Search for extra Higgs bosons at the LHC

Matías Vázquez with Ulrich Ellwanger LPT d'Orsay, Univ. Paris-Sud XI

based on 1512.04281 (JHEP 1602 (2016) 096) and 1707.08522 (JHEP, to appear)

September 13th, 2017

Index

- Introduction
- The NMSSM
- Present searches at the LHC
 - Direct searches
 - Indirect searches
- 4 A new search: $H \rightarrow hh_s / A \rightarrow ha_s$
- Results
- Conclusions and outlook

M.R. Vázquez September 13th, 2017

Extended Higgs sectors

The Higgs sector of the SM

- In the SM, the EWSB mechanism is realized minimally. Only one Higgs doublet giving rise to one physical scalar after symmetry breaking.
- Some 'uncomfortable' facts of the SM: metastability of the Higgs potential, quadratically divergent contributions to the Higgs mass, hierarchy of Yukawa couplings...
- ... So far, h^{125} is (very) compatible with the SM predictions.

Extended Higgs sector

- Models featuring an extended scalar sector are well motivated (SUSY, extended symmetries, extra Higgs representations...).
- New physical states possibly within the reach of the LHC.
- Such models open the possibility for new Higgs-to-Higgs decays which can test the nature of EWSB.

M.R. Vázguez September 13th, 2017

The NMSSM Higgs sector

Higgs content of the NMSSM:

- Two SU(2) doublets H_u (couples to up-type fermions) and H_d (couples to down-type fermions) \rightarrow like in the MSSM,
- ullet A singlet S whose vev generates a Dirac mass term for higgsinos (replaces the μ term of the MSSM)

Mass eigenstates (- Goldstone boson):

- Three neutral scalars:
 - $h \rightarrow M_h \sim 125 \text{ GeV}$
 - $h_s \rightarrow \text{mostly singlet-like}$
 - ullet $H o ext{mostly MSSM-like, heavy, see below}$
- Two neutral pseudoscalars
 - $a_s \rightarrow \text{mostly singlet-like}$
 - A → mostly MSSM-like, heavy, see below
- ullet One charged Higgs $H^\pm o ext{MSSM-like}$, heavy, see below

M.R. Vázquez September 13th, 2017

Indirect constraints on the masses of the states beyond h

$H/A/H^{\pm}$

 H^{\pm} contributes to the $BR(b
ightarrow s + \gamma)$ which is in agreement with the SM

- $ightarrow M_{H^{\pm}} \gtrsim 350 \; {
 m GeV}$
- ightarrow H^{\pm} , H and A form a nearly degenerate SU(2) multiplet with $M\gtrsim 350$ GeV

h_s/a_s

The masses M_{h_s} , M_{a_s} of the mostly singlet-like (pseudo-)scalars depend on unknown parameters and can vary from 0...1000 GeV (and are different);

 $ightarrow M_{h_s} \sim 60-110$ GeV is natural, helps to explain $M_h \sim 125$ GeV (mixing effects) without inducing a too large $BR(h \to h_s h_s)$ which could reduce the SM-like branching fractions like $h \to Z^*Z$ below its measured values

Particle:	$H/A/H^{\pm}$	h	h _s /a _s
Mass:	\gtrsim 350 GeV	125 GeV	0 1000 GeV

M.R. Vázquez September 13th, 2017

Searches for direct production of BSM Higgs bosons

$\bullet \ \, \text{Light states} : h_s/a_s :$

• LEP search for a light scalar with reduced coupling ξ^2 to ZZ (recall: $\xi^2 \lesssim 0.29$ from hZZ coupling):

The region in the $\xi^2 - m_H$ plane below the black line is allowed

 \bullet ATLAS/CMS searches for $ggF \to h_{\rm s} \to \gamma \gamma$ at 8 TeV:

6 / 23

Searches for direct production of BSM Higgs bosons: h_s

Do the ATLAS/CMS searches touch possible values for $\sigma(ggF \to h_s \to \gamma \gamma)$ within the LEP-allowed NMSSM parameter space? (JHEP02(2016)096, U.Ellwanger, MRV):

YES, but far from exclusion... even light $h_{\rm S}/a_{\rm S}$ states may have too small direct production cross sections for discovery, even at 13 TeV

M.R. Vázquez September 13th, 2017

 $\Delta \rightarrow 7h_a \rightarrow IIh\bar{h}$

Indirect production of BSM Higgs states: $H/A \rightarrow Z(a_s/h_s)$

Searches for $H \to Za_s \ / \ A \to Zh_s$ featuring **two unknown masses** have already been performed using Run I data (CMS-PAS-HIG-15-001, CMS-PAS-HIG-16-010);

$$(ggF \rightarrow)A \rightarrow Zh_s$$
 COULD BE LARGE IN THE NMSSM: [JHEP02(2016)096, U.Ellwanger, MRV]

Strongest constraints: CMS-PAS-HIG-15-001

A / 2115 / 1100				
(M_A, M_{h_s})	NMSSM (fb)	CMS limits (fb)		
(500,60)	4.6	~ 10		
(500,120)	2.7	~ 10		
(350,60)	60	~ 60		
$A o Zh_s o II au au$				
$A o Z H_S o H$	au au			
(M_A, M_{h_s})	\mid NMSSM (fb)	CMS limits (fb)		
		CMS limits (fb) ~ 20		
(M_A, M_{h_s})	NMSSM (fb)	()		
(M_A, M_{h_s}) (500,60)	NMSSM (fb) 0.5	~ 20		

8 / 23

some current limits are close to the NMSSM allowed parameter space!

Indirect production of BSM Higgs states: Trilinear Higgs couplings

Typically $g_{Hhh} < \langle h \rangle$ (due to SU(2) symmetry). Searches for $H \to hh$ are not promising in the context of the (N)MSSM.

However, the doors are open for potentially large NMSSM-specific trilinear Higgs couplings:

$$g_{hh_sh_s}$$
, $g_{ha_sa_s}$, g_{Hh_sh} , g_{Aa_sh}

- → allow for decays
 - $h \to h_s h_s$, $h \to a_s a_s$. Searches exist.(if kinematically allowed, i.e. $M_{h_s,a_s} \lesssim 60 \text{ GeV}$)
 - $H \rightarrow hh_s/A \rightarrow ha_s \Rightarrow$ No searches!

These searches are poorly constrained!

Exotic h decays reduce its SM-like branching ratios, and are limited by its SM-like signal rates $\Rightarrow m_{h_s,a_s} > 60$ GeV is favoured.

A new search: $H \rightarrow hh_s / A \rightarrow ha_s$

Motivation

- g_{Hh_sh} can be large [JHEP02(2016)096, U.Ellwanger, MRV] (in contrast to g_{Hhh} , $g_{Hh_sh_s}$)
- The $BR(H \to h_s h)$ can be large (\sim 50%, competing only with $H \to t\bar{t}$, reducing BR for the search into $\tau\tau$)
- Might be the main production channel for a singlet.
- No experimental constraints until now!

M.R. Vázquez September 13th, 2017

$\sigma(ggF \rightarrow H \rightarrow hh_s)$ from a scan of the param. space

Using NMSSMTools, we perform a scan in a large region of parameter space, including latest constraints from the experimental collaborations. ggF(H) xs computed at NNLO+NNLL using rescaled recommended values from the HXSWG [De Florian et al. arXiv:1610.07922]. Large signals are possible in $H \to hh_s$.

Questions

- Are these cross sections visible at the LHC?
- Which channels should we look for?

Objectives

- Design search strategies to study the discovery potential of the LHC in the processes $H \to hh_s$ (more generally, $\phi_1 \to h\phi_2$).
- Obtain expected sensitivities for these searches.

Approach

- Make signal-to-background studies by means of MC simulations of both the signals and backgrounds.
- Statistical analysis of the results.
- Explore the channels $b\bar{b}b\bar{b}$, $b\bar{b}\tau\tau$ and $b\bar{b}\gamma\gamma$.

M.R. Vázguez September 13th, 2017

Monte Carlo study

We performed a thorough signal-to-background study in three different channels, with $M_H = 350...1000 \text{ GeV}, M_{h_e} = 25...400 \text{ GeV}.$

The search strategy mimics resonant double SM Higgs searches, varying the mass of one of the Higgs bosons.

Simulations: MadGraph5@NLO + Pythia + Delphes, including b-tagging efficiencies as reported by the experimental collaborations for Run 2.

$b\bar{b}b\bar{b}$

- Resolved topologies
- Large QCD multijet background ($b\bar{b}b\bar{b}$, $b\bar{b}c\bar{c}, b\bar{b}ii$), but large branching ratios.

$b\bar{b}\tau\tau (\tau\tau b\bar{b})$

- 3 subchannels: τ_bτ_b. τ_h, e, τ_h, μ .
- Dominant background: $t\bar{t}$ and, to a less extent. Z+jets

$b\bar{b}\gamma\gamma (\gamma\gamma b\bar{b})$

- Many different sources of background
- Cleaner than $b\bar{b}b\bar{b}$, but reduced cross sectios
- Low statistics

Goal: optimize search strategies, obtain realistic expected sensitivities for the process $ggF \rightarrow H/A \rightarrow h + h_s/a_s$.

M.R. Vázguez September 13th, 2017 13 / 23

bbbb Analysis strategy

Complication: two unknown masses m_H and m_{h_e} . Focus on the **resolved region**, where the products of the heavy Higgs are not too boosted \Rightarrow We consider $m_H < 1$ TeV. Heavier states feature very small xs.

Resolved analysis

Event reconstruction:

- b-tagging efficiencies $\epsilon(p_T)$ depending on p_T as reported by the experimental collaborations. ATI -PHYS-PUB-2015-022
- Jets clustered using FastJet, with $\Delta R = 0.4$.
- Require at least 4 b-jets with $p_{\tau} > 30$ GeV and $\eta < 2.5$.
- Each analysis assumes a mass for the singlet, $m_{h_c}^{\text{test}}$
- Pairing algorithm: Take the 4 leading-p_T b-tagged jets. Look for the pair that better reproduces the masses (m_h, m_{h_c}) .

M.R. Vázguez September 13th, 2017 14 / 23

bbbb Analysis strategy

Selection:

acceptances:

$$p_T(b) > 30 \text{ GeV}, \quad |\eta| < 2.5$$

 $b\bar{b}b\bar{b}$

mass-dependent cuts to optimize signal-to-background significance:

$$p_T^h < 1.56 \; {
m GeV} + 0.4 m_X - 0.13 m_{h_s} - 160 m_{h_s}/m_X \; {
m GeV}$$
 $p_T^{h_s} < 11.92 \; {
m GeV} + 0.4 m_X - 0.15 m_{h_s} - 166.84 m_{h_s}/m_X \; {
m GeV}$

A signal region is defined as:

$$\chi^2_{hh_s} = \sqrt{\left(\frac{m^h_{2j} - 115\,\text{GeV}}{0.11 m^h_{2j}}\right)^2 + \left(\frac{m^{h_s}_{2j} - 0.85 m_{h_s}\,\text{GeV}}{0.11 m^{h_s}_{2j}}\right)^2} < 2 \tag{1}$$

• Instead of the total invariant mass, we define a 4-body corrected mass m_X ;

$$m_X = m_{4b} - m_{b\bar{b}}(h) + 125 \text{ GeV} - m_{b\bar{b}}(h_s) + m_{h_s}$$
 (2)

15 / 23

Improves the resolution! (already used by CMS in $bb\gamma\gamma$ [CMS-PAS-HIG-16-032])

 m_X is the last discriminant in the search \Rightarrow Hunt for bumps in $m_X!$

Validation of the background simulation

- \rightarrow Background shapes (for m_X) from MC are in **good agreement with data.**
- \rightarrow We **rescaled** the samples using data from searches in $b\bar{b}b\bar{b}$ and $b\bar{b}\gamma\gamma$ for double SM Higgs production [ATLAS-CONF-16-049, CMS-PAS-HIG-17-008, CMS-PAS-HIG-16-029] \Rightarrow validation for the case $m_{h_s}=125$ GeV

 $b\bar{b}b\bar{b}$

→ The expected sensitivities from simulations reproduce well the ones from the experimental collaborations (data-driven).

M.R. Vázguez September 13th, 2017

Results: Benchmark points

We take a bunch of phenomenologically allowed benchmark points. How would a bump in m_X look like?

P.1.
$$m_H = 350 \text{ GeV}, \ m_{h_s} = 75 \text{ GeV}, \ \sigma = 400 \text{ fb}$$

17 / 23

• Well behaved excesses sitting on an exponentially decaying background.

Results: Benchmark points

P.2. $m_H = 750$ GeV, $m_{h_s} = 105$ GeV, $\sigma = 25$ fb

18 / 23

• satisfactory resolution in m_X even at large masses m_H .

Results: Expected sensitivities $b\bar{b}b\bar{b}$

Upper left: $M_H=425$ GeV, 95% limits and 5 σ discovery for $L=300fb^{-1}$ Upper right: $M_H=750$ GeV, 95% limits and 5 σ discovery for $L=300fb^{-1}$ Lower left: $M_H=425$ GeV, 95% limits and 5 σ discovery for $L=3000fb^{-1}$ Lower right: $M_H=750$ GeV, 95% limits and 5 σ discovery for $L=3000fb^{-1}$ Blue and red: NMSSM allowed region for $H\to hh_s\to 4b$ and $A\to ha_s\to 4b$.

Results: Comparison with other H searches

Searches for heavy MSSM-like H bosons are carried out mainly in the $H\to \tau\tau$ final state. For a straight-forward comparison, we compare the existing upper limits on $H\to \tau\tau$ and the would-be upper limits for $H\to hh_s\to 4b$ for the same luminosity:

NOTE: $\frac{BR(H\to hh_s\to 4b)}{BR(H\to \tau\tau)}\sim 10-100 \Rightarrow H\to hh_s\to 4b$ performs better!

M.R. Vázquez September 13th, 2017

Results: Benchmark points

...proceeding in the same way for $b\bar{b}\gamma\gamma$:

$$m_H=625$$
 GeV, $m_{h_s}=85$ GeV, $\sigma=0.18$ fb

21 / 23

• Low statistics: we expect few events on top of a small background.

Results: Expected sensitivities $b \bar{b} \gamma \gamma$

...proceeding in the same way for $b\bar{b}\gamma\gamma$: Different region in param. space w.r.t. $b\bar{b}b\bar{b}$!

Upper left: $M_H = 425$ GeV, 95% limits and 5σ discovery for $L = 300 fb^{-1}$

Upper right: $M_H = 750$ GeV, 95% limits and 5 σ discovery for $L = 300 fb^{-1}$ Lower left: $M_H = 425$ GeV, 95% limits and 5 σ discovery for $L = 3000 fb^{-1}$

Lower right: $M_H = 425$ GeV, 95% limits and 5 σ discovery for $L = 3000 fb^{-1}$ Lower right: $M_H = 750$ GeV, 95% limits and 5 σ discovery for $L = 3000 fb^{-1}$

Blue and red: NMSSM allowed region for $H \to hh_s \to \gamma \gamma b\bar{b}$ and $A \to ha_s \to \gamma \gamma b\bar{b}$.

Conclusions

- BSM Higgs bosons are poorly constrained by present searches ⇒ Lot of room for new scalars, new searches are needed!
- Run I searches in the $ggF \to h_s \to \gamma \gamma$ channel are sensitive to a light h_s , motivated by naturalness.
- Searches for $H/A \rightarrow h + h_s/a_s$ can be sensitive to very singlet-like h_s/a_s ! Excesses would discover simultaneously H/A and h_s/a_s !
- $H/A \to hh_s/a_s$ is a stronger search than the MSSM-like $H/A \to \tau\tau$ in the majority of the NMSSM parameter space.
- Regions featuring $m_{h_s} \lesssim m_h \Rightarrow BR(H \to hh_s) > 0$ will be largely covered for $m_H < 750$ GeV!
- $b\bar{b}\gamma\gamma$ and $b\bar{b}b\bar{b}$ test different regions of parameter space.
- These results could be easily reinterpreted in other models as $\phi_i \to h^{125}\phi_i$ (2HDM+S...).
- We encourage the experimental collaborations to carry out the $H \to hh_s$ search!

Thanks for your attention

M.R. Vázquez September 13th, 2017

Conclusions

- BSM Higgs bosons are poorly constrained by present searches ⇒ Lot of room for new scalars, new searches are needed!
- Run I searches in the $ggF \to h_s \to \gamma \gamma$ channel are sensitive to a light h_s , motivated by naturalness.
- Searches for $H/A \rightarrow h + h_s/a_s$ can be sensitive to very singlet-like h_s/a_s ! Excesses would discover simultaneously H/A and h_s/a_s !
- $H/A \to hh_s/a_s$ is a stronger search than the MSSM-like $H/A \to \tau\tau$ in the majority of the NMSSM parameter space.
- Regions featuring $m_{h_s} \lesssim m_h \Rightarrow BR(H \to hh_s) > 0$ will be largely covered for $m_H < 750$ GeV!
- $b\bar{b}\gamma\gamma$ and $b\bar{b}b\bar{b}$ test different regions of parameter space.
- These results could be easily reinterpreted in other models as $\phi_i \to h^{125}\phi_i$ (2HDM+S...).
- We encourage the experimental collaborations to carry out the $H \to hh_s$ search!

Thanks for your attention!

M.R. Vázquez September 13th, 2017

BACKUP

M.R. Vázquez September 13th, 2017

CP-even Higgs mass matrix

The mass matrix $\mathcal{M}_S'^2$ in the basis (h', H', S_r) reads:

$$\mathcal{M}_{S,11}'^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \sin^2 \beta \Delta_{\text{rad}}$$
 (3)

$$\mathcal{M}_{5,12}^{\prime 2} = \frac{1}{2} \sin 2\beta \cos 2\beta \left(M_Z^2 - \lambda^2 M_Z^2 \right) - \frac{\sin 2\beta}{2} \Delta_{\text{rad}},$$
 (4)

$$\mathcal{M}_{5,13}^{\prime 2} = \lambda \nu \left(2\mu - \Lambda \sin 2\beta\right) \tag{5}$$

$$\mathcal{M}_{S,22}^{\prime 2} = M_A^2 + (M_Z^2 - \lambda^2 v^2) \sin^2(2\beta) + \cos^2\beta \Delta_{\text{rad}}$$
 (6)

$$\mathcal{M}_{5,23}^{\prime 2} = \lambda \nu \Lambda \cos 2\beta \tag{7}$$

$$\mathcal{M}_{5,33}^{\prime 2} = \lambda^2 v^2 \sin 2\beta \left(\frac{M_A^2 \sin 2\beta}{4\mu^2} - \frac{\kappa}{2\lambda} \right) + \frac{\kappa \mu A_\kappa}{\lambda} + \frac{4\kappa^2 \mu^2}{\lambda^2}$$
 (8)

2 / 5

where we have defined $\Lambda = A_{\lambda} + 2\kappa s$.

Analysis: statistical treatment

Profile likelihood ratio

The corrected mass of the 4 jets m_X is the last discriminant. Although for the singlet Higgs candidate we cut in mass with $\chi^2_{hh_s}$, we make a shaped-based analysis in the final m_x histogram by means of a profile likelihood ratio as a test statistics for constructing the expected sensitivities

 $[\mathsf{G.Cowan},\,\mathsf{K.Cranmer},\,\mathsf{E.Gross},\,\mathsf{O.Vitells}\,\,\mathsf{arXiv}: 1007.1727]\texttt{:}$

$$L(\mu) = \prod_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j} e^{-(\mu s_j + b_j)}, \qquad \lambda(\mu) = \frac{L(\mu)}{L(0)}, \qquad q_\mu = -2 \ln \lambda(\mu)$$
 (9)

(i.e. we are asking: which signal μ would reject the background-only hypothesis at a given C.L.?) Using asymptotic formulas, we can compute the significance for a signal μ :

$$Z_{\mu} = \sqrt{q_{\mu}}.\tag{10}$$

3 / 5

This shape-based analysis gives as a 20-30% better sensitivity than a cut-and-count analysis in this search.

The $b\bar{b}\gamma\gamma$ channel

...we repeat the procedure...

- Study of the background: simulation (we consider the main sources: $b\bar{b}\gamma\gamma(+$ jet), $c\bar{c}\gamma\gamma(+$ jet)), fitting. Validation is tricky due to low statistics in current data [CMS-PAS-HIG-16-032, ATLAS-CONF-2016-004]. Good agreement between MC and DATA
- **② Optimization** of the search (cuts, photon isolation, define $m_X \ldots$).
- Statistical treatment of the (pseudo)data. We obtain the expected discovery sensitivities. Interpretation in the NMSSM

 \Rightarrow Results for $b\bar{b}\gamma\gamma$. $\gamma\gamma b\bar{b} \Rightarrow$ work in progress!.

CUTS:

$$\begin{split} \Delta R(b,\gamma) > 0.4, & p_T(b) > 40 \text{ GeV} \\ E_T^{\gamma_{lesd}}/m^{\gamma\gamma} > 0.35, & E_T^{\gamma_{sub}}/m^{\gamma\gamma} > 0.25 \\ p_T^{b\bar{b}} > 16.91 \text{ GeV} + 0.18 m_X, & E_T(\gamma\gamma) > 68.32 \text{ GeV} + 0.25 m_X \end{split}$$

100 GeV
$$\leq m_{b\bar{b}} \leq 150 \text{ GeV}$$
 (11)

4 / 5

$$|m_{h_s} - m_{\gamma\gamma}| \le 2\sigma_{m_{\gamma\gamma}} = 4.61 + 0.02m_X \Rightarrow 95\%$$
 of signal events (12)

Signal generation (all channels)

Production through ggF

- Signal events for a heavy Higgs of $m_H = \{350...1000\}$ GeV, produced in ggF, have been simulated at NLO QCD using aMCSusHi v2.3.3 (MadGraph5_aMC@NLO v2.3.3 with amplitudes given by SusHi) [H.Mentler, M.Wiesemann arXiv:1504.06625].
- The decays $H \to hh_s$ and $hh_s \to bbbb$, bb au au and $bb\gamma\gamma$ computed via Pythia6, together with the showering and hadronization of the decay products.
- For each simulation of H with a mass m_H , we generate different samples for m_{h_s} ranging from $\{25...(m_H-125)\}$ GeV.
- 150k events have been simulated for each pair (m_H, m_{h_s}) (more than the HL-LHC!).

M.R. Vázquez September 13th, 2017