Search for extra Higgs bosons at the LHC

Matías Vázquez
with
Ulrich Ellwanger
LPT d'Orsay, Univ. Paris-Sud XI
based on 1512.04281 (JHEP 1602 (2016) 096) and 1707.08522 (JHEP, to appear)

September 13th, 2017

Index

(1) Introduction
(2) The NMSSM
(3) Present searches at the LHC

- Direct searches
- Indirect searches
(4) A new search: $H \rightarrow h h_{s} / A \rightarrow h a_{s}$
(5) Results
(6) Conclusions and outlook

Extended Higgs sectors

The Higgs sector of the SM

- In the SM, the EWSB mechanism is realized minimally. Only one Higgs doublet giving rise to one physical scalar after symmetry breaking.
- Some 'uncomfortable' facts of the SM: metastability of the Higgs potential, quadratically divergent contributions to the Higgs mass, hierarchy of Yukawa couplings...
- ... So far, h^{125} is (very) compatible with the SM predictions.

Extended Higgs sector

- Models featuring an extended scalar sector are well motivated (SUSY, extended symmetries, extra Higgs representations...).
- New physical states possibly within the reach of the LHC.
- Such models open the possibility for new Higgs-to-Higgs decays which can test the nature of EWSB.

The NMSSM Higgs sector

Higgs content of the NMSSM:

- Two $\operatorname{SU}(2)$ doublets H_{u} (couples to up-type fermions) and H_{d} (couples to down-type fermions) \rightarrow like in the MSSM,
- A singlet S whose vev generates a Dirac mass term for higgsinos (replaces the μ term of the MSSM)

Mass eigenstates (- Goldstone boson):

- Three neutral scalars:
- $h \rightarrow M_{h} \sim 125 \mathrm{GeV}$
- $h_{s} \rightarrow$ mostly singlet-like
- $H \rightarrow$ mostly MSSM-like, heavy, see below
- Two neutral pseudoscalars
- $a_{s} \rightarrow$ mostly singlet-like
- $A \rightarrow$ mostly MSSM-like, heavy, see below
- One charged Higgs $H^{ \pm} \rightarrow$ MSSM-like, heavy, see below

Indirect constraints on the masses of the states beyond h
$H / A / H^{ \pm}$
$H^{ \pm}$contributes to the $B R(b \rightarrow s+\gamma)$ which is in agreement with the SM
$\rightarrow M_{H^{ \pm}} \gtrsim 350 \mathrm{GeV}$
$\rightarrow H^{ \pm}, H$ and A form a nearly degenerate $\mathrm{SU}(2)$ multiplet with $M \gtrsim 350 \mathrm{GeV}$
h_{s} / a_{s}
The masses $M_{h_{s}}, M_{a_{s}}$ of the mostly singlet-like (pseudo-)scalars depend on unknown parameters and can vary from $0 \ldots 1000 \mathrm{GeV}$ (and are different);
$\rightarrow M_{h_{s}} \sim 60-110 \mathrm{GeV}$ is natural, helps to explain $M_{h} \sim 125 \mathrm{GeV}$ (mixing effects) without inducing a too large $B R\left(h \rightarrow h_{s} h_{s}\right)$ which could reduce the SM-like branching fractions like $h \rightarrow Z^{*} Z$ below its measured values

Particle:	$H / A / H^{ \pm}$	h	h_{s} / a_{s}
Mass:	$\gtrsim 350 \mathrm{GeV}$	125 GeV	$0 \ldots 1000 \mathrm{GeV}$

Searches for direct production of BSM Higgs bosons

- Light states: $\mathbf{h}_{\mathbf{s}} / \mathbf{a}_{\mathbf{s}}$:
- LEP search for a light scalar with reduced coupling ξ^{2} to $Z Z$ (recall: $\xi^{2} \lesssim 0.29$ from $h Z Z$ coupling):
The region in the $\xi^{2}-m_{H}$ plane below the black line is allowed
- ATLAS/CMS searches for $g g F \rightarrow h_{s} \rightarrow \gamma \gamma$ at 8 TeV :

Searches for direct production of BSM Higgs bosons: h_{s}

Do the ATLAS/CMS searches touch possible values for $\sigma\left(g g F \rightarrow h_{s} \rightarrow \gamma \gamma\right)$ within the LEP-allowed NMSSM parameter space? (JHEP02(2016)096, U.Ellwanger, MRV):

YES, but far from exclusion... even light h_{s} / a_{s} states may have too small direct production cross sections for discovery, even at 13 TeV

Indirect production of BSM Higgs states: $H / A \rightarrow Z\left(a_{s} / h_{s}\right)$

Searches for $H \rightarrow Z a_{s} / A \rightarrow Z h_{s}$ featuring two unknown masses have already been performed using Run I data (CMS-PAS-HIG-15-001, CMS-PAS-HIG-16-010);
$(g g F \rightarrow) A \rightarrow Z h_{s}$ COULD BE LARGE IN THE NMSSM: [JHEP02(2016)096, U.Ellwanger, MRV]

Strongest constraints: CMS-PAS-HIG-15-001

$\mathbf{A} \rightarrow \mathbf{Z h}_{\mathbf{s}} \rightarrow \mathbf{l l i b} \overline{\mathbf{b}}$		
$\left(M_{A}, M_{h_{s}}\right)$	NMSSM (fb)	CMS limits (fb)
$(500,60)$	4.6	~ 10
$(500,120)$	2.7	~ 10
$(350,60)$	60	~ 60

$\mathbf{A} \rightarrow \mathbf{Z h}_{\mathbf{s}} \rightarrow \mathbf{\|} \tau \tau$

$\left(M_{A}, M_{h_{s}}\right)$	NMSSM (fb)	CMS limits (fb)
$(500,60)$	0.5	~ 20
$(500,120)$	0.5	~ 6
$(350,60)$	6.6	~ 30

some current limits are close to the NMSSM allowed parameter space!

Indirect production of BSM Higgs states: Trilinear Higgs couplings

Typically $g_{H h h}<\langle h\rangle$ (due to $\operatorname{SU}(2)$ symmetry). Searches for $H \rightarrow h h$ are not promising in the context of the (N)MSSM.
However, the doors are open for potentially large NMSSM-specific trilinear Higgs couplings:

$$
g_{h h_{s} h_{s}}, g_{h a_{s} a_{s}}, g_{H h_{s} h}, g_{A a_{s} h}
$$

\rightarrow allow for decays

- $h \rightarrow h_{s} h_{s}, h \rightarrow a_{s} a_{s}$. Searches exist.(if kinematically allowed, i.e. $M_{h_{s}, a_{s}} \lesssim 60 \mathrm{GeV}$)
- $H \rightarrow h h_{s} / A \rightarrow h a_{s} \Rightarrow$ No searches!

These searches are poorly constrained!

Exotic h decays reduce its SM-like branching ratios, and are limited by its SM-like signal rates $\Rightarrow m_{h_{s}, a_{s}}>60 \mathrm{GeV}$ is favoured.

A new search: $H \rightarrow h h_{s} / A \rightarrow h a_{s}$

Motivation

- $g_{H h_{s} h}$ can be large [JHEPO2(2016)096, U.Ellwanger, MRV] (in contrast to $g_{H h h}, g_{H h_{s} h_{s}}$)
- The $B R\left(H \rightarrow h_{s} h\right)$ can be large ($\sim 50 \%$, competing only with $H \rightarrow t \bar{t}$, reducing $B R$ for the search into $\tau \tau$)
- Might be the main production channel for a singlet.
- No experimental constraints until now!

Using NMSSMTools, we perform a scan in a large region of parameter space, including latest constraints from the experimental collaborations. $\operatorname{ggF}(\mathrm{H}) \times$ s computed at NNLO+NNLL using rescaled recommended values from the HXSWG [De Florian et al. arXiv:1610.07922]. Large signals are possible in $H \rightarrow h h_{s}$.

Questions

- Are these cross sections visible at the LHC?
- Which channels should we look for?

Objectives

- Design search strategies to study the discovery potential of the LHC in the processes $H \rightarrow h h_{s}$ (more generally, $\phi_{1} \rightarrow h \phi_{2}$).
- Obtain expected sensitivities for these searches.

Approach

- Make signal-to-background studies by means of MC simulations of both the signals and backgrounds.
- Statistical analysis of the results.
- Explore the channels $b \bar{b} b \bar{b}, b \bar{b} \tau \tau$ and $b \bar{b} \gamma \gamma$.

Monte Carlo study

We performed a thorough signal-to-background study in three different channels, with $M_{H}=350 \ldots 1000 \mathrm{GeV}, M_{h_{s}}=25 \ldots 400 \mathrm{GeV}$.
The search strategy mimics resonant double SM Higgs searches, varying the mass of one of the Higgs bosons.
Simulations: MadGraph5@NLO + Pythia + Delphes, including b-tagging efficiencies as reported by the experimental collaborations for Run 2.
$b \bar{b} b \bar{b}$

- Resolved topologies
- Large QCD multijet background ($b \bar{b} b \bar{b}$, $b \bar{b} c \bar{c}, b \bar{b} j j$), but large branching ratios.

$$
b \bar{b} \tau \tau(\tau \tau b \bar{b})
$$

- 3 subchannels: $\tau_{h} \tau_{h}$, $\tau_{h}, e, \tau_{h}, \mu$.
- Dominant background: $t \bar{t}$ and, to a less extent, $Z+$ jets

$b \bar{b} \gamma \gamma(\gamma \gamma b \bar{b})$

- Many different sources of background
- Cleaner than $b \bar{b} b \bar{b}$, but reduced cross sectios.
- Low statistics.

Goal: optimize search strategies, obtain realistic expected sensitivities for the process $g g F \rightarrow H / A \rightarrow h+h_{s} / a_{s}$.

$b \bar{b} b \bar{b}$ Analysis strategy

Complication: two unknown masses m_{H} and $m_{h_{s}}$. Focus on the resolved region, where the products of the heavy Higgs are not too boosted \Rightarrow We consider $m_{H}<1 \mathrm{TeV}$. Heavier states feature very small xs.

Resolved analysis

Event reconstruction:

- b-tagging efficiencies $\epsilon\left(p_{T}\right)$ depending on p_{T} as reported by the experimental collaborations.

ATL-PHYS-PUB-2015-022

- Jets clustered using FastJet, with $\Delta R=0.4$.
- Require at least 4 b-jets with $p_{T}>30 \mathrm{GeV}$ and $\eta<2.5$.
- Each analysis assumes a mass for the singlet, $m_{h_{s}}^{\text {test }}$
- Pairing algorithm: Take the 4 leading- p_{T} b-tagged jets. Look for the pair that better reproduces the masses ($m_{h}, m_{h_{s}}$).

$b \bar{b} b \bar{b}$ Analysis strategy

Selection:

- acceptances:

$$
p_{T}(b)>30 \mathrm{GeV}, \quad|\eta|<2.5
$$

- mass-dependent cuts to optimize signal-to-background significance:

$$
\begin{gathered}
p_{T}^{h}<1.56 \mathrm{GeV}+0.4 m_{X}-0.13 m_{h_{s}}-160 m_{h_{s}} / m_{X} \mathrm{GeV} \\
p_{T}^{h_{s}}<11.92 \mathrm{GeV}+0.4 m_{X}-0.15 m_{h_{s}}-166.84 m_{h_{s}} / m_{X} \mathrm{GeV}
\end{gathered}
$$

- A signal region is defined as:

$$
\begin{equation*}
\chi_{h h_{s}}^{2}=\sqrt{\left(\frac{m_{2 j}^{h}-115 G e V}{0.11 m_{2 j}^{h}}\right)^{2}+\left(\frac{m_{2 j}^{h_{s}}-0.85 m_{h_{s}} G e V}{0.11 m_{2 j}^{h_{s}}}\right)^{2}}<2 \tag{1}
\end{equation*}
$$

- Instead of the total invariant mass, we define a 4-body corrected mass m_{X};

$$
\begin{equation*}
m_{X}=m_{4 b}-m_{b \bar{b}}(h)+125 \mathrm{GeV}-m_{b \bar{b}}\left(h_{s}\right)+m_{h_{s}} \tag{2}
\end{equation*}
$$

Improves the resolution! (already used by CMS in $b b \gamma \gamma$ [CMS-PAS-HIG-16-032])
m_{X} is the last discriminant in the search \Rightarrow Hunt for bumps in m_{X} !

Validation of the background simulation

\rightarrow Background shapes (for m_{X}) from MC are in good agreement with data.
\rightarrow We rescaled the samples using data from searches in $b \bar{b} b \bar{b}$ and $b \bar{b} \gamma \gamma$ for double SM Higgs production [ATLAS-CONF-16-049, CMS-PAS-HIG-17-008, CMS-PAS-HIG-16-029] \Rightarrow validation for the case $m_{h_{s}}=125$ GeV .
\rightarrow The expected sensitivities from simulations reproduce well the ones from the experimental collaborations (data-driven).

Results: Benchmark points

We take a bunch of phenomenologically allowed benchmark points. How would a bump in m_{X} look like?

$$
\text { P.1. } m_{H}=350 \mathrm{GeV}, m_{h_{s}}=75 \mathrm{GeV}, \sigma=400 \mathrm{fb}
$$

- Well behaved excesses sitting on an exponentially decaying background.

Results: Benchmark points

$$
\text { P.2. } m_{H}=750 \mathrm{GeV}, m_{h_{s}}=105 \mathrm{GeV}, \sigma=25 \mathrm{fb}
$$

- satisfactory resolution in m_{X} even at large masses m_{H}.

Results: Expected sensitivities $b \bar{b} b \bar{b}$

Upper left: $M_{H}=425 \mathrm{GeV}$, 95% limits and 5σ discovery for $L=300 \mathrm{fb}^{-1}$ Upper right: $M_{H}=750 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=300 \mathrm{fb}^{-1}$ Lower left: $M_{H}=425 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=3000 \mathrm{fb}^{-1}$ Lower right: $M_{H}=750 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=3000 \mathrm{fb}^{-1}$ Blue and red: NMSSM allowed region for $H \rightarrow h h_{s} \rightarrow 4 b$ and $A \rightarrow h a_{s} \rightarrow 4 b$.

Results: Comparison with other H searches

Searches for heavy MSSM-like H bosons are carried out mainly in the $H \rightarrow \tau \tau$ final state. For a straight-forward comparison, we compare the existing upper limits on $H \rightarrow \tau \tau$ and the would-be upper limits for $H \rightarrow h h_{s} \rightarrow 4 b$ for the same luminosity:

NOTE: $\frac{B R\left(H \rightarrow h h_{s} \rightarrow 4 b\right)}{B R(H \rightarrow \tau \tau)} \sim 10-100 \Rightarrow H \rightarrow h h_{s} \rightarrow 4 b$ performs better!

Results: Benchmark points

...proceeding in the same way for $b \bar{b} \gamma \gamma$:

$$
m_{H}=625 \mathrm{GeV}, m_{h_{s}}=85 \mathrm{GeV}, \sigma=0.18 \mathrm{fb}
$$

- Low statistics: we expect few events on top of a small background.

Results: Expected sensitivities $b \bar{b} \gamma \gamma$

...proceeding in the same way for $b \bar{b} \gamma \gamma$:
Different region in param. space w.r.t. $b \bar{b} b \bar{b}$! Upper left: $M_{H}=425 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=300 \mathrm{fb}^{-1}$ Upper right: $M_{H}=750 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=300 \mathrm{fb}^{-1}$
Lower left: $M_{H}=425 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=3000 \mathrm{fb}^{-1}$
Lower right: $M_{H}=750 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=3000 \mathrm{fb}^{-1}$
Blue and red: NMSSM allowed region for $H \rightarrow h h_{s} \rightarrow \gamma \gamma b \bar{b}$ and $A \rightarrow h a_{s} \rightarrow \gamma \gamma b \bar{b}$.

Conclusions

- BSM Higgs bosons are poorly constrained by present searches \Rightarrow Lot of room for new scalars, new searches are needed!
- Run I searches in the $g g F \rightarrow h_{s} \rightarrow \gamma \gamma$ channel are sensitive to a light h_{s}, motivated by naturalness.
- Searches for $H / A \rightarrow h+h_{s} / a_{s}$ can be sensitive to very singlet-like h_{s} / a_{s} ! Excesses would discover simultaneously H / A and h_{s} / a_{s} !
- $H / A \rightarrow h h_{s} / a_{s}$ is a stronger search than the MSSM-like $H / A \rightarrow \tau \tau$ in the majority of the NMSSM parameter space.
- Regions featuring $m_{h_{s}} \lesssim m_{h} \Rightarrow B R\left(H \rightarrow h h_{s}\right)>0$ will be largely covered for $m_{H}<750 \mathrm{GeV}$!
- $b \bar{b} \gamma \gamma$ and $b \bar{b} b \bar{b}$ test different regions of parameter space.
- These results could be easily reinterpreted in other models as $\phi_{i} \rightarrow h^{125} \phi_{j}(2 \mathrm{HDM}+\mathrm{S} \ldots)$.
- We encourage the experimental collaborations to carry out the $H \rightarrow h h_{s}$ search!

Conclusions

- BSM Higgs bosons are poorly constrained by present searches \Rightarrow Lot of room for new scalars, new searches are needed!
- Run I searches in the $g g F \rightarrow h_{s} \rightarrow \gamma \gamma$ channel are sensitive to a light h_{s}, motivated by naturalness.
- Searches for $H / A \rightarrow h+h_{s} / a_{s}$ can be sensitive to very singlet-like h_{s} / a_{s} ! Excesses would discover simultaneously H / A and h_{s} / a_{s} !
- $H / A \rightarrow h h_{s} / a_{s}$ is a stronger search than the MSSM-like $H / A \rightarrow \tau \tau$ in the majority of the NMSSM parameter space.
- Regions featuring $m_{h_{s}} \lesssim m_{h} \Rightarrow B R\left(H \rightarrow h h_{s}\right)>0$ will be largely covered for $m_{H}<750 \mathrm{GeV}$!
- $b \bar{b} \gamma \gamma$ and $b \bar{b} b \bar{b}$ test different regions of parameter space.
- These results could be easily reinterpreted in other models as $\phi_{i} \rightarrow h^{125} \phi_{j}(2 \mathrm{HDM}+\mathrm{S} \ldots)$.
- We encourage the experimental collaborations to carry out the $H \rightarrow h h_{s}$ search!

Thanks for your attention!

Backup

CP-even Higgs mass matrix

The mass matrix $\mathcal{M}_{S}^{\prime 2}$ in the basis $\left(h^{\prime}, H^{\prime}, S_{r}\right)$ reads:

$$
\begin{align*}
\mathcal{M}_{S, 11}^{\prime 2} & =M_{Z}^{2} \cos ^{2} 2 \beta+\lambda^{2} v^{2} \sin ^{2} 2 \beta+\sin ^{2} \beta \Delta_{\mathrm{rad}} \tag{3}\\
\mathcal{M}_{S, 12}^{\prime 2} & =\frac{1}{2} \sin 2 \beta \cos 2 \beta\left(M_{Z}^{2}-\lambda^{2} M_{Z}^{2}\right)-\frac{\sin 2 \beta}{2} \Delta_{\mathrm{rad}} \tag{4}\\
\mathcal{M}_{S, 13}^{\prime 2} & =\lambda v(2 \mu-\Lambda \sin 2 \beta) \tag{5}\\
\mathcal{M}_{S, 22}^{\prime 2} & =M_{A}^{2}+\left(M_{Z}^{2}-\lambda^{2} v^{2}\right) \sin ^{2}(2 \beta)+\cos ^{2} \beta \Delta_{\mathrm{rad}} \tag{6}\\
\mathcal{M}_{S, 23}^{\prime 2} & =\lambda v \Lambda \cos 2 \beta \tag{7}\\
\mathcal{M}_{S, 33}^{\prime 2} & =\lambda^{2} v^{2} \sin 2 \beta\left(\frac{M_{A}^{2} \sin 2 \beta}{4 \mu^{2}}-\frac{\kappa}{2 \lambda}\right)+\frac{\kappa \mu A_{\kappa}}{\lambda}+\frac{4 \kappa^{2} \mu^{2}}{\lambda^{2}} \tag{8}
\end{align*}
$$

where we have defined $\Lambda=A_{\lambda}+2 \kappa s$.

Analysis: statistical treatment

Profile likelihood ratio

The corrected mass of the 4 jets m_{X} is the last discriminant. Although for the singlet Higgs candidate we cut in mass with $\chi_{h h_{s}}^{2}$, we make a shaped-based analysis in the final m_{x} histogram by means of a profile likelihood ratio as a test statistics for constructing the expected sensitivities [G. Cowan, K.Cranmer, E. Gross, O.Vitells arXiv:1007.1727]:

$$
\begin{equation*}
L(\mu)=\prod_{j=1}^{N} \frac{\left(\mu s_{j}+b_{j}\right)^{n_{j}}}{n_{j}} e^{-\left(\mu s_{j}+b_{j}\right)}, \quad \lambda(\mu)=\frac{L(\mu)}{L(0)}, \quad q_{\mu}=-2 \ln \lambda(\mu) \tag{9}
\end{equation*}
$$

(i.e. we are asking: which signal μ would reject the background-only hypothesis at a given C.L.?) Using asymptotic formulas, we can compute the significance for a signal μ :

$$
\begin{equation*}
Z_{\mu}=\sqrt{q_{\mu}} \tag{10}
\end{equation*}
$$

This shape-based analysis gives as a $\mathbf{2 0} \mathbf{- 3 0 \%}$ better sensitivity than a cut-and-count analysis in this search.

The $b \bar{b} \gamma \gamma$ channel

...we repeat the procedure...
(1) Study of the background: simulation (we consider the main sources: $b \bar{b} \gamma \gamma(+\mathrm{jet}), c \bar{c} \gamma \gamma(+$ jet)), fitting. Validation is tricky due to low statistics in current data [CMS-PAS-HIG-16-032, ATLAS-conf-2016-004]. Good agreement between MC and DATA
(2) Optimization of the search (cuts, photon isolation, define $m_{X} \ldots$).
(3) Statistical treatment of the (pseudo)data. We obtain the expected discovery sensitivities. Interpretation in the NMSSM

$$
\Rightarrow \text { Results for } b \bar{b} \gamma \gamma \cdot \gamma \gamma b \bar{b} \Rightarrow \text { work in progress!. }
$$

CUTS:

$$
\begin{gather*}
\Delta R(b, \gamma)>0.4, \quad p_{T}(b)>40 \mathrm{GeV} \\
E_{T}^{\gamma_{\text {lad }}} / m^{\gamma \gamma}>0.35, \\
E_{T}^{\gamma_{\text {sub }}} / m^{\gamma \gamma}>0.25 \\
p_{T}^{b \bar{b}}>16.91 \mathrm{GeV}+0.18 m_{X}, \quad E_{T}(\gamma \gamma)>68.32 \mathrm{GeV}+0.25 m_{X} \tag{11}\\
100 \mathrm{GeV} \leq m_{b \bar{b}} \leq 150 \mathrm{GeV} \tag{12}\\
\left|m_{h_{s}}-m_{\gamma \gamma}\right| \leq 2 \sigma_{m_{\gamma \gamma}}=4.61+0.02 m_{X} \Rightarrow 95 \% \text { of signal events }
\end{gather*}
$$

Signal generation (all channels)

Production through ggF

- Signal events for a heavy Higgs of $m_{H}=\{350 \ldots 1000\} \mathrm{GeV}$, produced in ggF, have been simulated at NLO QCD using aMCSusHi v2.3.3 (MadGraph5_aMC@NLO v2.3.3 with amplitudes given by SusHi) [H.Mentler, M.Wiesemann arxiv:1504.06625].
- The decays $H \rightarrow h h_{s}$ and $h h_{s} \rightarrow b \bar{b} b \bar{b}, b \bar{b} \tau \tau$ and $b \bar{b} \gamma \gamma$ computed via Pythia6, together with the showering and hadronization of the decay products.
- For each simulation of H with a mass m_{H}, we generate different samples for $m_{h_{s}}$ ranging from $\left\{25 \ldots\left(m_{H}-125\right)\right\} \mathrm{GeV}$.
- 150 k events have been simulated for each pair ($m_{H}, m_{h_{s}}$) (more than the HL-LHC!).

(d)

(g)

(b)

(e)

(h)

(f)

(i)

