Neutrino Theory

Peter Ballett IPPP, Durham

PPAP Community Meeting RAL 20 July 2017

On the trail of neutrino mass

• In 2015, the Nobel Committee awarded the prize in Physics to A. MacDonald and T. Kajita

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

• And yet, neutrino masses have no explanation in the Standard Model.

- A major theoretical effort is spent on **understanding how neutrinos get mass**, the implications of these models and their phenomenology at low-energies. This will be the focus of today's talk.
- Much more beyond this that I won't mention today
 - nu-nuclear cross-sections
 - cosmological/astrophysical neutrinos
 - reactor/Gallium/SBL anomalies
 - collider signatures
 - cLFV searches

0

Bulking up

Surveying the options for neutrino mass generation

Low-scale neutrino mass

Below the EW scale, all mass mechanisms appear in one of two forms

$$\mathcal{L} \supset m_{ij} \overline{\nu_L^i} \nu_R^j$$

$$\mathcal{L} \supset m_{ij}\overline{\nu_L^i}(\nu_L^j)^c$$

Observables:

- PMNS matrix (3 angles, 1+2 phases)
- Two mass-squared splittings
- One absolute mass scale parameter (e.g. the lightest mass)
- L=2 lepton number violating effects proportional to neutrino mass

Almost identical descriptions in terms of 7 (+2) low-scale mixing parameters:

$$U_{\alpha i} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad \begin{array}{c} \Delta m_{21}^2 \\ \Delta m_{31}^2 \end{array} m_0$$

Mechanisms for neutrino mass

- Neutrinos in the SM are massless for two key reasons:
 - Assumed field content (no RH neutrinos, no exotic Higgses)
 - Renormalizability (no higher dimension operators, e.g Weinberg operator)
- To introduce masses we must either **introduce new particles**, or abandon renormalizability and work in an **effective field theory** (which in most cases is tantamount to adding new particles).

Mechanisms for neutrino mass

- Neutrinos in the SM are massless for two key reasons:
 - Assumed field content (no RH neutrinos, no exotic Higgses)

A first attempt: Dirac mass. RH partners introduced, allows for Yukawa interaction.

- Renormalizability (no higher dimension operators, e.g Weinberg operator)
- To introduce masses we must either **introduce new particles**, or abandon renormalizability and work in an **effective field theory** (which in most cases is tantamount to adding new particles).

Perfectly consistent, but to agree with data, we require two pieces of fine tuning:

 $y_{ij}\overline{L^i}H\nu_R^j$

Mechanisms for neutrino mass

- Neutrinos in the SM are massless for two key reasons:
 - Assumed field content (no RH neutrinos, no exotic Higgses)
 - Renormalizability (no higher dimension operators, e.g Weinberg operator)
- To introduce masses we must either **introduce new particles**, or abandon renormalizability and work in an **effective field theory** (which in most cases is tantamount to adding new particles).

A second attempt: New particles at high scales. Low-scale effects described by an Effective Field Theory.

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots$$

Naturally small due to scale suppression.

At dim = 5:
$$\mathcal{L}_5 = c_5 \overline{L} H H L^c + h.c.$$

$$= \frac{c_5 v^2}{2} \overline{\nu_L} (\nu_L)^c$$

(Weinberg 1979)

Many more possibilities

A very incomplete list:

- Natural Dirac models e.g. neutrinophilic 2HDM, pseudo-Dirac, left-right symmetry, radiative models, extra dimensions, ...
- Seesaw mechanisms e.g. Type I, Type II and Type III.
- Non-minimal seesaws e.g. inverse-, double-, linear-seesaws (multiple mediator, tree-level)
- Radiative completions of Weinberg e.g. Zee-Babu, Ma's scotogenic model, ...
- Mass from higher d>5 operators e.g. tree-level options up to d=11, radiative versions studied up to d=7.
- Also: Flavour symmetric models, GUT models, gravitational effects ...

As you can see: the generation of mass is (relatively) easy!

The challenge is to identify the genuine BSM mechanism underlying neutrino mass generation.

Potential to fundamentally change our view of:

CP violation Lepton Number Violation Flavour in the (B)SM The scale and nature of new physics And more...

Low-scale mass phenomenology

Exploring neutrino mass terms at low energies

Oscillogram JUNO Coll. 1507.05613

Our current knowledge of neutrino mass terms comes from oscillation measurements.

			NuFIT 3.0 (2016)
	Normal Ore	Any Ordering	
	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.271 \rightarrow 0.345$
$ heta_{12}/^{\circ}$	$33.56\substack{+0.77\\-0.75}$	$31.38 \rightarrow 35.99$	$31.38 \rightarrow 35.99$
$\sin^2 heta_{23}$	$0.441\substack{+0.027\\-0.021}$	$0.385 \rightarrow 0.635$	$0.385 \rightarrow 0.638$
$ heta_{23}/^{\circ}$	$41.6^{+1.5}_{-1.2}$	$38.4 \rightarrow 52.8$	$38.4 \rightarrow 53.0$
$\sin^2 heta_{13}$	$0.02166\substack{+0.00075\\-0.00075}$	$0.01934 \to 0.02392$	$0.01934 \to 0.02397$
$ heta_{13}/^\circ$	$8.46_{-0.15}^{+0.15}$	$7.99 \rightarrow 8.90$	$7.99 \rightarrow 8.91$
$\delta_{ m CP}/^{\circ}$	261^{+51}_{-59}	$0 \rightarrow 360$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	$7.03 \rightarrow 8.09$
$\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$	$+2.524^{+0.039}_{-0.040}$	$+2.407 \rightarrow +2.643$	$ \begin{bmatrix} +2.407 \to +2.643 \\ -2.629 \to -2.405 \end{bmatrix} $

NuFit coll. 1611.01514

Our current knowledge of neutrino mass terms comes from oscillation measurements.

We have learnt a lot but there are still key questions to answer:

NuFIT 3.0 (2016)

		Normal Ordering (best fit)		Any Ordering	
	20 20	bfp $\pm 1\sigma$	3σ range	3σ range	
	$\sin^2 heta_{12}$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.271 \rightarrow 0.345$	
	$ heta_{12}/^{\circ}$	$33.56\substack{+0.77\\-0.75}$	$31.38 \rightarrow 35.99$	$31.38 \rightarrow 35.99$	
What is the value of the	$\sin^2 heta_{23}$	$0.441\substack{+0.027\\-0.021}$	$0.385 \rightarrow 0.635$	$0.385 \rightarrow 0.638$	What is the value of theta23?
	$ heta_{23}/^{\circ}$	$41.6^{+1.5}_{-1.2}$	$38.4 \rightarrow 52.8$	$38.4 \rightarrow 53.0$	lower octant? Is it maximal?
	$\sin^2 heta_{13}$	$0.02166\substack{+0.00075\\-0.00075}$	$0.01934 \to 0.02392$	$0.01934 \to 0.02397$	
	$ heta_{13}/^\circ$	$8.46^{+0.15}_{-0.15}$	$7.99 \rightarrow 8.90$	$7.99 \rightarrow 8.91$	
CP phase? Does CPV exist in the leptonic	$\delta_{ m CP}/^{\circ}$	261^{+51}_{-59}	$0 \rightarrow 360$	$0 \rightarrow 360$	
sector?	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.50\substack{+0.19 \\ -0.17}$	$7.03 \rightarrow 8.09$	$7.03 \rightarrow 8.09$	
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.524^{+0.039}_{-0.040}$	$+2.407 \rightarrow +2.64$	$ \begin{bmatrix} +2.407 \to +2.643 \\ -2.629 \to -2.405 \end{bmatrix} $	Do neutrinos have normal or inverted ordering?

Neutrino oscillation

Neutrinos are produced in a coherent superposition of mass eigenstates.

Propagation generates mass dependent phase factors.

$$\nu_{\alpha} = U_{\alpha i} \nu_i$$

Coherence conditions must be satisfied by production mechanism (they almost always are).

$$|\nu_{\alpha}(L)\rangle = \sum_{i} U_{\alpha i} e^{-i\frac{m_{i}^{2}L}{2E}} |\nu_{i}(0)\rangle$$

Phase can depend on medium.

Detection projects us back onto the flavour basis.

 $\mathbf{2}$

Flavour transitions can occur.

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{i} U_{\alpha i} U_{\beta i}^{*} e^{-i \frac{m_{i}^{2} L}{2E}} \right|$$

We can compute probabilities in perturbation theory:

Fundamental CP violation appears at next-to-leading order.

Alongside leptonic CPV, the mass ordering and the octant of theta23, precision oscillation physics will be able to test the oscillation paradigm itself:

Neutrino mass beyond oscillation

Oscillation is currently our only means of exploring neutrino mass. It is **highly desirable** to observe the effect of mass in other processes.

The next major hurdle for neutrino mass exploration will be to identify positive evidence for its role beyond oscillation.

Light majorana exchange

Simplest mechanism, naturally linked to neutrino mass.

 u_L

 e_L^-

 u_L

- 3

 $|m_{\beta\beta}| =$

Rate governed by mixing angles and masses, including Majorana phases and absolute mass scale.

$$\left|\sum m_i U_{ei}^2\right| = \left|m_1 \cos^2 \theta_{12} \cos^2 \theta_{13} + m_2 \sin^2 \theta_{12} \cos^2 \theta_{13} e^{i\beta_1} + m_3 \sin^2 \theta_{13} e^{i\beta_2}\right|$$

Possible due to LNV propagator of majorana fermion.

 d_L

 d_L

For inverted ordering there is a lower bound on the rate.

This allows for complementary measurements between NDBD and oscillation physics!

Rodejohann 1206.2560

$0 \nu \beta \beta$ decay: exotic mechanisms

- Searching for neutrinoless beta-decay (NDBD) is not narrowly focused on light majorana masses.
 - Many mechanisms exist for L=2 contributions to the decay rate.

However, all mechanisms are all linked *in some way* to neutrino mass generation. (Schechter & Valle 1982)

Any mechanism for NDBD contributes to neutrino majorana masses (and vice versa).

In summary

- Neutrinos are massive, but explaining this theoretically requires new (undiscovered) particles.
- Precision neutrino experiments are constraining the sector as never before. We can expect unprecedented knowledge of low-scale parameters. (Look out for discrepancies in results and between experiments!)
- Study of neutrino masses offers many potential major discoveries:
 - Leptonic CP violation
 - Lepton number violation
 - Unusual flavour structures
 - New particles
- A diverse experimental programme, and close collaboration between theory and experiment is essential to fully explore the mechanism which completes the neutrino sector.

Thank you

And thanks to ...

