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Experiments to learn from:
High & low-energy DIS, (¢ + hh
collider measurements, cosmic

rays, heavy-ion collisions...

Theory toolbox:

Hard interaction
Radiative cascade
Secondary interactions
Hadron formation
Hadron decay,
rescattering,
Bose-Einstein effects...
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Monte Carlo Event Generators implement all these aspects.
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HERWIG

PYTHIA

SHERPA

el, Lh, hh

Some internal MEs, UFO
interface, rest via LHEF

QCD & QED showers

NLO QCD merged

Cluster hadronization,
R-hadrons

Le, Lh, hh, vy, xXx

Some internal MEs, rest
via LHEF

QCD, QED, EW & hidden
valley showers

NLO QCD merged

String hadronization,
R- and HV hadrons

£e, Lh, hh, vy

General internal MEs +
UFO + general ALOHA

QCD & QED showers

NLO QCD-+aEW merged

Cluster hadronization

+ interfaces with a lot of friends, helpers and specialized tools.



Should I care about MCEC developments?
PRD87 (2013) 3, 035006 (Dreiner, Kramer, Tattersall)

Monojet Search Limits, Vs =7 TeV
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Exclusion limits for squarks+jets. PS bands are obtained by varying between “wimpy"
and “power shower"”, merged bands by varying the merging scale from 50 — 200 GeV.

= Improved QCD pins down jet momenta = More robust limits.



The Standard Model backgrounds & phase space

What are the dominant effects in which part of phase space?



Fundamental assumption: Factorisation

Long-distance and short-distance physics factorize.
(low-energy) (high-energy) (we hope)

g = /do—(ab—>X+N partons) (high energy)

® faEA({x}aa high energy) & fbeB({CE}b, high energy)
® D(pa,pB,p1s---,PN) ~+ corrections

o Extract/fit f and D where corrections are small (low energy).

¢ Use perturbation theory to calculate do at high energy.

Make accurate (NLO, NNLO) to capture most of the dynamics.

Hope: Less impact of non-perturbative modelling.

6



Making fixed-order calculations practical

NLO prediction of observable O:

(oo — /B d® O(d) +/V d® O(d) +/R AP, 1 O(D. 1)



Making fixed-order calculations practical

NLO prediction of observable O:
(OO — /B d® O(P) +/V d® O(P) +/R d®y; O(Dyq)

Remove poles for numerical integration = Subtract & add counterterm

<O>NLO — /

B+V+/BS} o o<<1>)+/[R O(@41) — BS O(@')] dd



Making fixed-order calculations practical

NLO prediction of observable O:
(OO — /B d® O(P) +/V d® O(P) +/R d®y; O(Dyq)

Remove poles for numerical integration = Subtract & add counterterm

<O>NLO — /

Still can’t generate events! = Add/subtract more & shift the blame!

(oe = / B+V+/BS+</BP—/BS> ] d® O(®)

+ /[RfBP] O(®41)dd, + /BP[O(@H)f O(®)] dd,

B+V+/BS] o o<<1>)+/[R O(@41) — BS O(@')] dd

Problem is now in the final purple remainder.
The simplest way to generate this is with a parton shower!



Parton shower evolution

Parton shower (PS) evolves high energy fixed-order cross section to low
energy, summing large logarithmic perturbative corrections

..by generating an arbitrary number of (soft/collinear) emissions.

..and corresponding soft/collinear virtual corrections (Sudakov factors).

Finiteness is guaranteed by parton shower unitarity of
emission /no-emission probabilities.



Shower & matching/merging crash course

Probability of no emission (II) = 1 - probability for an emission

PS[B] = BIIO, + [ BPII, IOy +...] (1)
no emission 1 at least 1 emission

1



Shower & matching/merging crash course

Probability of no emission (II) = 1 - probability for an emission

PS[B] = BII,O, + [ BPI,[I,0; +...]

no emission at least 1 emission

1
BOy — /BPOUHO /BP I 11,01 +....]

(1)
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Shower & matching/merging crash course

Probability of no emission (II) = 1 - probability for an emission

PS[B] = BI,O, + [ BPI,[I;0; +...] (1)
no emission 1 at least 1 emission
= BOO - /BPOOHO /BP HO HlOl +. ] (2)

1
= BO, — /BPOOHO + /BPH()Ol — /BPPH0H1(91
1

1 2

+ /BPPHOH1 M0, + ...] (3)
2

(2) + O(ay) corrections B — B)F© : NLO+PS matching.
(3) with substitutions BP — By and BPP — By: LO merging.
(3) with B — B{'*?, BP — BY*© 4 subtractions: NLO merging.

The devil’s in the details: Many ways to implement = many schemes!



Hiding behind the Higgs?
Plots from arXiv:1605.04692 & Herwig7 (supplied by J. Bellm)
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Matching complicated processes: Resonances & matching
JHEP1512(2015)065, JHEP1606(2016)027, arXiv:1607.04538

Higher orders very different for different “production processes”.

“Kinematic edges” very sensitive to effects beyond NWA and to
higher orders — but very useful for observables.

Problems to tackle:
Better control over non-resonant & non-factorizable corrections (worry
about soft gluons with Eycq; giuon ~ I').
Better control over hard radiation in production & decay.
11/1



Matching Wbj with aMC@NLO

— W+bj NLO+PS

=oos WHbj LO+PS e—etj+MS35 NLO+PS 4--4 fNLO
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Dependence on resonance treatment parametrized with zcut.

arXiv:1603.01178

10°

107"

Edge depends on details of resonance treatment and parton shower.

= Be careful if your favorite model hides below SM edges!
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Towards simulating the full SM

arXiv:1511.08692
pp = {7+0,1,2j@13 TeV
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SHERPA combines NLO QCD multi-jet merging with approximate
NLO EW corrections. NLO EW effects can be important.
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Warnings for background simulations

v

Use multi-jet merged calculations for multi-jet backgrounds
(NLO where possible)

v

Stay away from SM-induced kinematic edges.
Similarly, don’t look too closely at shape of b-jets.

v

When in doubt, use two different merging schemes.

v

Include EW corrections for hard leptons and for p v .
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Repurposing accurate SM tools for BSM pheno

Background simulations are quite sophisticated. Can we
leverage this knowledge also to improve signal extraction?
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When the detector only sees QCD I: Dark matter in mono-jets

Plots from arXiv:1310.4491; Powheg-Box
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NLO corrections suggest more stringent limits, NLO+PS with
realistic analysis less optimistic.

But in either case, more robust limits!



When the detector only sees QCD II: Compressed mass spectra

Plots from Phys.Rev. D87 (2013) no.3, 035006; MG5+Pythia
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Squark pair production with compressed squark-LSP masses.

If you only see QCD, make sure to minimize uncertainties!

Most tools allow LO multi-jet merging for new-physics processes. 171



NLO+PS matching for BSM

Figure from arXiv:1510.00391; aMC@NLO+Pythia
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NLO K-factors are not flat. = Constant rescaling of LO not ideal.
NLO-+PS closer to NLO than LO+PS to LO (better control of reals)

Still work to do on treatment of resonance enhancements. o



Using QCD to aid BSM searches

Figure from arXiv:1701.05263

QCD “knows" about typical scales of processes

..e.g. probability for extra jets slightly process-dependent.

= Can use jet vetoes can improve “signal/noise”

..needs accurate BSM+QCD calc” to minimize uncertainty on g%

10 sy /
A ta 3
FE, [ \\\ """"" i /Zabbi ]
L 10° N % E
= V(0N 1 S He N/ St B
q9 + No Veto /// B
> 10%E N et -
= E \ s E
g | v eveo
£ |OL13 TeV LHC '~/ ]
g W’—mvu
= pYe© =40 GeV ¢ =26x102xg, |

1 1 L I 1 1 L 1 111
10 10°



Physics beyond (fixed-order) perturbation theory

Remember:
Perturbation theory € Nature but Nature > ME calculations

Example: What are signatures of “rich” dark sectors?
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Realistic scattering events

Hard interaction
— Radiative cascade
— Hadron formation

— Hadron decays



Realistic scattering events... with dark sectors

Hard interaction — dark quarks

22/1



Realistic scattering events... with dark sectors

Hard interaction — dark quarks

— Dark sector radiation \YYYY
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Realistic scattering events... with dark sectors

Hard interaction — dark quarks
— Dark sector radiation

— Dark hadron formation

22/1



Realistic scattering events... with dark sectors

Hard interaction — dark quarks ’
— Dark sector radiation
— Dark hadron formation

ﬁ
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Realistic scattering events... with dark sectors

‘\§\\\\Nﬁ
AN

Hard interaction — dark quarks ’
— Dark sector radiation

— Dark hadron formation

: RN
— Decay to SM particles \4 \\
H

= Stable hadrons, photons...
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Realistic scattering events... with dark sectors

\“ P ] icture from 02.0546“

Hard interactic
— Dark sectc
— Dark had

—

— Decay t

= Stable |

VIVt
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Jets and the dark sector

Plot from arXiv:1705.00982

Semi-visible jets, emerging jets, lepton jets challenge search strategies &
modelling of jets — which may be accurate, but not precise:

Differential 3-jet rate with Durham algorithm (91.2 GeV) Differential 4-jet rate with Durham algorithm (91.2 GeV)
+ 103 Imman T — T T ¢« T T T —
2 T T 1 EL g : ! T £
< E- ]
5 10 <483 - a
—+— Data 7; 1 —+— Data
—— NLO E —— NLO
1071 1/4t < pp <4t 10- 1/4t <y <4t
—— Lo —+ 1o
. SR8 1/4t < pf <4t 1072 SR8 1/4t < pf <4t
14
5 PN
a8 8
< <
J J
z o Z o8
o H 06 % |
T BT B PRI BRI B
1074 10 10 107! 1075 1074 1073 1072
Durham Durham
Yax Yi5

= Improved showers (e.g. arXiv:1705.00742, arXiv:1611.00013) needed to
prevent over-tuning non-pert. parameters & allow robust predictions?

No BSM news, really, beyond arXiv:1006.2911. Features needed?
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Happily into the abyss

Soft new physics might also share features with MinBias/Pile-up.

E.g. high-multiplicity decays from dark sectors (soft bombs) might
produce long-range correlations

Picture from arXiv:1612.00850

..that almost look like the unexpected “ridges” in CMS pp data.

MC news: New ideas in heavy-ion physics (arXiv:1710.09725), diffraction
(arXiv:1612.04701), hadronization (arXiv:1610.09818)
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Summary

> MCEGs use detailed models all apsects of scattering events.
Without continuously improving their SM parts, we would
have wrongly discovered new physics many times.

» Improving perturbative calc™ in MCEGs has much attention,
and produced very precise tools

» Many background methods can be reused for more
sophisticated searches for BSM signals.

» Light or strongly coupled new physics can have interesting
new signatures beyond fixed-order perturbation theory, and
will push the boundaries of background calculations.



