Azimuthal asymmetries in QCD hard scattering:
infrared safe but divergent

Massimiliano Grazzini
University of Zurich

in collaboration with Stefano Catani and Hayk Sargsyan

Higgstools final meeting
Durham, september 13th 2017
Outline

• Introduction

• Azimuthal asymmetries

• Examples at fixed order

• Origin of the singular behaviour

• All order resummation
 - results for heavy-quark production

• Summary & Outlook
Introduction

Angular distributions of final-state particles in high-energy collisions are relevant observables to understand the dynamics of the underlying production mechanism.

In the case of polarised collisions azimuthal correlations have been extensively studied. See e.g. E.C. Aschenauer, U. D'Alesio, F. Murgia (2015).

In the case of unpolarised collisions the available studies focus on the Drell-Yan process. See e.g. M. Lambertsen and W. Vogelsang (2016).

Data available at the LHC.

Activity within the framework of Transverse-Momentum Dependent (TMD) parton distributions.

Linearly polarised gluons produce specific \(\cos(2\varphi) \) and \(\cos(4\varphi) \) modulation of the azimuthal dependence. P.J. Mulders and J. Rodrigues (2000); S. Catani, MG (2011); C. Pisano, D. Boer, S. J. Brodsky, M. G. A. Buffing and P. J. Mulders (2013).
Azimuthal asymmetries

We consider the hard scattering process \(h_1(P_1) + h_2(P_2) \rightarrow F(\{p_3, p_4\}) + X \)

The generic system F is composed by two ‘particles’ with momenta \(p_3 \) and \(p_4 \) invariant mass \(M \) and transverse momentum \(q_T \). These ‘particles’ can either be pointlike or hadronic jets.

Define \(\phi = \phi_3 - \phi(q_T) \): azimuthal separation between \(p_3 \) and \(p_3 + p_4 \).

\(\Delta \phi = \phi_3 - \phi_4 \)!

We mostly use the angles defined in the Collins-Soper rest frame of F.

The following discussion is however independent on this choice and one can also use the angles \(\phi \) defined in the CM frame of the colliding hadrons.

We have in fact

\[
\cos \varphi = \cos(\phi_3 - \phi(q_T)) + \mathcal{O}(q_T/M)
\]
Azimuthal asymmetries

Consider $d\sigma/dq_T$ and $d\sigma/dq_T d\varphi$

Both these quantities are IR safe but the computation of azimuthal correlations can lead to divergences as $q_T \to 0$

Our main observation is that:

\[
\frac{d\sigma}{dM^2 d\varphi} = \begin{cases}
\text{finite at any fixed order (DY production)} \\
\text{divergent for any } \varphi \text{ at some fixed order (ttbar, Vj, jj, VV......)}
\end{cases}
\]

The source of the singularities are azimuthal correlations at small q_T
The case of Drell-Yan

Define harmonic components of azimuthally dependent cross sections

\[\frac{d\sigma_n}{dM^2} \equiv \int_0^{2\pi} d\varphi \cos(n\varphi) \int_0^{+\infty} dq_T^2 \frac{d\sigma}{dM^2 dq_T^2 d\varphi} \Theta(q_T - q_{cut}) \quad q_{cut} = r_{cut} M \]

We define here \(\varphi \) as the azimuthal angle of the electron in the Collins-Soper frame

In the DY case the cross section contains only four harmonics:

- \(\cos(\varphi) \)
- \(\sin(\varphi) \)
- \(\cos(2\varphi) \)
- \(\sin(2\varphi) \)

Measured by ATLAS and CMS

The harmonics are finite (and small) for \(n \neq 0 \)

Azimuthal correlations are present but they are finite as \(q_T \to 0 \)
The case of $t\bar{t}$

Define harmonic components of azimuthally dependent cross sections

$$\frac{d\sigma_n}{dM^2} \equiv \int_0^{2\pi} d\varphi \cos(n\varphi) \int_0^{+\infty} dq_T^2 \frac{d\sigma}{dM^2 dq_T^2 d\varphi} \Theta(q_T - q_{cut})$$

We define here φ as the azimuthal angle of the top quark in the Collins-Soper frame.

Here the cross section receives contribution from harmonics of arbitrary n.

At variance with the DY case here all even harmonics are divergent.
Singular azimuthal correlations

At small transverse momenta QCD radiative corrections are dynamically enhanced

The general structure of the NLO cross section at small q_T is

$$\frac{d\sigma^{NLO}}{dM^2dq_T} \propto \delta^{(2)}(q_T) + \alpha_s \left\{ \left(a_2 \left[\frac{1}{q_T^2} \ln \left(\frac{M^2}{q_T^2} \right) \right]_+ + a_1 \left[\frac{1}{q_T^2} \right]_+ + a_0 \delta^{(2)}(q_T) - \frac{a_{corr}(\hat{q}_T)}{q_T^2} \right) + \ldots \right\}$$

The coefficients a_1 and a_2 are independent on the direction of q_T while a_{corr} does depend on it.

The azimuthal correlations are absent in the DY case (a_{corr} vanishes).

The azimuthal correlations of course vanish when we consider azimuthally integrated cross sections.

The singularity driven by a_{corr} cannot be cancelled by the virtual!
Singular azimuthal correlations

Compare $d\sigma/dq_T$ and $d\sigma/dq_T d\varphi$ when azimuthal correlations are present
Singular azimuthal correlations

Compare $d\sigma/dq_T$ and $d\sigma/dqTd\phi$ when azimuthal correlations are present

The cancellation of real and virtual is highly unbalanced \rightarrow unphysical shape

But

Integral is finite!
Singular azimuthal correlations

Compare \(\frac{d\sigma}{dq_T} \) and \(\frac{d\sigma}{dq_T dq} \) when azimuthal correlations are present.
Singular azimuthal correlations

Compare \(d\sigma/dq_T\) and \(d\sigma/dq_Td\varphi\) when azimuthal correlations are present

Although IR safe the azimuthal correlation is divergent!

Divergences arise from a single phase space point at \(q_T=0\)
Origin of the singular behaviour

Singular azimuthal correlations have two distinctive physical origins:

1) Collinear radiation from initial state colliding gluons

azimuthal correlations are induced by the customary spin correlations in gluon splitting processes (absent in fermion splitting due to helicity conservation)

responsible for singularities only in the $n=2$ and $n=4$ harmonics

S. Catani, MG (2011)
Origin of the singular behaviour

Singular azimuthal correlations have two distinctive physical origins:

2) Soft wide-angle radiation in the case of final states containing coloured particles

these contributions are explicitly known in the case in which F is a $\bar{t}t$ pair

they are responsible for singularities with arbitrary n

In the $\bar{t}t$ case only even harmonics are divergent at NLO (expected not to hold beyond NLO)
Based on the previous discussion we can conclude that azimuthal correlations will have divergences starting from some perturbative order if the final state system F produced at Born level by $c_1c_2 \rightarrow F$ and

1) **at least one of the initial state colliding partons c_1 or c_2 is a gluon**

2) **at least one of the final state particles is coloured**

It is important to note that one of these two conditions is sufficient to produce divergences

- $t\bar{t}$ production: both conditions fulfilled ($gg\rightarrow t\bar{t}$ contributes at Born level and the final state is coloured)

- Similarly divergences are expected for $F=Vj, F=jj$

- $F=\gamma\gamma, WW$ and ZZ lead to divergences due to the gg fusion subprocess starting at N^3LO
A further example: Z+jet

As a further example we consider the case $F=Zj$ in pp collisions at $\sqrt{s}=8$ TeV

We define $\varphi = \phi(p_{T,jet}) - \phi(q_T)$

We consider the lowest order contribution to the $n=1,2,4,6$ harmonics

- $n=2$: both (soft and collinear) sources of singular azimuthal correlations are present
- $n=1,4,6$: only soft correlations are present at this order

We expect a singular behaviour $d\sigma_n/dq_T \propto 1/q_T$

The numerical results are consistent with these expectations
As it is customary in QCD resummations one has to work in a conjugate space in order to allow the kinematics of multiple gluon emission to factorize.

As it is customary in QCD resummations one has to work in a conjugate space in order to allow the kinematics of multiple gluon emission to factorize.

In this case, to exactly implement momentum conservation, the resummation has to be performed in impact parameter b-space

$$\delta^{(2)}(p_T - p_{T1} - \ldots - p_{Tn}) \quad \rightarrow \quad e^{i\mathbf{b} \cdot \mathbf{p}_T} \prod_{i=1}^{n} e^{-i\mathbf{b} \cdot \mathbf{p}_{Ti}}$$

The resummed cross section is then obtained by inverse Fourier transformation from a resummed form factor.
The resummed form factor does not depend on the direction of \(b \), the Fourier transform turns into a Bessel transform

\[
\frac{d\sigma_{\text{az.av.}}^{(\text{res})}}{dM^2dq_T^2} = \int_0^{+\infty} db \ b \ J_0(bq_T) \ \Sigma_{\text{az.av.}}^{(\text{res})}(M, b)
\]

The behaviour of the Bessel function at small \(bq_T \) is \(J_0(bq_T) \approx 1 + O(bq_T) \)

The resummed form factor at large \(b \) is strongly damped (Sudakov suppression)\(^{1} \)

\[G. \text{ Parisi, R. Petronzio (1979)} \]

At small \(q_T \) we have

\[
\frac{d\sigma_{\text{az.av.}}^{(\text{res})}}{dM^2dq_T^2} \propto \text{const.}
\]

Since \(d\sigma/dq_T = 2q_T d\sigma/dq_T^2 \) we have the customary kinematical peak in the low \(q_T \) region

\[\text{HqT} \]
We now consider the resummation of the singular azimuthal correlations. The prototype of this resummation has been first studied for heavy-quark pairs by S. Catani, A. Torre, MG (2013).

We consider the q_T dependence of the n-harmonic

$$\frac{d\sigma_n}{dM^2 dq_T^2} \equiv \int_0^{2\pi} d\varphi \cos(n\varphi) \frac{d\sigma}{dM^2 dq_T^2 d\varphi}$$

Also in this case the projection on the n-harmonic allows us to transform the Fourier into a Bessel transformation and we get the n-order Bessel function

$$\frac{d\sigma_n^{(\text{res})}}{dM^2 dq_T^2} = \int_0^{+\infty} db \, b \, J_n(bq_T) \, \Sigma_n^{(\text{res})}(M, b)$$

The leading logarithmic behaviour of the resummed form factor is the same appearing in the azimuthally averaged case.

The Sudakov suppression at large-b is such that the small-q_T behaviour of the resummed cross section is driven by the one of J_n.
Resummation

Since $J_n(bqT) \approx O((bqT)^n)$ we have

$$\frac{d\sigma_n^{(\text{res})}}{dM^2 dq_T^2} \propto q_T^n$$

The small-q_T behaviour of the resummed cross section is integrable for any $n=1,2,3...$: highly non-trivial result of resummation

It is interesting to contrast the impact of resummation in the two cases

- In the case of the azimuthally averaged cross section the effect of resummation is
 $$1/q_T^2 \rightarrow \text{const}$$
- In the case of the n-harmonic we get
 $$1/q_T^2 \rightarrow q_T^n$$

The effect of resummation for azimuthal correlations is even more substantial and the shape of the resummed spectrum is expected to be significantly different
Results for $t\bar{t}$ at NLL+NLO ($n=2$)

The resummed result is peaked in the region $30 \text{ GeV} < q_T < 60 \text{ GeV}$

Consistent with suppression at small q_T expected from $(q_T)^3$ behaviour

The matching contributes substantially also at small q_T

The integrated $n=2$ harmonic is $\sigma_{n=2}^{t\bar{t}} = 3 \text{ pb}$

about $1/75$ of the total NLO cross section

Effective LO prediction within resummed PT
Summary

Angular distributions are relevant observables to understand the dynamics of hard scattering processes.

We have considered azimuthal asymmetries in the inclusive hadronic production of generic high mass systems composed by two particles.

We have shown that despite the IR safety of these observables their fixed order QCD computation can lead to divergences.

Examples of processes with fixed-order divergences are heavy-quark production, associated production of vector bosons and a jet, dijet and diboson production (DY instead features no singular asymmetries).

The divergences originate from singular collinear correlations in gg initiated processes and in wide-angle soft gluon correlations in processes with coloured particles in the final state.

Complete mismatch between virtual and real contributions.
Summary

- We have shown quantitative results for the lowest order azimuthal harmonics for Drell-Yan, ttbar and Zj production.

- We have discussed the resummed structure of azimuthal correlations by contrasting it with the case of azimuthally averaged cross sections.

- Resummation tames the divergent behaviour by producing a powerlike behaviour of the spectrum at low q_T.

- We have presented quantitative results for the resummed n=2 harmonic in the case of $t\bar{t}$ production.

- In the case of azimuthal harmonics the resummation allows us to obtain effective lowest order predictions.
Outlook

- The results I have presented set the stage for applications to a variety of hadron collider processes including vector boson plus jet and dijet production.

- Interesting applications can arise also in QED.

- Indeed although the DY process is free of QCD singular azimuthal correlations the presence of charged leptons in the final state produces singular correlations in QED due to large angle soft photon emissions.

- QED divergences are predicted also in e^+e^- collisions for example in the e^+e^- → μ^+μ^- +X or in the γγ → μ^+μ^- +X processes.
Backup
Universal resummation formula

$$\frac{d\sigma_F^{(\text{sing})}}{d^2q_T \, dM^2 \, dy \, d\Omega}(p_1, p_2; q_T, M, y, \Omega) = \frac{M^2}{s} \sum_{c=q,g} \left[d\sigma_{cc,F}^{(0)} \right] \int \frac{d^2b}{(2\pi)^2} \ e^{ib \cdot q_T} \ S_c(M, b)$$

$$\times \sum_{a_1,a_2} \int_{x_1}^{1} \frac{dz_1}{z_1} \int_{x_2}^{1} \frac{dz_2}{z_2} \ [H^F C_1 C_2]_{c\epsilon; a_1 a_2} \ f_{a_1/h_1}(x_1/z_1, b_0^2/b^2) \ f_{a_2/h_2}(x_2/z_2, b_0^2/b^2)$$

$$S_c(M, b) = \exp \left\{ - \int_{b_0^2/b^2}^{\infty} \frac{dq^\omega}{q^2} \left[A_c(\alpha_S(q^2)) \ \ln \frac{M^\omega}{q^2} + B_c(\alpha_S(q^2)) \right] \right\}$$

C coefficients embody collinear radiation at scale 1/b

S_c embodies soft and flavour conserving collinear radiation in the region

H^F includes hard radiation at scales k_T \sim M
The case of heavy-quark production

\[
\frac{d\sigma^{(\text{sing})}(P_1, P_2; q_T, M, y, \Omega)}{d^2q_T \, dM^2 \, dy \, d\Omega} = \frac{M^2}{2P_1 \cdot P_2} \sum_{c=q, g} \left[d\sigma_{cc}^{(0)} \right] \int \frac{d^2b}{(2\pi)^2} \, e^{ib \cdot q_T} \, S_c(M, b) \\
\times \sum_{a_1, a_2} \int_{x_1}^1 \frac{d z_1}{z_1} \int_{x_2}^1 \frac{d z_2}{z_2} \left[(H) C_{1C_2}\right]_{c_1; a_1a_2} \, f_{a_1/h_1}(x_1/z_1, b_0^2/b^2) \, f_{a_2/h_2}(x_2/z_2, b_0^2/b^2)
\]

\[S_c(M, b) = \exp \left\{ - \int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} \left[A_c(\alpha_s(q^2)) \ln \frac{M^2}{q^2} + B_c(\alpha_s(q^2)) \right] \right\}\]

C coefficients embody collinear radiation at scale 1/b

S_c embodies soft and flavour conserving collinear radiation in the region

H\(^F\) includes hard radiation at scales \(k_T \sim M\)

Additional radiative factor of purely soft origin (starts to contribute at NLL)

S.Catani, A.Torre, MG (2014)
(see also Lin Yang et al. (2013)
Main issue: the heavy quarks carry non abelian colour charge

soft radiation at large angles with respect to the colliding partons

\[
(H \Delta)_{c\bar{c}} = \frac{\langle \widetilde{M}_{c\bar{c} \rightarrow QQ} | \Delta | \widetilde{M}_{c\bar{c} \rightarrow QQ} \rangle}{\alpha_S^2(M^2) |M_{c\bar{c} \rightarrow QQ}^{(0)}(p_1, p_2, p_3, p_4)|^2}
\]

\[
\Delta(b, M; y_{34}, \phi_3) = V^\dagger(b, M; y_{34}) \, D(\alpha_S(b_0^2/b^2); \phi_{3b}, y_{34}) \, V(b, M; y_{34})
\]

\[
V(b, M; y_{34}) = \bar{P}_q \, \exp \left\{ -\int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} \, \Gamma_t(\alpha_S(q^2); y_{34}) \right\}
\]

\[
\alpha_S^n L^m \text{ terms } n \geq m
\]

soft anomalous dimension

\[
\Gamma_t^{(1)} \text{ and } \Gamma_t^{(2)} \text{ directly related to singular structure of } |M_{c\bar{c} \rightarrow Q\bar{Q}}\rangle
\]

M. Neubert et al. (2009)

\[
D(\alpha_S; \phi_{3b}, y_{34}) \text{ embodies azimuthal correlations at scale } 1/b
\]

\[
\langle D(\alpha_S; \phi_{3b}, y_{34}) \rangle_{av.} = 1
\]
Resummation coefficients

We have explicitly computed all the first order resummation coefficients

\[
\Gamma_t^{(1)}(y_{34}) = -\frac{1}{4} \left\{ (T_3^2 + T_4^2)(1 - i\pi) + \sum_{\substack{i=1,2 \atop j=3,4}} T_i \cdot T_j \ln \frac{(2p_i \cdot p_j)^2}{M^2 m^2} \\
+ 2 T_3 \cdot T_4 \left[\frac{1}{2v} \ln \left(\frac{1+v}{1-v} \right) - i\pi \left(\frac{1}{v} + 1 \right) \right] \right\}.
\]

\[
D^{(1)}(\phi_{3b}, y_{34}) = (T_3^2 + T_4^2) \left[\frac{c_{3b} \arcsinh(c_{3b})}{\sqrt{1 + c_{3b}^2}} - \frac{1}{2} \ln \left(\frac{m_T^2}{m^2} \right) \right] - (T_3 + T_4)^2 \left(\arcsinh^2(c_{3b}) + \frac{1}{2} \text{Li}_2 \left(-\frac{p_T^2}{m^2} \right) \right) + \frac{1}{2v} T_3 \cdot T_4 (L_{34}^\varphi - L_{34})
\]

\[
L_{34}^\varphi = \text{Sign}(c_{3b}) \left[L_{\xi} (\xi(c_{3b}, \alpha_{34}), \alpha_{34}) - L_{\xi} (\xi(-c_{3b}, \alpha_{34}), \alpha_{34}) \right]
\]

\[
L_{\xi}(\xi, \alpha) = \frac{1}{2} \ln^2 \frac{\xi(1 + \xi)}{\alpha + \xi} - \ln^2 \frac{\xi}{\alpha + \xi} + 2 \left[\text{Li}_2(-\xi) - \text{Li}_2 \left(\frac{\alpha + \xi}{\alpha - 1} \right) + \ln(\alpha + \xi) \ln(1 - \alpha) \right]
\]

\[
\xi(c, \alpha) = \left(c + \sqrt{1 + c^2} \right) \left(c + \sqrt{\alpha + c^2} \right) \quad , \quad \alpha_{34} = \frac{2 \sqrt{1 - v^2}}{1 - \sqrt{1 - v^2}} c_{3b}^2
\]