Charged Lepton Flavour Violation:

mu2e, mu3e and Comet Gavin Hesketh, UCL

Thanks to Mark Lancaster, Yoshi Uchida, Joost Vossebeld

CLFV

Charged Lepton Flavour Violation (cLFV) complimentary way to search for new physics

- \rightarrow no new particles discovered at LHC
- \rightarrow neutrino masses already reveal neutral LFV

- how about the charged leptons?

- \rightarrow Several BSM models allow cLFV
- \rightarrow possible antimatter asymmetry through leptogenesis
- \rightarrow part of UK's charged lepton programme

Rate in the Standard Model $\sim (m_v/m_w)^4 \rightarrow \sim 10^{-54}$ (zero without neutrino masses)

 \rightarrow Any observation is new physics!

Theoretical uncertainties ~zero

 \rightarrow sensitivity purely limited by experiment

High rate of muons (up to 10¹⁰ muons/second), very rare signal

New physics with cLFV

New physics with cLFV

Z'

 \boldsymbol{q}

q

CLFV

Probe LQ masses up to 300 TeV cf 1 (120) TeV at HL-LHC (LHCb)

CI FV

Probe LQ masses up to 300 TeV cf 1 (120) TeV at HL-LHC (LHCb)

a

Probe LQ masses up to 300 TeV cf 1 (120) TeV at HL-LHC (LHCb)

If new physics is observed at the LHC, cLFV may be critical to resolve degenerate models

If the new physics is at a higher scale then cLFV can probe it

Limits are at 90% C.L.

 10^{-1}

cf jump from Tevatron to LHC

Extend sensitivity by 10⁴

к

10

10²

Contact

SINDRUM-I (1988) [1.0e-12]

Dates of projected limits are the start of data taking

	Best limits	Projected sensitivities (90%CL)
μ→еγ	< 4.3x10 ⁻¹³ MEG (PSI)	4x10 ⁻¹⁴ MEG II (PSI)
µ→еее	< 1.0x10 ⁻¹² SINDRUM (PSI)	1x10 ⁻¹⁵ Mu3e I (PSI) 1x10 ⁻¹⁶ Mu3e II (PSI)
µN→eN	< 7.0x10 ⁻¹³ SINDRUM II (PSI)	6x10 ⁻¹⁷ Mu2e (FNAL) 7x10 ⁻¹⁵ COMET I (J-PARC) 6x10 ⁻¹⁷ COMET II (J-PARC)

10⁻²

Dipole

Rate (CLFV) ~
$$g^2 \times \theta_{e\mu}^2 \times \left(\frac{m_{\mu}}{\Lambda}\right)^2$$

 $a_{\mu} \sim g^2 \times \left(\frac{m_{\mu}}{\Lambda}\right)^2$
 $\mu \qquad \tilde{\mu} \qquad \tilde{\ell} \qquad$

If g-2 anomaly is confirmed, we have evidence for BSM muon interactions

→ need g-2 and cLFV measurements to resolve model dependency

Dark photons at mu3e

cLFV ties in to four main areas on the STFC science roadmap:

CI FV

- C:1. What are the fundamental particles?
- C:3. Is there a unified framework?
- C:4. What is the nature of dark matter?
- C:7. What is the origin of the matter antimatter asymmetry?

$\mu N \rightarrow eN$: mu2e and COMET

Stopped muons in orbit around nucleus.

- neutrinoless conversion of muon to electron

- mono-energetic electron
 - for aluminium: $E_e = 104.96 \text{ MeV}$
- delayed w.r.t. prompt particles
 - for aluminium: 864 ns

Prompt backgrounds (radiative nuclear capture, muon decay in flight, pions, protons).

- Curved solenoid transport channel
- Pulsed beam with delayed time-window
- Strong extinction factor (less than 10^{-9})

Muon decay in orbit ($\mu N \rightarrow e \vee \vee N$)

- precise momentum resolution

Cosmics

9

- cosmic veto detector

The COMET Experiment

Muon-to-electron conversion experiment at J-PARC, Japan

> 8 GeV (56 kW) Proton Beam

The Coherent Muon-to-Electron Transition Experiment Phase-II Layout

Aluminium Muon-Stopping Target

CI FV

 π/μ Transport Solenoid

> Straw Tracker & Crystal ECAL

Signal electron density along curved beam line

with "steering" B-field

without "steering" B-field

Muon-stopping target

Detectors

<u>Curved solenoids with</u> <u>vertical B-fields:</u> *steerable* momentumand-charge selection for muons and signal electrons

56 kW proton beam: Seven times the muon production rate of Mu2e

Fully physics study by Ben Krikler (PhD Thesis, 2016)

CLFV

G. Hesketh

COMET Phase-I

Detector Section Pion-Capture Solenoid COMET Phase-I Layout

Very high-rate/rare signal experiment

- detector background hit rates and data-rate management, subsystem integration and detailed signal and background studies are critical
- **Phase-I** experiment allows novel muon beam line to be studied in detail, while also making worldleading CLFV physics measurements

Drift Chamber Cosmic Ray Tests (Ongoing)

COMET Status

More than 150 collaborators from 32 institutions in 15 countries

CI FV/

UK leadership includes:

- Founding member, participation since 2006
 Online/Offline Software, Data Processing
- Collaboration Board Chair
- Physics and Software Coordinator
- Lead Editor of TDR

COMET Phase-I

- fully-approved at J-PARC/KEK
- no technical constraints to schedule
- beam arriving in two years
- S.E.S to $B(\mu \rightarrow e) = 3 \times 10^{-15}$

COMET Phase-II

- Phase-I components to be redeployed for Phase-II
- Within approximately two years of successful Phase-I start
- Seven times higher muon production rate compared to Mu2e
- Designed for $B(\mu \rightarrow e) = 3 \times 10^{-17}$, but aim to improve using knowledge from Phase-I

- Triggering/DAQ Electronics and Firmware
- Detector Raw Data Interface
- Triggering, Tracking and Reconstruction

UK contribution (Liverpool, Manchester, UCL): STM

cf luminosity at collider

G. Hesketh 🗯

- determine "background" impurities in target and beamline

Conversion BR = $\frac{\#\mu \to e}{\#\text{ captured }\mu}$

- verify integrity of DIO modelling

Need excellent resolution at high rate (γ : 90 kHz/cm²) in broad range: 300 – 1800 keV \rightarrow n-type coaxial HPGe detector.

HEPAP P5: 2014

mu2e (& g-2) to be completed in all budget scenarios - only also recommended for HL-LHC, LBNF Approval of full-budget : July 2016 : \$274M

220 members: 35 institutes.

Beamline into mu2e building already completed.

Most of the accelerator mods done since also needed by g-2 First beam in 2020 with data-taking to conclude in 2025

Possibility for Mu2e-II (extra factor of 10 in sensitivity)

- to be finalised in 2020 HEPAP P5.

G. Hesketh

 e^+

 e^+

The mu3e experiment at Paul Scherrer Institut

- search for mu \rightarrow eee

DC beam of up to $10^{10} \,\mu$ /s on target, triggerless DAQ.

Backgrounds:

Combinatorics, Michel decay + photon conversion

- \rightarrow time and position resolution
 - Scintillating fibres (1ns) and tiles (100ps)
 - vertex resolution 200 μ m
- Michel decay + internal conversion
 - \rightarrow momentum resolution

Operating in scattering dominated regime (E<53 MeV)

- recurling tracks in 1T field
- momentum resolution 0.5 MeV

mu3e Schedule

Phase 1A and 1B (2019-2021): $Br(\mu \rightarrow eee) < 10^{-15}$

- Approved (2013) and funded. PSI π E5 beam, shared with MEG.
- $10^8 \,\mu/s$ on target for mu3e demonstrated.

G. Hesketh

MuPix outer pixel layers for Phase 1

1.1 m² HV-MAPS pixel tracker - first HV-CMOS tracker in particle physics

Material budget critical:

- 50 μm HV-MAPS
- 25 μ m support
- 25 μm flex-print
- 12 μm aluminium traces
- 10 μm adhesive
- gaseous helium cooling
 - \rightarrow 0.1% X₀ per tracking layer

UK Deliverables (Bristol, Liverpool, Oxford, UCL)

- Commission assembly tooling & procedures (Aug 2017)
- Participate in final pre-production towards MuPix chip (start production Summer 2018)
- Tooling for chip-to-ladder assembly, ladder prototype production.
- Assembly of all Phase 1A outer tracker (Spring 2019).
 - & Phase 1B recurl layers (Spring 2020).
- Design and deliver clock and control system for time-slice based daq (Spring 2019)

Conclusion

cLFV complements and extends two major research themes in the UK:

- BSM searches and Higgs physics at the LHC
- Neutrino mass hierarchy and CPV in the neutrino sector

mu3e, mu2e and Comet will increase sensitivity by 10⁴

- possibility to discover new physics orders of magnitude beyond LHC reach

Exciting physics programme for ~decade

Involvement in both $\mu \rightarrow eee$ and $\mu N \rightarrow eN$ important:

- complementary to each other (and to g-2)
- not clear which will provide the first/best limits or discovery!

backup

mu2e Straw Tracker

Non Gaussian tail ~ 4%

MEG: $\mu \rightarrow e\gamma$ (2009-2013)

Search for $\mu \rightarrow e\gamma$ PSI π E5 beam (3x10⁷ muons/s)

Main backgrounds:

Accidental: e^+ from Michel decay + γ photon from e^+ annihilation or Bremsstrahlung or from radiative Michel decay .

Radiative Michel decays

Final result (2016) BR(μ →eγ) < 4.3x10⁻¹³ (90% C.L.)

MEG II: $\mu \rightarrow e\gamma$ (2017-2019)

Performance targets:

∆E(e⁺)	~	130 keV
∆t (e⁺)	~	35 ps
ΔΕ(γ)	~	1%
Δt (γ)	~	60 ps
Project	ed N	IEG-II Sensitivity:
BR(μ –	→eγ)	< 4x10 ⁻¹⁴ (90% C.L.

Push muons-on-target to 7x10⁷ muons/s

Higher accidental BG (∝ intensity²)

Need better timing and momentum resolution.

New detector, to run from 2017 to 2019

HIMB: using PSI E-target

Alternative Possibilities

Constraints - any intervention to the proton beam line must:

- Not significantly increase the beam losses
- Preserve the proton footprint and energy on SINQ
- Preserve the total material budget seen by the beam

Just started to look at "conventional targets" in combination with solenoids Possibilities under assessment

> As a "conventional target", Target E is surprisingly efficient at producing surface muons: for I_p=2.3 mA

TgE length	Front	Back	Side
10 mm	$9.6 \times 10^9 / s$	$1.5 \times 10^{10}/s$	$1.9 \times 10^{10}/s$
20 mm	$1.3 \times 10^{10}/s$	$1.9 \times 10^{10}/s$	$5.8 \times 10^{10}/s$
30 mm	$1.6 \times 10^{10} / s$	$1.7 \times 10^{10}/s$	$9.5 \times 10^{10}/s$
40 mm	$1.6 \times 10^{10}/s$	$2.0 \times 10^{10}/s$	$1.3 \times 10^{11}/s$
60 mm	$1.6 \times 10^{10}/s$	$2.1\times10^{10}/s$	$2.2 \times 10^{11}/s$

- Front/back surfaces saturate with L
- side surface viewing very efficient

front TgE ਨੂ back protons

Peter-Raymond Kettle

Future Muon Sources Workshop – Univ. of Huddersfield 2015

16

Peter-Raymond Kettle, 2015

The Mu3e collaboration

Paul Scherrer Institute

UNIVERSITÉ DE GENÈVE

ETHzürich

Universität Zürich^{um}

IOHANNES GUTENBERG UNIVERSITÄT MAINZ University Zürich

ETH Zürich

Heidelberg University

Karlsruhe Institute of Technology

Mainz University

COMET I (approved), start earliest 2019, BR(N μ \rightarrow Ne) ~ 7x10⁻¹⁵

Detector and beamline construction progressing well.

Strong UK (IC) involvement since 2006: beamline, trigger/DAQ, software and leadership roles (Collaboration Board Chair, Analysis Coordinator)

COMET II, ~2 years after phase I, BR(N μ \rightarrow Ne) ~ 6x10⁻¹⁷

R&D during phase I. High (56 kW) power proton beam. Challenging, but offers very fast data accumulation, (*Yoshi: forthcoming UK work suggests 2.3x10⁻¹⁷ is feasible.*)

Mu2e (approved), scheduled start 2020, BR(N $\mu {\rightarrow} Ne$) ~ 6x10^{-17}

Construction underway. Lower power (8kW) beam. PPRP bid for strong UK (LIV,MAN,UCL) involvement: HPGe STM

Mu3e Phase 1A/1B (approved), scheduled start 2019, BR($\mu \rightarrow eee$) ~ 1x10⁻¹⁵

Beamline in place, detector development on target. PPRP bid for strong UK (BRIS,LIV,OXF,UCL) involvement: HV-MAPS MUPIX tracker, clock-and-control.

Mu3e Phase 2, after phase 1B (2021 earliest), BR($\mu \rightarrow eee$) ~ 1x10⁻¹⁶

Extended acceptance detector, HiMB R&D ongoing at PSI.