Monte Carlo tools for LHC phenomenology

Out of the Higgs Era into the Dark, IPPP
November 23, 2017
Stefan Prestel (Fermilab)

Experiments to learn from: High \& low-energy DIS, $\ell \ell+h h$ collider measurements, cosmic rays, heavy-ion collisions...

Theory toolbox: Hard interaction
\rightarrow Radiative cascade
\rightarrow Secondary interactions
\rightarrow Hadron formation
\rightarrow Hadron decay, rescattering,
Bose-Einstein effects...

Monte Carlo Event Generators implement all these aspects.

ij

HERWIG
$\ell \ell, \ell h, h h$
Some internal MEs, UFO interface, rest via LHEF QCD \& QED showers

NLO QCD merged
Cluster hadronization, R-hadrons

PYTHIA

SHERPA
$\ell \ell, \ell h, h h, \gamma \gamma$
General internal MEs + UFO + general ALOHA

QCD \& QED showers valley showers

NLO QCD merged
NLO QCD+aEW merged
String hadronization, R - and HV hadrons

+ interfaces with a lot of friends, helpers and specialized tools.

Should I care about MCEG developments?

Exclusion limits for squarks+jets. PS bands are obtained by varying between "wimpy" and "power shower", merged bands by varying the merging scale from $50-200 \mathrm{GeV}$.
\Rightarrow Improved QCD pins down jet momenta \Rightarrow More robust limits.

The Standard Model backgrounds \& phase space

What are the dominant effects in which part of phase space?

Fundamental assumption: Factorisation

Long-distance and short-distance physics factorize.
(low-energy) (high-energy) (we hope)

$$
\begin{aligned}
& \sigma=\int d \sigma_{(a b \rightarrow X+N \text { partons })}(\text { high energy }) \\
& \otimes f_{a \in \mathrm{~A}}\left(\{x\}_{a}, \text { high energy }\right) \otimes f_{b \in \mathrm{~B}}\left(\{x\}_{b}, \text { high energy }\right) \\
& \otimes \mathcal{D}\left(p_{A}, p_{B}, p_{1}, \ldots, p_{N}\right)+\text { corrections }
\end{aligned}
$$

\diamond Extract/fit f and \mathcal{D} where corrections are small (low energy).
\diamond Use perturbation theory to calculate $d \sigma$ at high energy. Make accurate (NLO, NNLO) to capture most of the dynamics. Hope: Less impact of non-perturbative modelling.

Making fixed-order calculations practical

NLO prediction of observable \mathcal{O} :

$$
\langle\mathcal{O}\rangle^{\mathrm{NLO}}=\int \mathrm{B} d \Phi \mathcal{O}(\Phi)+\int \mathrm{V} d \Phi \mathcal{O}(\Phi)+\int \mathrm{R} d \Phi_{+1} \mathcal{O}\left(\Phi_{+1}\right)
$$

Making fixed-order calculations practical

NLO prediction of observable \mathcal{O} :

$$
\langle\mathcal{O}\rangle^{\text {NLO }}=\int \mathrm{B} d \Phi \mathcal{O}(\Phi)+\int \mathrm{V} d \Phi \mathcal{O}(\Phi)+\int \mathrm{R} d \Phi_{+1} \mathcal{O}\left(\Phi_{+1}\right)
$$

Remove poles for numerical integration \Rightarrow Subtract \& add counterterm
$\langle\mathcal{O}\rangle^{\mathrm{NLO}}=\int\left[\mathrm{B}+\mathrm{V}+\int \mathrm{BS}\right] d \Phi \mathcal{O}(\Phi)+\int\left[\mathrm{R} \mathcal{O}\left(\Phi_{+1}\right)-\mathrm{BS} \mathcal{O}\left(\Phi^{\prime}\right)\right] d \Phi_{+1}$

Making fixed-order calculations practical

NLO prediction of observable \mathcal{O} :

$$
\langle\mathcal{O}\rangle^{\mathrm{NLO}}=\int \mathrm{B} d \Phi \mathcal{O}(\Phi)+\int \mathrm{V} d \Phi \mathcal{O}(\Phi)+\int \mathrm{R} d \Phi_{+1} \mathcal{O}\left(\Phi_{+1}\right)
$$

Remove poles for numerical integration \Rightarrow Subtract \& add counterterm
$\langle\mathcal{O}\rangle^{\mathrm{NLO}}=\int\left[\mathrm{B}+\mathrm{V}+\int \mathrm{BS}\right] d \Phi \mathcal{O}(\Phi)+\int\left[\mathrm{R} \mathcal{O}\left(\Phi_{+1}\right)-\mathrm{BS} \mathcal{O}\left(\Phi^{\prime}\right)\right] d \Phi_{+1}$
Still can't generate events! \Rightarrow Add/subtract more \& shift the blame!

$$
\begin{aligned}
\langle\mathcal{O}\rangle^{\mathrm{NLO}} & =\int\left[\mathrm{B}+\mathrm{V}+\int \mathrm{BS}+\left(\int \mathrm{BP}-\int \mathrm{BS}\right)\right] d \Phi \mathcal{O}(\Phi) \\
& +\int[\mathrm{R}-\mathrm{BP}] \mathcal{O}\left(\Phi_{+1}\right) d \Phi_{+1}+\int \mathrm{BP}\left[\mathcal{O}\left(\Phi_{+1}\right)-\mathcal{O}(\Phi)\right] d \Phi_{+1}
\end{aligned}
$$

Problem is now in the final purple remainder.
The simplest way to generate this is with a parton shower!

Parton shower evolution

PS evolution
yields jet structure!

Parton shower (PS) evolves high energy fixed-order cross section to low energy, summing large logarithmic perturbative corrections
... by generating an arbitrary number of (soft/collinear) emissions.
... and corresponding soft/collinear virtual corrections (Sudakov factors).
Finiteness is guaranteed by parton shower unitarity of emission/no-emission probabilities.

Shower \& matching/merging crash course

Probability of no emission (Π) $=1$ - probability for an emission

$$
\begin{align*}
\mathbf{P S}[\mathrm{B}] & =\underset{\substack{\mathrm{B} \Pi_{0} \mathcal{O}_{0} \\
\text { no emission }}}{ } \quad+\int_{1}^{\mathrm{B} P \Pi_{0}\left[\Pi_{1} \mathcal{O}_{1}+\ldots\right]} \begin{aligned}
\text { at least } 1 \text { emission }
\end{aligned} \tag{1}\\
& \equiv \mathrm{B} \mathcal{O}_{0}-\int_{1} \mathrm{BP} \mathcal{O}_{0} \Pi_{0}+\int_{1}^{\mathrm{B} P \Pi_{0}\left[\Pi_{1} \mathcal{O}_{1}+\ldots\right]}
\end{align*}
$$

Shower \& matching/merging crash course

Probability of no emission (Π) $=1$ - probability for an emission

$$
\begin{align*}
\mathrm{PS}[\mathrm{~B}]= & \begin{array}{l}
\mathrm{B} \Pi_{0} \mathcal{O}_{0} \\
\text { no emission }
\end{array}+\int_{1} \mathrm{~B} P \Pi_{0}\left[\Pi_{1} \mathcal{O}_{1}+\ldots\right] \tag{1}\\
\equiv & \mathrm{B} \mathcal{O}_{0}-\int_{1} \mathrm{~B} P \mathcal{O}_{0} \Pi_{0}+\int_{1} \mathrm{~B} P \Pi_{0}\left[\Pi_{1} \mathcal{O}_{1}+\ldots\right] \tag{2}\\
= & \mathrm{B} \mathcal{O}_{0}-\int_{1} \mathrm{~B} P \mathcal{O}_{0} \Pi_{0}+\int_{1} \mathrm{~B} P \Pi_{0} \mathcal{O}_{1}-\int_{2} \mathrm{~B} P P \Pi_{0} \Pi_{1} \mathcal{O}_{1} \\
& +\int_{2} \mathrm{~B} P P \Pi_{0} \Pi_{1}\left[\Pi_{2} \mathcal{O}_{2}+\ldots\right] \tag{3}
\end{align*}
$$

Shower \& matching/merging crash course

Probability of no emission (Π) $=1$ - probability for an emission

$$
\begin{align*}
\mathbf{P S}[\mathrm{B}]= & \begin{array}{l}
\mathrm{B} \Pi_{0} \mathcal{O}_{0} \\
\text { no emission }
\end{array}+\int_{1} \mathrm{~B} P \Pi_{0}\left[\Pi_{1} \mathcal{O}_{1}+\ldots\right] \tag{1}\\
\equiv & \mathrm{B} \mathcal{O}_{0}-\int_{1} \mathrm{~B} P \mathcal{O}_{0} \Pi_{0}+\int_{1} \mathrm{~B} P \Pi_{0}\left[\Pi_{1} \mathcal{O}_{1}+\ldots\right] \\
= & \mathrm{B} \mathcal{O}_{0}-\int_{1} \mathrm{~B} P \mathcal{O}_{0} \Pi_{0}+\int_{1} \mathrm{~B} P \Pi_{0} \mathcal{O}_{1}-\int_{2} \mathrm{~B} P P \Pi_{0} \Pi_{1} \mathcal{O}_{1} \tag{2}\\
& \quad+\int_{2} \mathrm{~B} P P \Pi_{0} \Pi_{1}\left[\Pi_{2} \mathcal{O}_{2}+\ldots\right]
\end{align*}
$$

(2) $+\mathcal{O}\left(\alpha_{s}\right)$ corrections $\mathrm{B} \rightarrow \mathrm{B}_{0}^{N L O}:$ NLO +PS matching.
(3) with substitutions $\mathrm{B} P \rightarrow \mathrm{~B}_{1}$ and $\mathrm{B} P P \rightarrow \mathrm{~B}_{2}$: LO merging.
(3) with $\mathrm{B} \rightarrow \mathrm{B}_{0}^{N L O}, \mathrm{~B} P \rightarrow \mathrm{~B}_{1}^{N L O}+$ subtractions: NLO merging.

The devil's in the details: Many ways to implement \Rightarrow many schemes!

Hiding behind the Higgs?
Plots from arXiv:1605.04692 \& Herwig7 (supplied by J. Bellm)

Multijet data requires multijet QCD. Records: NLO merging and NNLO matching.

But plenty of room to hide behind the SM uncertainties!

Matching complicated processes: Resonances \& matching

Higher orders very different for different "production processes".

"Kinematic edges" very sensitive to effects beyond NWA and to higher orders - but very useful for observables.

Problems to tackle:

Better control over non-resonant \& non-factorizable corrections (worry about soft gluons with $E_{\text {real gluon }} \sim \Gamma$).
Better control over hard radiation in production \& decay.

Matching Wbj with aMc@NLO

arXiv:1603.01178

Dependence on resonance treatment parametrized with xcut.

Edge depends on details of resonance treatment and parton shower.
\Rightarrow Be careful if your favorite model hides below SM edges!

Towards simulating the full SM
arXiv:1511.08692

SHERPA combines NLO QCD multi-jet merging with approximate NLO EW corrections. NLO EW effects can be important.

Warnings for background simulations

- Use multi-jet merged calculations for multi-jet backgrounds (NLO where possible)
- Stay away from SM-induced kinematic edges. Similarly, don't look too closely at shape of b-jets.
- When in doubt, use two different merging schemes.
- Include EW corrections for hard leptons and for $p_{\perp V}$.

Repurposing accurate SM tools for BSM pheno

Background simulations are quite sophisticated. Can we leverage this knowledge also to improve signal extraction?

When the detector only sees QCD I: Dark matter in mono-jets
Plots from arXiv:1310.4491; Powheg-Box

NLO corrections suggest more stringent limits, NLO+PS with realistic analysis less optimistic.

But in either case, more robust limits!

When the detector only sees QCD II: Compressed mass spectra
Plots from Phys.Rev. D87 (2013) no.3, 035006; MG5+Pythia

Squark pair production with compressed squark-LSP masses.
If you only see QCD, make sure to minimize uncertainties! Most tools allow LO multi-jet merging for new-physics processes.

$\mathrm{NLO}+\mathrm{PS}$ matching for BSM

Figure from arXiv:1510.00391; aMC@NLO+Pythia

NLO K-factors are not flat. \Rightarrow Constant rescaling of LO not ideal. NLO+PS closer to NLO than LO+PS to LO (better control of reals) Still work to do on treatment of resonance enhancements.

Using QCD to aid BSM searches

QCD "knows" about typical scales of processes
...e.g. probability for extra jets slightly process-dependent.
\Rightarrow Can use jet vetoes can improve "signal/noise"
...needs accurate BSM + QCD calc ${ }^{n}$ to minimize uncertainty on $\sigma^{\text {veto }}$

Physics beyond (fixed-order) perturbation theory

Remember:
Perturbation theory \in Nature but Nature $>$ ME calculations

Example: What are signatures of "rich" dark sectors?

Realistic scattering events

Realistic scattering events... with dark sectors

Realistic scattering events... with dark sectors

Realistic scattering events... with dark sectors

Hard interaction \rightarrow dark quarks
\rightarrow Dark sector radiation
\rightarrow Dark hadron formation

Realistic scattering events... with dark sectors

Hard interaction \rightarrow dark quarks
\rightarrow Dark sector radiation
\rightarrow Dark hadron formation
\rightarrow Dark hadrons travel

Realistic scattering events... with dark sectors

Hard interaction \rightarrow dark quarks
\rightarrow Dark sector radiation \rightarrow Dark hadron formation

\longrightarrow
\rightarrow Decay to SM particles
\Rightarrow Stable hadrons, photons...

Realistic scattering events... with dark sectors

Hard interactic
\rightarrow Dark sectc
\rightarrow Dark had

$$
\rightarrow
$$

\rightarrow Decay t
\Rightarrow Stable

Semi-visible jets, emerging jets, lepton jets challenge search strategies \& modelling of jets - which may be accurate, but not precise:

\Rightarrow Improved showers (e.g. arXiv:1705.00742, arXiv:1611.00013) needed to prevent over-tuning non-pert. parameters \& allow robust predictions?

No BSM news, really, beyond arXiv:1006.2911. Features needed?

Happily into the abyss

Soft new physics might also share features with MinBias/Pile-up.
E.g. high-multiplicity decays from dark sectors (soft bombs) might produce long-range correlations

Picture from arXiv:1612.00850
...that almost look like the unexpected "ridges" in CMS $p p$ data.
MC news: New ideas in heavy-ion physics (arXiv:1710.09725), diffraction (arXiv:1612.04701), hadronization (arXiv:1610.09818)

Summary

- MCEGs use detailed models all apsects of scattering events. Without continuously improving their SM parts, we would have wrongly discovered new physics many times.
- Improving perturbative calc ${ }^{n s}$ in MCEGs has much attention, and produced very precise tools
- Many background methods can be reused for more sophisticated searches for BSM signals.
- Light or strongly coupled new physics can have interesting new signatures beyond fixed-order perturbation theory, and will push the boundaries of background calculations.

