] PRL 117 (2016) 012001, Erratum 079901 [1604.06447]

Motivation

Higgs mass is known to good precision:

 $m_H = 125.09 \pm 0.21 (\text{stat.}) \pm 0.11 (\text{syst.}) \text{ GeV}$

ATLAS, CMS 15

So far, measured couplings agree with the Standard Model

But: Higgs self coupling not yet well measured

Motivation (II)

SM Higgs Lagrangian:

$$\mathcal{L} \supset -V(\Phi), \quad V(\Phi) = \frac{1}{2}\mu^2 \Phi^2 + \frac{1}{4}\lambda \Phi^4$$

EW symmetry breaking
$$\frac{m_H^2}{2}H^2 + \frac{m_H^2}{2v}H^3 + \frac{m_H^2}{8v^2}H^4$$

Higgs pair production probes triple-Higgs coupling

Production Channels

9 0000

9 0000

H

- H

Gluon Fusion

Vector Boson Fusion (VBF)

NLO [1,2] NNLO [3] + non-negligible contribution from $gg \rightarrow HHjj$ LO [5]

Top-Quark Associated NLO [2]

 $\sigma(pp \to HH + X) @ 14 \text{ TeV}$

Q

9 00000

 $q \cos \alpha$

Higgs-strahlung NLO [1,2] NNLO [1,4]

Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 12;
 Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro 14;
 Ling, Zhang, Ma, Guo, Li, Li 14 [4] Li, Wang 16
 Dolan, Englert, Greiner, Nordstrom, Spannowsky 15;

4

HH Production (Gluon Fusion)

Grigo, Hoff, Melnikov, Steinhauser 13; Grigo, Hoff 14; Grigo, Hoff, Steinhauser 15

HH Production (Gluon Fusion) (II)

3. NLO QCD (2-loop) with Full Top Mass Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16 (Transverse momentum) NLL + NLO Ferrera, Pires 16

Parton Shower (POWHEG/MG5_aMC@NLO) Heinrich, SPJ, Kerner, Luisoni, Vryonidou 17

4. Born Improved NNLO HEFT

De Florian, Mazzitelli 13

Including Matching Coefficients

Grigo, Melnikov, Steinhauser 14

Including Terms $\mathcal{O}(1/m_T^4)\,$ in Virtual MEs Grigo, Hoff, Steinhauser 15

(Threshold) NNLL + NNLO Matching (SCET) Shao, Li, Li, Wang 13; de Florian, Mazzitelli 15

5. NNLO HEFT (Differential)

de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16 +20%

+9%

Shopping List

Virtual Contribution

Self-coupling (≤3-point)

Integrals Known $gg \to H$

Spira, Djouadi et al. 93, 95; Bonciani, P. Mastrolia 03,04; Anastasiou, Beerli et al. 06;

Many integrals not known analytically, except:

 $H
ightarrow Z \gamma$ Bonciani, Del Duca, Frellesvig et al. 15; Gehrmann, Guns, Kara 15;

Evaluating the Amplitude

Planar Integrals: Reduce to finite basis with REDUZE 2 von Manteuffel, Studerus 12; Panzer 14; von Manteuffel, Panzer, Schabinger 15

Non-Planar Integrals: Evaluate integrals directly

All Integrals evaluated numerically with SecDec Borowka, Heinrich, Jahn, SPJ, (implements sector decomposition) Hepp 66; Denner, Roth 96; Binoth, Heinrich 00

Entire 2-loop amplitude evaluated with a single code

$$F = \sum_{i} \left(\sum_{j} C_{i,j} \epsilon^{j} \right) \left(\sum_{k} I_{i,k} \epsilon^{k} \right) = \epsilon^{-2} \left[C_{1,-2}^{(L)} I_{1,0}^{(L)} + \ldots \right]$$
compute once integral $+ \epsilon^{-1} \left[C_{1,-1}^{(L)} I_{1,0}^{(L)} + \ldots \right] + \ldots$

Dynamically set target precision for each sector, minimising time

Use Quasi-Monte-Carlo (QMC) integration $\mathcal{O}(n^{-1})$ error scaling Li, Wang, Yan, Zhao 15; (Review: Dick, Kuo, Sloan 13)

Implemented in OpenCL, evaluated on GPUs

Results (I): Invariant Mass

Results (II): pT Either Higgs

HEFT: Can be poor approx. for larger $p_{T,h}$

Note: Ambiguous how to rescale HEFT real radiation by full LO born differentially

FTapp: Significantly better but still overestimating

Real radiation plays larger role for large $p_{T,h}$ Including m_T in real radiation does improve over HEFT in tails

Monte Carlo Interface

Amplitude depends on 2 form factors:

 $\mathcal{M}^{\mu\nu} = F_1(\hat{s}, \hat{t}, m_h^2, m_t^2, D) T_1^{\mu\nu} + F_2(\hat{s}, \hat{t}, m_h^2, m_t^2, D) T_2^{\mu\nu}$

Amplitude is slow to evaluate:

Accuracy goal: 3% for F_1 , 5-20% for F_2 (depending on F_2/F_1) GPU Time/PS point: 80 min - 2 days (median 2 hours) Can not put directly into a Monte Carlo

But: Virtual matrix element depends only on \hat{s}, \hat{t} (fixed m_T, m_H)

Can build 2D grid of our phase-space points and interpolate between 3741 pre-calculated points

Monte Carlo Interface (II)

Parametrisation:

$$x = f(\beta(\hat{s})), \quad c_{\theta} = |\cos \theta| = \left| \frac{\hat{s} + 2\hat{t} - 2m_{H}^{2}}{\hat{s}\beta(\hat{s})} \right|, \quad \beta = \left(1 - \frac{4m_{H}^{2}}{\hat{s}} \right)^{\frac{1}{2}}$$

Choose $f(\beta)$ according to cumulative distribution function of phase space points used in the original calculation Obtain nearly uniform distribution in (x, c_{θ}) unit square

Two-step interpolation procedure:

- 1. Choose equidistant grid points, estimate result at each grid point with linear interpolation of amplitude results in vicinity
- 2. Clough-Tocher interpolation (as implemented in SciPy) to estimate amplitude at arbitrary sampling points

Procedure reduces sensitivity to uncertainties of input data points

Monte Carlo Interface (III)

Grid of \mathcal{V}_{fin} (1-loop x 2-loop interference) implemented in Python Interfaced to FORTRAN, C, C++ via Python/C API (examples in repo)

https://github.com/mppmu/hhgrid

Grid Stability:

Grid Validation

Use HEFT to study validity of grid

Full SM compare POWHEG (grid) with our original results

Showered Results

No Higgs decay or hadronization included Assume $\Gamma_h = 0$ (decay can be attached e.g. in narrow width approx.)

More inclusive variables not sensitive to shower

Shower has moderate impact on NLO accurate observables

Showered Results (II)

We use same Pythia8.2 shower for both POWHEG/MG5_aMC@NLO

Different matching schemes have very moderate impact on NLO accurate observables

Showered Results (III)

Shower has larger impact on LO accurate observables

Fastjet anti
$$-k_T R = 0.4$$

 $p_{T,\min}^j = 20 \text{ GeV}$

Parton shower needed to provide reliable predictions at low p_T^{hh} , $p_T^{j_1}$

Showered Results (IV)

POWHEG/MG5_aMC@NLO

B.I HEFT: much harder than exact computation

FTapp: gives good description at high p_T^{hh} (contains exact real ME)

 p_T^{hh} is sensitive to matching

MC@NLO (2.5.3) shower scale: <code>shower_scale_factor $\times [0.1H_T/2, H_T/2]$ </code>

Reducing shower scale gives softer distributions

POWHEG: hdamp & matching

LHE events (before shower): at large p_T^{hh} we do not reproduce NLO Can introduce h_{damp} to limit amount of hard radiation exponentiated:

Exponentiated
$$\rightarrow R_{sing} = R \times F$$

 $R_{reg} = R \times (1 - F)$
 $F = \frac{h_{damp}^2}{(p_T^{hh})^2 + h_{damp}^2}$

POWHEG: hdamp & matching (II)

Similar situation for Higgs p_T Without h_{damp} POWHEG events look similar to NNLO Difference between NLO/POWHEG due to terms of $\mathcal{O}(\alpha_s)$

Only real part of the NLO contributes to p_T tail (variable is LO accurate) NLO corrections are large (K \approx 2), can expect sensitivity to matching

POWHEG: hdamp & matching (III)

In the HEFT we know the NNLO result, can compare to LHE at NLO

 $h_{\rm damp} = \infty$ leads to NLO+PS that agrees more with NNLO $h_{\rm damp} = 250 \text{ GeV}$ gives tail closer to NLO (also in full theory) NNLO not known in the full theory

Radial Separation

Radial separation: $\Delta R^{hh} = \sqrt{(\eta_1 - \eta_2)^2 + (\Phi_1 - \Phi_2)^2}$

POWHEG

POWHEG/MG5_aMC@NLO

Conclusion

Higgs Boson Pair Production via Gluon Fusion

- Important measurement for probing the self coupling (HL-LHC era)
- Large (K≈2) NLO correction, deviates from Born Improved HEFT -14% @ 14 TeV, -24% @ 100 TeV
- Distributions altered significantly
- NLO result interfaced to POWHEG/MG5_aMC@NLO for parton shower

Ongoing Work...

- Make result available within SHERPA, HERWIG
- Make fully differential/improved combination with NNLO HEFT
- Apply methods/framework to calculate other processes

Thank you for listening!

Backup

SM: MG5 aMC@NLO Shower Scale

Pythia6 vs Pythia8

p_T^{hh} in bins of m_{hh}

HEFT: Showered Results

Results: 100TeV

Difference between full theory and HEFT more pronounced

NLO Improved NNLO HEFT

Checks

Real Emission / Subtraction Terms

- Independence of dipole-cut $\alpha_{\rm cut}$ parameter Nagy 03
- Agreement with literature Maltoni, Vryonidou, Zaro 14
- Agreement with FKS (POWHEG/MG5_amc@NLO) Frixione, Kunszt, Signer 96; Nason 04; Frixione et al 07; Alioli et al. 10; J. Alwall et al. 14

Virtual Corrections

- Two calculations of amplitude up to reduction
- Amplitude result invariant under $t \leftrightarrow u$
- Pole cancellation
- Mass renormalization using two methods: counter-term insertion vs. calculating $d\mathcal{M}^{\rm LO}/dm_T^2$ numerically
- Agreement of contributions $gg \to H \to HH$ with SusHi Harlander, Liebler, Mantler 13,16
- Convergence of $1/m_T$ expansion to full result where agreement is expected

LO & Born Improved NLO HEFT

PDF4LHC15_nlo_30_pdfas $m_H = 125 \text{ GeV}$ $m_T = 173 \text{ GeV}$ Uncertainty: $\mu_0 = \frac{m_{HH}}{2}$ $\mu_{R,F} \in \left[\frac{\mu_0}{2}, 2\mu_0\right] \quad (7 - \text{point})$

LO: HEFT describes distributions poorly, underestimates XS @ LO by 14%

NLO: HEFT indicates $K \approx 2$

Comparison to Expansion

Can compare just virtual ME to expansion:

Expansion converges on full $\sqrt{\hat{s}} < 2m_T$

Grigo, Hoff, Steinhauser 15

Triple-Higgs Coupling Sensitivity

VBF: More sensitive (but small XS)

Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 12

SM: Destructive interference between g_{hhh} and y_T^2 contrib.

Distributions: Can help to distinguish between λ values

Can increase sensitivity to HH:

- $p_{T,jet}^{min}$ cut
- $\sigma(gg \to HH)/\sigma(gg \to H)$
- Multivariate $b\bar{b}b\bar{b}$

Barr, Dolan, Englert, Ferreira de Lima, Spannowsky 15; Mangano et al. 16; Goertz, Papaefstathiou, Yang, Zurita 13; Behr, Bortoletto, Frost, Hartland, Issever, Rojo 15

Lambda Variation

Lambda Variation

Lambda 0 x SM

Lambda 2 x SM

Lambda 5 x SM

BSM EFT

Note: Just varying λ : one ``direction'' in EFT parameter space Parametrise **non-resonant** new physics with EFT (5 parameters):

Buchalla et al. 15;

Top-quark Width Effects

Total XS @ LO: reduced by 2% by including top-quark width

Figure 3: Top width effect on the one-loop (Born) matrix element squared for $gg \to HH$. The results for $\Gamma_t = 0$ and 1.5 GeV are shown along with the corresponding ratio.

Maltoni, Vryonidou, Zaro 14

Scaling

Higgs Self Coupling Constraints

HH extremely challenging to measure: 95% Exclusion $\lesssim 30 \cdot \sigma_{
m SM}$

ATLAS PRD 94 (052002) 2016; CMS PRD 94 (052012) 2016

Several other promising ideas to obtain competitive/ complementary limits on deviation of self coupling from SM:

Electroweak corrections to single H production (also VBF, VH)

Gorbahn, Haisch 16; Bizoń, Gorbahn, Haisch, Zanderighi 16; Degrassi, Giardino, Maltoni, Pagani 16;

Modification of precision EW observables (EW oblique corrections) S,T

Degrassi, Fedele, Giardino 17; Kribs, Maier, Rzehak, Spannowsky, Waite 17;

Details of Calculation

Form Factor Decomposition

Expose tensor structure: $\mathcal{M} = \epsilon^1_\mu \epsilon^2_\nu \mathcal{M}^{\mu\nu}$

Form Factors (Contain integrals) $\mathcal{M}^{\mu\nu} = F_1(\hat{s}, \hat{t}, m_h^2, m_t^2, D) T_1^{\mu\nu} + F_2(\hat{s}, \hat{t}, m_h^2, m_t^2, D) T_2^{\mu\nu}$ (Tensor) Basis, built from external momenta & metric Choose: $\mathcal{M}^{++} = \mathcal{M}^{--} = -F_1$ \checkmark Self-coupling diagrams are 1PR by $\mathcal{M}^{+-} = \mathcal{M}^{-+} = -F_2$ cutting a scalar propagator By angular momentum conservation they contribute only to F_1 $T_1^{\mu\nu} = g^{\mu\nu} - \frac{p_2^{\mu}p_1^{\nu}}{p_1 \cdot p_2}$ $p_T^2 = \frac{ut - m_H^4}{2}$

$$T_2^{\mu\nu} = g^{\mu\nu} + \frac{m_H^2 p_2^{\mu} p_1^{\nu}}{p_T^2 p_1 \cdot p_2} - \frac{2p_1 \cdot p_3 p_2^{\mu} p_3^{\nu}}{p_T^2 p_1 \cdot p_2} - \frac{2p_2 \cdot p_3 p_3^{\mu} p_1^{\nu}}{p_T^2 p_1 \cdot p_2} + \frac{2p_3^{\mu} p_3^{\nu}}{p_T^2}$$

Glover, van der Bij 88

Form Factor Decomposition (II)

Construct Projectors:

$P_{j}^{\mu\nu} = \sum_{i=1}^{2} B_{ji}(\hat{s}, \hat{t}, m_{H}^{2}, d) T_{i}^{\mu\nu}$

Such that:

$$P_{1\mu\nu}\mathcal{M}^{\mu\nu} = F_1$$
$$P_{2\mu\nu}\mathcal{M}^{\mu\nu} = F_2$$

Same Basis as amplitude

Separately calculate the contraction of each projector with $\mathcal{M}^{\mu\nu}$

Projectors (CDR $D = 4 - 2\epsilon$):

$$P_1^{\mu\nu} = \frac{1}{4} \frac{D-2}{D-3} T_1^{\mu\nu} - \frac{1}{4} \frac{D-4}{D-3} T_2^{\mu\nu}$$
$$P_2^{\mu\nu} = -\frac{1}{4} \frac{D-4}{D-3} T_1^{\mu\nu} + \frac{1}{4} \frac{D-2}{D-3} T_2^{\mu\nu}$$

Integral Families

Can rewrite tensor integrals/scalar products as inverse propagators **#scalar products**

$$S = \frac{l(l+1)}{2} + lm$$
 $l = 2$ #loops
 $m = 3$ #l.i. external momenta \Rightarrow $S = 9$

Introduce Integral Families with 9 propagators

$$I_{\nu_1,...,\nu_9}^{\text{fam}_j} = \int d^d p_1 \int d^d p_2 \frac{1}{D_1^{\nu_1} D_2^{\nu_2} \cdots D_9^{\nu_9}} \qquad \nu_i \in \mathbb{Z}$$

Planar family 1:

Integral Families (II)

Integral Reduction

Practically, 2-loop reduction with 4 scales $(\hat{s}, \hat{t}, m_T^2, m_H^2)$ and 4 inverse propagators is challenging

Simplification: Fix $m_T = 173 \,\text{GeV}, m_H = 125 \,\text{GeV}$

Price: Many arbitrary precision integers in reduction (slow) Can not vary masses in result 1-loop

		 -	
Planar Integrals (145+83 crossed)	Direct	63	9865
von Manteuffel, Studerus 12	+ Symmetries	21	1601
Non-Planar Integrals (70+29 crossed) Computed mostly without reduction	+ IBPs	8	~260-270 Currently: 327

Integrals

2-loon

For reduced integrals we choose a Finite Basis using REDUZE

Panzer 14; von Manteuffel, Panzer, Schabinger 15

Master Integrals

Known Analytically:

Numeric Evaluation:

Up to 4-point, 4 scales s, t, m_T^2, m_H^2 SecDec

Slide: Matthias Kerner

Finite Basis

Always possible to pick finite basis of integrals, rewrite integrals using:

Finite Basis...

- Dimension Shifts Tarasov 96; Lee 10
- Dots

Panzer 14; von Manteuffel, Panzer, Schabinger 15

Conventional...

	$(6-2\epsilon)$			$(4-2\epsilon)$			
	(s,t)	201 s	2.34×10^{-4}	(s,t)	384 s	8.12×10^{-4}	
	$(6-2\epsilon)$			$(4-2\epsilon)$			
Two loop	(s,t)	150 s	4.83×10^{-4}	(s,t)	$56538~{\rm s}$	1.67×10^{-2}	
Iwo-loop	$(6-2\epsilon)$			$(4-2\epsilon)$			
	(s,t)	280 s	1.00×10^{-3}	(s,t)	214135 s	8.29×10^{-3}	
	$(6-2\epsilon)$			$(4-2\epsilon)$			
Droll-Van	\bullet (s,t)	294 s	1.21×10^{-3}	(s,t)	3484378 s	30.9	
Diell-Tall	$(4-2\epsilon)$			$(4-2\epsilon)$			
		91 s	3.76×10^{-4}		87 s	3.76×10^{-4}	
von Manteuffel,	$(6-2\epsilon)$			$(4-2\epsilon)$			Rel
Schabinger 17		17 s	5.15×10^{-4}		20 s	1.95×10^{-4}	Frr
	$(6-2\epsilon)$			$(4-2\epsilon)$			
		119 s	2.32×10^{-3}	(s)	118 s	2.12×10^{-3}	
	Total/Max:	3995 s	5.84×10^{-3}	Total/Max:	5136862 s	30.9	

Huge decrease in time to numerically integrate and relative error

Rank 1 Shifted Lattices

Generating vector \vec{z} precomputed for a **fixed** number of lattice points, chosen to minimise worst-case error Nuyens 07

Rank 1 Shifted Lattices (II)

Unbiased error estimate computed from random shifts:

Typically 10-50 shifts, production run: 20 shifts

R1SL: Algorithm Performance

Example: Rel. Err. of one sector of sector decomposed loop integral

R1SL: Implementation Performance

Accuracy limited primarily by number of function evaluations

Implemented in OpenCL 1.1 for CPU & GPU, generate points on GPU/ CPU core, sum blocks of points (reduce memory usage/transfers)

Amplitude Structure

Factor dimensionful parameter M^2 out of integrals s.t. they depend on dimensionless ratios: **#prop. in denom. #prop. in num.**

$$I_{r,s}(\hat{s}, \hat{t}, m_h^2, m_t^2) = (M^2)^{-L\epsilon} (M^2)^{2L-r+s} I_{r,s} \left(\frac{\hat{s}}{M^2}, \frac{\hat{t}}{M^2}, \frac{m_h^2}{M^2}, \frac{m_t^2}{M^2}\right)$$

 $\overline{\mathrm{MS}}$ scheme strong coupling a and $\overline{\mathrm{OS}}$ top-quark mass:

$$F = aF^{(1)} + a^{2}(\delta Z_{A} + \delta Z_{a})F^{(1)} + a^{2}\delta m_{t}^{2}F^{ct,(1)} + a^{2}F^{(2)} + O(a^{3})$$

$$F^{(1)} = \left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{\epsilon} \left[b_{0}^{(1)} + b_{1}^{(1)}\epsilon + b_{2}^{(1)}\epsilon^{2} + O(\epsilon^{3})\right] - 1\text{-loop}$$

$$F^{ct,(1)} = \left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{\epsilon} \left[c_{0}^{(1)} + c_{1}^{(1)}\epsilon + O(\epsilon^{2})\right] - Mass \text{ Counter-Terms}$$

$$F^{(2)} = \left(\frac{\mu_{R}^{2}}{M^{2}}\right)^{2\epsilon} \left[\frac{b_{-2}^{(2)}}{\epsilon^{2}} + \frac{b_{-1}^{(2)}}{\epsilon} + b_{0}^{(2)} + O(\epsilon)\right] - 2\text{-loop}$$

Red terms contain integrals, computed numerically at each PS point, not re-evaluated for scale variations

Amplitude Evaluation

Contributing integrals:

 $\sqrt{\hat{s}} = 327.25 \,\mathrm{GeV}, \sqrt{-\hat{t}} = 170.05 \,\mathrm{GeV}, M^2 = \hat{s}/4$

integral		value		error	time [s]	
 F1_01111	11110_ord0	(0.484, 4.96e-05)	(4.40e-05, 4.23)	3e-05)	11.8459 <	
N3_1111	11100_k1p2k2p2_ord0	(0.0929, -0.224)	(6.32e-05, 5.93)	3e-05)	235.412	
N3_1111	11100_1_ord0	(-0.0282, 0.179)	(8.01e-05, 9.13)	8e-05)	265.896	
N3_1111	11100 k1p2k1p2_ord0	(0.0245, 0.0888)	(5.06e-05, 5.3)	1e-05)	282.794	
N3_1111	11100_k1p2_ord0	(-0.00692, -0.108)	(3.05e-05, 3.08)	5e-05)	433.342	
$I(s,t,m_t^2,m_h^2) = -\left(\frac{\mu^2}{M^2}\right)^{2\varepsilon} \Gamma(3+2\epsilon)M^{-4}\left(\frac{A_{-2}}{\epsilon^2} + \frac{A_{-1}}{\epsilon^1} + A_0 + \mathcal{O}(\epsilon)\right) \qquad g \xrightarrow{g}_{H-\frac{1}{2}} - H$ Sector Decomposition						
sector	integral value	erre	or time $[s]$	#p	oints	
5	(-1.34e-03, 2.00e-07)	(2.38e-07, 2.69e-0)	7) 0.255	131	0420	
6	(-1.58e-03, -9.23e-05)	(7.44e-07, 5.34e-0)	7) 0.266	131	0420	
• • •		•				
41	(0.179, -0.856)	(1.10e-05, 1.22e-0.5)	5) 29.484	7995	2820	Slide:
42	(0.359, -1.308)	(1.40e-06, 1.58e-0)	6) 80.24	21143	6900	Matthias Kerner
44	(0.0752, -1.185)	(5.44e-07, 6.76e-0)	7) 99.301	28290	4860	(LL 2016)

Experimental Prospects

Current Experimental Limits

Decay Ch.	B.R.	95% Excl.	Analysis $\left(\left[fb^{-1} \right], \sqrt{s} \left[\text{TeV} \right] \right)$
$b\overline{b}b\overline{b}$	33%	$< 29 \cdot \sigma_{\rm SM}$	ATLAS-CONF-2016-017 (3.2,13)
			ATLAS-CONF-2016-049 (13.3,13)
$b\overline{b}WW$	25%		
$b\overline{b} au au$	7.3%	$< 200 \cdot \sigma_{\rm SM}$	CMS PAS HIG-16-012 $(2.7,13)$
			CMS PAS HIG-16-028 (12.9,13)
			CMS PAS HIG-15-013 (18.3,8)
$b\overline{b}ZZ$	3.0%		
WW au au	2.71%		
WWZZ	1.13%		
$b\overline{b}\gamma\gamma$	0.26%	< 3.9 pb	ATLAS-CONF-2016-004 (3.2,13)
		$< 74 \cdot \sigma_{\rm SM}$	CMS-HIG-13-032 (19.7,8)
$\gamma\gamma\gamma\gamma\gamma$	0.001%		
$\overline{bbVV}(\rightarrow l\nu l\nu)$	1.23%	$400 \cdot \sigma_{\rm SM}$	CMS PAS HIG-16-024 (2.3,13)
$\gamma\gamma WW^*(ightarrow l u jj)$	_	< 25 pb	ATLAS-CONF-2016-071 (13.3,13)
Comb Ch.	_	$< 70 \cdot \sigma_{\rm SM}$	ATLAS arXiv:1509.04670v2 (20.3,8)

Warning: Last Updated August 2016

Future Experimental Prospects

HL-LHC (14 TeV) ATLAS+CMS bbγγ + bbττ: Expected significance 1.9 sigma CERN-LHCC-2015-10

ATLAS bbγγ: Signal significance 1.3 sigma ATL-PHYS-PUB-2014-019

ATLAS bbtt: Signal significance 0.6 sigma ATL-PHYS-PUB-2015-046

FCC (100 TeV)

This rate is expected to provide a clear signal in the $HH \rightarrow (b\bar{b})(\gamma\gamma)$ channel and to allow determination of λ_{3H} with an accuracy of 30-40% with a luminosity of 3 ab⁻¹, and of 5-10% with a luminosity of 30 ab⁻¹ [497–499]. A rare decay channel which is potentially interesting is $HH \rightarrow (b\bar{b})(ZZ) \rightarrow (b\bar{b})(4l)$, with a few expected signal events against $\mathcal{O}(10)$ background events at 3 ab⁻¹ [500].

arXiv:1607.01831