

NA62 status and prospects

Cristina Lazzeroni

University of Birmingham on behalf of the NA62UK collaboration PPAP community meeting RAL • 21 July 2017

Outline:

- Physics at kaon experiments: $K \rightarrow \pi v v$ decays and beyond
- NA62 status, performance, UK involvement.
- Physics exploitation programme for 2021-2024.
- Overview of the recent results.
- Summary

European Research Council

CERN kaon experiments

Kaon decay-in-flight experiments at CERN:

Earlier	NA31		
1997 ↓ 2001	NA48 (<i>K_S/K_L</i>)	$Re(\varepsilon'/\varepsilon)$ Discovery of direct CPV	
2002	NA48/1 (<i>K_S</i> /hyperons)	Rare K _S and hyperon decays	
2003 ↓ 2004	NA48/2 (K ⁺ /K)	Direct CPV, Rare K ⁺ /K ⁻ decays	
2007 ↓ 2008	NA62 _{RK} (K ⁺ /K ⁻)	$R_K = K_{e2}^{\pm}/K_{\mu 2}^{\pm}$	
2014 ↓ 	NA62 (K ⁺)	$K^+ \rightarrow \pi^+ \nu \bar{\nu}$, Rare K^+ and π^0 decays	

NA62: currently ~200 participants, ~30 institutions. NA62UK: Birmingham, Bristol, Glasgow, Liverpool--->Lancaster (12% of participants)

Rare kaon decays: $K \rightarrow \pi v \overline{v}$

SM: box and penguin diagrams

Ultra-rare decays with the highest CKM suppression: $A \sim (m_t/m_w)^2 |V_{ts}^*V_{td}| \sim \lambda^5$

- ✤ Hadronic matrix element related to a measured quantity (K⁺→ $\pi^0 e^+ v$).
- Exceptional SM precision.
- Free from hadronic uncertainties.
- ★ Measurement of $|V_{td}|$ complementary to those from B–B mixing or B⁰→ργ.

SM branching ratios Buras et al., JHEP 1511 (2015) 033

Mode	$BR_{SM} \! imes \! 10^{11}$
K⁺→π⁺ν⊽(γ)	8.4±1.0
$K_L \rightarrow \pi^0 \nu \overline{\nu}$	3.00±0.31

The uncertainties are largely parametric (CKM)

Theoretically clean, almost unexplored, sensitive to new physics.

$K \rightarrow \pi v \overline{v}$: experiment vs theory

NA62 broad physics programme(I)

NA62 approach allows for a broad physics programme:

Signature: high momentum K⁺ (75GeV/c) → low momentum π⁺ (15–35 GeV/c). Advantages: max detected K⁺ decays/proton ($p_K/p_0 \approx 0.2$); efficient photon veto (>40 GeV missing energy) Un-separated beam (6% kaons) → higher rates, additional background sources.

♦ NA62 Run 2016–2018: focused on the "golden mode" $K^+ \rightarrow \pi^+ \nu \nu$.

- ✓ Several measurements at nominal SES~10⁻¹²: K⁺→ π^+ A', π^0 → $\nu\nu$.
- ✓ A few measurements do not require extreme SES: $K^+ \rightarrow l^+N$, ...
- ✓ Sensitivities to most rare/forbidden decays are limited but still often world-leading (~10⁻¹⁰ to ~10⁻¹¹).
- \checkmark Proof of principle for a broad rare & forbidden decay programme.

NA62 broad physics programme(II)

NA62 Run 2021–2024: continue physics exploitation, make the most of previous investments.
 Commitment of UK groups to NA62 physics programme.

[Presented at Physics Beyond Colliders workshops, CERN, Sep 2016 & Mar 2017]

- \checkmark Existing apparatus with improved trigger logic.
- ✓ Evaluate incremental changes for optimal efficiency.
- ✓ Further $K^+ \rightarrow \pi^+ \nu \nu$ data collection.
- ✓ Rare/forbidden K⁺ and π^0 decays at SES~10⁻¹²: K⁺ physics: K⁺→ $\pi^+\ell^+\ell^-$, K⁺→ $\pi^+\gamma\ell^+\ell^-$, K⁺→ $\ell^+\nu\gamma$, K⁺→ $\pi^+\gamma\gamma$, ... π^0 physics: π^0 → e^+e^- , π^0 → $e^+e^-e^+e^-$, π^0 → 3γ , π^0 → 4γ , ... Searches for LFV/LNV: K⁺→ $\pi^-\ell^+\ell^+$, K⁺→ $\pi^+\mu e$, π^0 → μe , ...
- ✓ Beam dump with ~ 10^{18} POT: hidden sector (long-lived HNL, DP, ALP).

UK-led recent results and prospects on exotics:

- 1. Searches for heavy neutral leptons: $K^+ \rightarrow \mu^+ \nu$
- 2. Searches for heavy neutral leptons: $K^+ \rightarrow e^+ v$
- 3. 3-tracks K⁺ decays

NA62 status and UK involvement

NA62 collaboration, JINST 12 (2017) P05025 The NA62 detector

- ✤ Expected single event sensitivity for K⁺ decays: BR~10⁻¹².
- ★ Measured kinematic rejection factors (limited by beam pileup & MCS tails): 6×10^{-4} for K⁺→ $\pi^{+}\pi^{0}$, 3×10^{-4} for K→ $\mu^{+}\nu$.
- ↔ Hermetic photon veto: measured $\pi^0 \rightarrow \gamma\gamma$ decay suppression = 1.2×10⁻⁷.
- ✤ Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁷ muon suppression.

Beam tracker: the Gigatracker

Tracker design:

Three Si pixel stations in the beam.
Operation at beam rate up to 800 MHz.
In total, 54k pixels (300×300 μm²).
Thickness: <0.5% X₀ per station.

Performance at 40% beam intensity: $\Track reconstruction efficiency: 75%.$ $\Time resolution \sigma(t_{BeamTrack}) \approx 100 \text{ ps.}$ $\Beam track mis-tagging probability: 1.7%.$ $\Spatial matching: beam/downstream track intersection, \sigma_{CDA} \approx 1.5 \text{ mm.}$

KTAG operation

The first NA62 detector to be commissioned; performance exceeds specifications

UK participation in NA62

UK participation in NA62 from 2011:

- Capital funding and manpower for detector construction and operation from ERC / EU and Royal Society Grants. (manpower: 6 postdocs, 1 RS fellow, academic time)
- ✓ Soon after, STFC contribution with M&O costs.
- ✓ **Now in exploitation mode:** supported by STFC Particle Grant.
- Extremely good value for STFC investment:
 M&O, 1 postdoc, 2 Rutherford fellows, travel, some academic time.
- ✓ Strong, wide-spread leadership.

NA62: UK contributions

Hardware and trigger:

- full responsibility for the KTAG subdetector;
- \$ full responsibility for the Run Control system;
- development and operation of L0 muon+hodoscope+RICH trigger;
- development and operation of the high-level software trigger;
- GRID infrastructure, software, data processing;
- ✤ DCS system.
- Leadership in the physics exploitation:
- ♦ Flagship analysis: $K^+ \rightarrow \pi^+ vv$;
- Detector performance studies with data;
- Rare decays and forbidden studies:
- Analyses of "old" NA48/NA62 data.
- Major leadership roles:
- Physics coordination;
- Computer coordination;
- Run coordinators: 3 out of 12 (in 2017);
- Editorial Board membership: 4 out of 10;
- Conference Committee chair.

- ***** LFV, $\pi^+\nu\nu$ WGs coordination;
- High-level trigger coordination;
- 2 out of 4 PBC representatives;

UK groups have been consistently responsible for >50% of the physics output of NA62

Data collection

- Commissioning run 2015: minimum bias (~1% intensity) and $K_{\pi\nu\nu}$ test data.
 - \checkmark Most systems commissioned and meet the design requirements
- First high intensity run: 3 May 14 November 2016
 - ✓ Data collection at ~40% of the nominal intensity (limited by beam quality)
- Long (~6 months) runs in 2017 (started in May) and 2018

Reached sensitivity of ~1 SM $K_{\pi\nu\nu}$ event with the 2016 data

High intensity run in 2016

- Stable data collection at ~40% of the nominal intensity; limited by beam structure, including the 50 Hz harmonics.
- Simultaneous data taking for $K_{\pi\nu\nu}$ and rare/exotic decays.
- Extrapolation to end of 2018 (12 months of live time): 7×10¹² K⁺ decays.
- With improved extraction and incremental improvements in efficiency, the target of 10¹³ K⁺ decays by end of 2018 is reachable.

$K_{\pi\nu\nu}$ signal region definition

Main K⁺ decay modes (>90% of BR) rejected kinematically.

Design kinematical resolution on m_{miss}^2 has been achieved $(\sigma=1.0\times10^{-3} \text{ GeV}^4/\text{c}^2).$

Measured kinematical background suppression:

 $\sqrt{K^+}$ → $\pi^+\pi^0$: 6×10⁻⁴; $\sqrt{K^+}$ → $\mu^+\nu$: 3×10⁻⁴.

Further background suppression: \checkmark PID (calorimeters & Cherenkov detectors): μ suppression <10⁻⁷. \checkmark Hermetic photon veto: suppression of $\pi^0 \rightarrow \gamma\gamma$ decays <10⁻⁷.

Identification with RICH & HAC

Data 2016: K_{πνν} sample

 K^+ →π⁺vv decay: ~50% of 2016 data is useful. Analysis of 5% of this sample. No events found in 3D-space. in K_{mvv} signal region.

*Expect 1.3 SM $K_{\pi\nu\nu}$ decays from total 2016 sample.

♦Preliminary statement on background: B/S<0.9.</p>

*Analysis in progress to increase signal acceptance and improve BKG suppression.

Recent & upcoming results 2007 and 2015-16 data samples

★Searches for heavy neutral leptons: $K^+ \rightarrow \mu^+ \nu$ [Birmingham] ★Searches for heavy neutral leptons: $K^+ \rightarrow e^+ \nu$ [Birmingham] ★Prospects for 3-tracks K⁺ decays [Birmingham, Bratislava]

Heavy neutral leptons in vMSM

$K^+ \rightarrow \mu^+ N$: 2007 data sample

Only K⁺ (43% of NA62 2007 data) due to higher muon halo rejection

One well-reconstructed μ + track. Kinematic cuts to suppress halo

N(K) ~ 6 x 10⁷ from K+ $\rightarrow \mu + \nu$ (trigger downscale D=150)

Data driven study of:

Halo background Spectrometer resolution tails Trigger efficiency Muon ID efficiency Dedicated MC simulation for: Acceptance vs HN mass HN peak resolution vs HN mass

HNL production search: results

[arXiv: 1705.07510]

Limits on BR(K⁺ $\rightarrow \mu^+ N_4$) ~ 10⁻⁵, limits on $|U_{\mu4}|^2 \sim 10^{-5}$ for $M_N > 300 \text{ MeV/c}^2$

K⁺→e⁺N: 2015 data sample

- Minimum bias (1% intensity); 11k SPS spills in 2015. HNL mass resolution vs mass
- ★ K⁺ decays in fiducial volume: $N_{K}=(3.01\pm0.11)\times10^{8}$.
- Beam tracker not available: kaon momentum is estimated as the beam average.

HNL production search: results

- HNL mass scan: 170 MeV/c² < m_N < 448 MeV/c², mass step = 1 MeV/c².
- Signal search window for each mass hypothesis: $\pm 1.5\sigma_{m}$.
- ✤ Background estimate: polynomial fits to mass spectra outside signal window.

❖ Local signal significance never exceeds 3₀: no HNL signal is observed.
 ❖ Reached 10⁻⁶−10⁻⁷ limits for |U_{e4}|² in the 170−448 MeV/c² mass range.

* Major improvement foreseen with high intensity NA62 2016 data.

LVF/LNV programme

New physics scenarios involving **LFV**:

✓ Neutrino is a Majorana fermion (identical to antineutrino)

✓ Heavy (possibly sterile) neutrino states

✓ **Supersymmetry** with R-parity violation or RH neutrinos

Astrophysical consequences:

 \checkmark Dark matter, nucleosynthesis, Supernova evolution, ...

* Search for forbidden states with lepton pair (ee, $\mu\mu$, μ e):

 $\begin{array}{ll} K^{+} \to \pi^{+} \mu^{+} e^{-} & K^{+} \to \mu^{-} \nu e^{+} e^{+} \\ K^{+} \to \pi^{-} \mu^{+} e^{+} & K^{+} \to e^{-} \nu \mu^{+} \mu^{+} \\ K^{+} \to \pi^{-} e^{+} e^{+} & K^{+} \to \pi^{+} \pi^{0}, \ \pi^{0} \to \mu^{+} e^{-} \\ K^{+} \to \pi^{-} \mu^{+} \mu^{+} & K^{+} \to \pi^{+} \pi^{0}, \ \pi^{0} \to \mu^{-} e^{+} \end{array}$

Data 2016: 3-track sample

Lepton flavour and number conservation tests:

Dedicated trigger streams for 3-track decays with leptons.

Improved resolution, veto and PID: lower backgrounds wrt NA48/2.

\diamond Expect to improve world limits on LFV/LNV K⁺ and π^0 decays.

The far future and Summary

Beyond 2024

- ♦ Need to measure both $BR(K^+ \rightarrow \pi^+ \nu \nu)$ vs $BR(K_L \rightarrow \pi^0 \nu \nu)$: affected differently by NP.
- ✤ In the next few years, we expect:
 - ✓ NA62 @ CERN to measure $BR(K^+ \rightarrow \pi^+ \nu \nu)$ to 10%;
 - ✓ KOTO @ J-PARC to observe a few $K_L \rightarrow \pi^0 v v$ events.
- ★ A new, possibly multi-purpose, K_L experiment at CERN focussed on $K_L \rightarrow \pi^0 vv$, with SES~0.5×10⁻¹² is under consideration for Run 4 (2026–2029).

KLEVER @ CERN:

- ✤ 30 GeV protons (300 kW); <p_{KL}>=2 GeV/c;
- Proposal: SES=8×10⁻¹² (~4 SM evts) with S/B=1.4 in three years.
- ✤ Short (100h) run in 2013: SES=1.3×10⁻⁸;
- Observed 1 event, expected 0.36; [CKM2014]
- Collected ×20 more data in 2015;
- Intention (no proposal): upgrade to 100 SM evts.

- ✤ 400 GeV protons; <p_{KL}>~100 GeV/c: complementary approach to KOTO.
- ♦ 60 SM events in 5 years with S/B≈1.
- Protons required: 5×10¹⁹ (NA62×10):
 target area & transfer line upgrade.
- Re-use NA62 infrastructure and parts of detector (LKr calorimeter; muon system).

Summary

UK participation in NA62 from 2011:

- Capital funding and manpower for detector construction and operation from ERC Advanced and Royal Society Grants.
 M&O costs from STFC.
- ✓ Now in exploitation mode: supported by STFC Particle Grant.
- ✓ Extremely good value for STFC investment
- ✓ Strong UK leadership overall, and in physics analysis.

NA62 run 2015–2018:

- $\checkmark\,$ Detector performance is close to design parameters
- $\checkmark\,$ Large dataset at 40% of nominal intensity collected in 2016
- ✓ Expect O(1) SM $K_{\pi\nu\nu}$ events sensitivity in 2016 (~50% of total dataset).
- $\checkmark\,$ Currently taking data at 50% of nominal intensity
- ✓ Focused on the $K_{\pi\nu\nu}$ measurement (SES~10⁻¹²).

NA62 run 2021–2024:

- ✓ Continue physics exploitation: make the most of investments.
- extensive rare decay and beam dump programme with existing detector.

Data 2016: related studies

Expect improvement over the world data with 5% of the 2016 sample.

Improvement on BR($\pi^0 \rightarrow invisible$) over the current limit of 2.7×10^{-7} is also possible.

NA62 in dump operation mode

The expected sensitivity is evaluated assuming zero background.

Backgrounds to be considered: scattering of halo muons, accidentals.

Proof-of-principle: 2016 data.

Searches for dark photon and axion production at target: prospects are being evaluated.

NA62 sensitivity dump mode

m_a [GeV]

Search for HNL production signal

- HNL mass scan: 170 MeV/c² < m_N < 448 MeV/c², mass step = 1 MeV/c².
- Signal search window for each mass hypothesis: $\pm 1.5\sigma_{m}$.
- Background estimate: polynomial fits to mass spectra outside signal window.
- ✤ Background statistical errors estimated with dedicated MC simulation.
- For each m_N, frequentist confidence intervals for N_{HNL} obtained from numbers of observed and expected events and their uncertainties.

HNL production search: results

* Local signal significance never exceeds 3σ : no HNL signal is observed.

- * Reached $10^{-6}-10^{-7}$ limits for $|U_{e4}|^2$ in the 170-448 MeV/c² mass range.
- * Major improvement foreseen with high intensity NA62 2016 data.

92% of total **BR(K**⁺):

- Outside the signal kinematic region.
- Signal region is split into Region I and Region II by the K⁺→π⁺π⁰ peak.

8% of total **BR(K**⁺) including multi-body:

Span across the signal region
(not rejected by kinematic criteria).
Rejection relies on hermetic photon

system, PID, sub-ns timing.

- PNN trigger: RICH, CHOD signals and LAV, MUV and LKr vetos at L0; KTAG, LAV and STRAW at L1

- Single π^+ topology, 15 < P_{π} < 35 GeV/c
- K/ π matching in time (KTAG/GTK vs CHOD/RICH)
- K/ π matching in space (GTK and STRAW track)

- Fiducial decay region: 110/115 < Z_v < 165 m and Z_v vs π position at STRAW (remove early decays; CHANTI against interactions in GTK3)

- Particle ID (Cherenkov, calorimeters, muon veto)
- Photon veto

- Signal regions: 2 regions in m_{miss}^2 vs P_{π^+} shown on next slide Analysis done in 3D space: m_{miss}^2 , m_{miss}^2 (RICH), m_{miss}^2 (no GTK) (kinematical suppression for $\pi^+\pi^0$ and $\mu^+\nu$ measured on data with events selected using calorimeters)

$K_{\pi\nu\nu}$ 5% of 2016 sensitivity

Normalization: $K^+ \rightarrow \pi^+ \pi^0$ (in $\pi^+ \pi^0$ region before γ rejection on minimum bias events) 5% of 2016 statistics: N(K decays) ~ 2.3 x 10¹⁰ N(normalization) = 3.3 x 10⁸ Acceptance (normalization) ~ 7% Acceptance signal ~ 3.3% N(Expected $\pi \nu \nu$) ~ 0.064 assuming SM branching ratio

	N(K decays) ~ 2.3 × 10	¹⁰ [5% 2016 statistics]
Process	Expected Events	Branching ratio
$K^+ \to \pi^+ \pi^0$	0.024	0.2066
$K^+ \to \mu^+ \nu$	0.011	0.6356
$K^+ \to \pi^+ \pi^+ \pi^-$	0.017	0.0558
Early Decays	< 0.005	

NA62 & SHiP design parameters

Primary beam for both NA62 and SHiP: 400 GeV/c SPS protons

	NA62 (running experiment)	SHiP (proposal)
Years of operation	3	5
POT per SPS spill	3×10 ¹²	4×10 ¹³
POT total	5×10 ¹⁸	2×10 ²⁰
Decay volume (m ³)	260 m³	1780 m ³
Decay volume distance to target	104–183 m	64–124 m
Decay volume pressure (bar)	10 ⁻⁹ bar	10 ⁻⁶ bar
Halo muon rate in spectrometer	6 MHz	few kHz
Straw chamber area	0.06m <r<1.05m< td=""><td>$R_1 = 5m, R_2 = 10m$</td></r<1.05m<>	$R_1 = 5m, R_2 = 10m$

... but a crucial aspect is the background rejection capability!

LFV in K[±] and π^0 decays

Mode	UL at 90% CL	Experiment	Reference
$K^+ ightarrow \pi^+ \mu^+ e^-$	$1.3 imes10^{-11}$	BNL E777/E865	PRD 72 (2005) 012005
$K^+ o \pi^+ \mu^- e^+$	$5.2 imes10^{-10}$]		
$K^+ o \pi^- \mu^+ e^+$	$5.0 imes10^{-10}$	BNL E865 *	PRL 85 (2000) 2877
$K^+ ightarrow \pi^- e^+ e^+$	$6.4 imes10^{-10}$]		
$(K^{\pm}) \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$	$1.1 imes10^{-9}$ ((CERN NA48/2)	PLB 697 (2011) 107
$\widetilde{K^+} \rightarrow \mu^- \nu e^+ e^+$	$2.0 imes10^{-8}$	Geneva-Saclay	PL 62B (1976) 485
$K^+ o e^- u \mu^+ \mu^+$	$\operatorname{no}\mathrm{data}$		
$\pi^0 ightarrow \mu^+ e^-$	$3.6 imes10^{-10}$	FNAL KTeV	PRL 100 (2008) 131803
$\pi^0 o \mu^- e^+$	$3.6 imes10^{-10}$		

* CERN NA48/2 sensitivities for these three modes are similar to those of BNL E865

Expected NA62 single event sensitivities: $\sim 10^{-12}$ for K[±] decays, $\sim 10^{-11}$ for π^0 decays.

- ✤ NA62 is capable of improving on all these decay modes.
- Sensitivity will depend on the trigger selectivity.