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Motivation

• Electroweak corrections becoming essential

✤ Fixed order adequate at present energies

✤ Enhanced higher orders important for FCC

• SM may be valid up to much higher energies

✤ Implications for cosmology and astrophysics

• Need full simulations of  VHE interactions: 
parton shower event generators for full SM

✤ First step: event generators need PDFs
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Outline
• Electroweak effects at high energies

✤ Non-cancelling large logarithms

✤ Sudakov factors

• SM parton distributions 

✤ DGLAP and double-log evolution

✤ L-R and isospin asymmetries

• Lepton pair production

✤ Matching to fixed order

• Conclusions and prospects
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Electroweak Effects 
at High Energies



Bryan Webber, SM PDFs at VHE IPMU-KIAS-IPPP Workshop 2017

Electroweak effects: e+e

• For massless bosons, IR divergences in each graph, 
cancel in inclusive sum over SU(2) multiplets

• For massive bosons, divergences become log(mw2/s), 
generally two per power of aw

5

Electroweak	Sudakov	logarithms	arise	from	exchanges	of	
electroweak	gauge	bosons

4

Consider example of qq production 

Have contributions from virtual and real emission

For massive W,  IR divergences turn into log(mW2/s), and 
generally have two powers per power of alpha

Both virtual and real sensitive to log(mW2/s)
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Electroweak effects: e+e

•  aw log2(mw2/s) from each graph, cancel in 
inclusive sum over SU(2) multiplets

• But we don’t have nn or en colliders, so 
cancellation is incomplete
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Electroweak	Sudakov	logarithms	arise	from	exchanges	of	
electroweak	gauge	bosons

4

Consider example of qq production 

Have contributions from virtual and real emission

For massive W,  IR divergences turn into log(mW2/s), and 
generally have two powers per power of alpha

Both virtual and real sensitive to log(mW2/s)
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Electroweak effects: qq

•  aw log2(mw2/s) from each graph, cancel in 
inclusive sum over SU(2) multiplets

• In pp,  u-quark PDF ≠ d-quark PDF, so 
cancellation is incomplete

7

Electroweak	Sudakov	logarithms	arise	from	exchanges	of	
electroweak	gauge	bosons

4

Consider example of qq production 

Have contributions from virtual and real emission

For massive W,  IR divergences turn into log(mW2/s), and 
generally have two powers per power of alpha

Both virtual and real sensitive to log(mW2/s)
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Electroweak logarithms

• Electroweak logs get large at high energy

• Virtual corrections exponentiate as Sudakov factor

8

The	numerical	effect	of	EW	Sudakov	logarithms	becomes	
large	at	high	energies
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Electroweak effects in Z+jet

• ~25% at pT~1 TeV

9      QCD and EW corrections for  V+jets as backgrounds in DM searches                              Jonas M. Lindert
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Z+jet

Large EW corrections 
dominated by Sudakov logs 

Pure EW uncertainties430

Assuming that the NLL Sudakov approximation at NNLO is comparably accu-431

rate as at NLO, we can consider unknown Sudakov logarithms beyond NNLO as432

the dominant source of EW uncertainty at high pT. Such O(↵3) Sudakov terms433

can be easily estimated via naive exponentiation, which implies the following434

relations between NLO, NNLO and NNNLO terms,435
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Based on these relations, we estimate the uncertainty due to unknown high-pT438

EW effects beyond NNLO as439
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(V )
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which is an approximate implementation of eq. (33), obtained by neglecting441

effects from angular integration and multiplying the term �
(3)
Sud by a factor two,442

in order to be conservative. This rough estimate can be validated at NLO, where443

the uncertainty due to missing NNLO Sudakov effect, estimated with the naive444

exponentiation approach,445
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can be compared to the known NLL Sudakov results at NNLO. This is illustrated447

in Fig. 4, which demonstrates that eq. (35) (see green band) provides a fairly448

realistic estimate of NNLO EW corrections. The expected effects beyond NNLO,449

estimated according to eq. (34) turn out to be around ±5% in the multi-TeV450

tails.451

Besides Sudakov exponentiation effects, we introduce a second source of452

uncertainty, defined as 5% of the full NLO EW correction,453
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This type of uncertainty has a twofold motivation. At high pT, it accounts for455

unknown terms of order ↵2 ln2
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that can arise from effects of the form456
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Here, in general, the non-Sudakov factor NLO hard = (↵
⇡
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(1)
hard can amount to458

several percent, due e.g. to photon-bremstrahlung effects in highly exclusive459

observables. However, for the boson-pT distributions considered in this pa-460

per, the quality of the Sudakov approximation observed in Fig. 4 indicates that461

NLO hard is very small. Nevertheless, to be conservative, the uncertainty (36)462

can accomodate effects as large as NLO hard = 5%.463

As a second motivation, besides unknown logarithmically enhanced terms,464

the uncertainty (36) can account also for NNLO effects of type
�
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this perspective, eq. (36) amounts to a bound on hard NNLO effects,466
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Uncertainty estimate of NLO EW 
from naive exponentiation x 2:

↵(L2 + L1)

check against two-loop Sudakov logs 
[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

↵2(L4 + L3)

where �, � and ⇠ are anomalous dimensions depending on the EW quantum394

numbers of the scattering particles. The hard cross section has the form395
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At NLL level, which is the logarithmic accuracy at which NNLO Sudakov effects402

are known for V+ jet production [12–16], the following types of logarithms are403

available,9404

�
(1)
Sud =

X

i,j

C
(1)
2,ij ln

2

 

Q2
ij

M2

!

+ C
(1)
1 ln1

✓

Q2

M2

◆

,405

�
(2)
Sud =

X

i,j

C
(2)
4,ij ln

4

 

Q2
ij

M2

!

+ C
(2)
3 ln3

✓

Q2

M2

◆

+O


ln2
✓

Q2

M2

◆�

, (30)406

where M = M
W

⇠ M
Z

, Q2
ij

= |(p̂
i

±p̂
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)2| are the various Mandelstam invariants407

built from the hard momenta p̂
i

of the V+ jet production process and Q2 =408

Q2
12 = ŝ.409

In this work we will employ the explicit NLL Sudakov results of [12–16],410

which have been implemented, in addition to exact NLO QCD+NLO EW am-411

plitudes, in the OpenLoops matrix-element generator [4, 17]. Let us recall412

that the results of [12–16] are based on the high-energy limit of virtual one- and413

two-loop corrections regularised with a fictitious photon mass of order M
W

.414

This generates logarithms of the form ↵n lnk(ŝ/M2
W

) that correspond to the415

combination of virtual one- and two-loop EW corrections plus corresponding416

photon radiation contributions up to an effective cut-off scale of order M
W

. In417

the case of V+ jet production, for physical observables that are inclusive with418

respect to photon radiation, this approximation is accurate at the one-percent419

level [13, 16, 18].420

In this work we will employ full EW results at NLO and NLL Sudakov loga-421

rithms at NNLO. In the notation of eq. (24)-(26), for fully-differential partonic422

cross sections, this implies423
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Transverse-momentum distributions including exact NLO EW corrections and426

Sudakov logarithms at NLO and NNLO are shown in Fig. 4, which confirms427

that the accuracy of the Sudakov approximation at NLO is very high, thereby428

supporting the usage of EW Sudakov logarithms at NNLO.429

9At NLO, EW corrections are known exactly and also NNLL asymptotic expansions [12–16]
are available.
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Parton Distribution 
Functions

10
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PDFs as bilocal operator MEs

11

Parton	distribu@on	func@ons	are	matrix	elements	of	collinear	
bi-local	operators

26

Diagramatically, can think of them as

2. The evolution of parton distributions in the full Standard model

2.1 Definition of the parton distribution functions

The standard definition of an x-weighted parton distribution is given by the matrix element

of a bi-local operator, separated along the lightcone. For fermions, one finds the standard

definition, but without spin averaging as we are separating the fermions into left and right

handed, thus each fermion has only one possible spin determined by its helicity and the

sign of its momentum.

fi(x) = x

Z
dy

2⇡
e�i 2xn̄·p y⌦p

��  ̄(i)(y) n̄/ (i)(�y)
��p
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e�i 2xn̄·p y⌦p

�� (i)(y) n̄/  ̄(i)(�y)
��p
↵
. (2.2)

To include all gauge interactions of the standard model, one needs to include separate

parton distribution functions for left- and right- handed fields. This implies that for each

generation, there are a total of 8 quark PDFs and 6 lepton PDFs to consider, for a total

of 42 fermion PDFs.

Parton distributions functions of the vector bosons are given by

fV (x) =
2
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Z
dy

2⇡
e�i 2xn̄·p y n̄µn̄

⌫
⌦
p
��V µ�(y)V�⌫(�y)

��p
↵���
spin avg.

. (2.3)

Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the

SU(2) ⌦ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into

account. For the W+ and W� boson we simply include separate PDFs for each of the two

gauge bosons. For the B and W
3

, however, one needs to be more careful to take the mixing

between these two bosons into account. This implies that besides PDFs for each of these

two particles, one needs to include a mixed PDF, which is given by

fBW (x) =
1

2

✓
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+ h.c.

◆
. (2.4)

From these PDFs one can then construct the PDF for the Z, the photon and their mixed

state as a transformation of the PDF for the B, the W 3 and their mixed state. Using

A = cWB + sWW 3 and Z = �sWB + cWW 3 one finds
0
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Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) =

Z
dy

2⇡
e�i 2xn̄·p y ⌦p

���(y)�(�y)
��p
↵
,

(2.6)

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H� are included.

In summary, there are a total of 52 parton distrbution functions that need to be

considered.
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Parton distribution functions are matrix elements of collinear 
operators of field separated along the light-cone

Once full SM evolution is considered, need pdf for every 
particle (including Higgs)

fi fV

CWB, Ferland, Webber (’17) 
see also Ciafaloni, Comelli (’00-’05)

Parton	distribu@on	func@ons	are	matrix	elements	of	collinear	
bi-local	operators
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From these PDFs one can then construct the PDF for the Z, the photon and their mixed

state as a transformation of the PDF for the B, the W 3 and their mixed state. Using

A = cWB + sWW 3 and Z = �sWB + cWW 3 one finds
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Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) =

Z
dy
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e�i 2xn̄·p y ⌦p

���(y)�(�y)
��p
↵
,

(2.6)

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H� are included.

In summary, there are a total of 52 parton distrbution functions that need to be

considered.
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Parton distribution functions are matrix elements of collinear 
operators of field separated along the light-cone

Once full SM evolution is considered, need pdf for every 
particle (including Higgs)

fi fV

CWB, Ferland, Webber (’17) 
see also Ciafaloni, Comelli (’00-’05)
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PDF Evolution

12

Before	I	show	results,	let	me	give	the	complete	evolu@on	of	
quark	pdf	as	an	example

32

The possible diagrams one can draw are

q d/dq f = P ⊗ f

q d/dq f = P ⊗ V

q d/dq f = P ⊗ H

f

ff

V

Hf
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Real and Virtual Contributions

• Reals have loops from one side to the other

• Virtuals have loops on same side

13

DGLAP	equa@ons	are	simply	renormaliza@on	group	equa@ons	
of	these	operators

28

As for any operator in field theory depend on renormalization 
scale, and RGE is derived from divergent structure of loops

Virtual contributions have loop stay on same side of operator

Real contributions have loop go from one side to other

DGLAP	equa@ons	are	simply	renormaliza@on	group	equa@ons	
of	these	operators

28

As for any operator in field theory depend on renormalization 
scale, and RGE is derived from divergent structure of loops

Virtual contributions have loop stay on same side of operator

Real contributions have loop go from one side to other
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SU(3) Evolution (DGLAP)
• Consider evolution of u quark PDF

• z=1 singularity cancels       single-log evolution

14

For	usual	QCD	evolu@on	of	PDF’s	solu@on	to	DGLAP	is	only	
single	logarithmic

34

Consider evolution of quark pdf:

Virtual Real

Combination

Logarithmic singularity as z→1 vanishes

t

d

dt
fu(x, t) =

↵CF

⇡

P

V
q (t)fu(x, t)

P

V
q (t) = �

Z z
max

(t)

0
dz Pqq(z)

t

d

dt
f

q

(x, t) =
↵C

F

⇡

Z
z

max

(t)

x

dz P
qq

(z)f
q

(x/z, t)
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d

dt
fq(x, t) =

↵CF

⇡

Z z
max

(t)

0
dz Pqq(z) [fq(x/z, t)� fq(x, t)] + . . .

q

@

@q

fu(x, q) =
↵3CF

⇡

P

V
f (q)fu(x, q)

Pff (z) =
1 + z2

1� z

For	usual	QCD	evolu@on	of	PDF’s	solu@on	to	DGLAP	is	only	
single	logarithmic

34
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Virtual Real
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Logarithmic singularity as z→1 vanishes
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V
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⇡
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q

@

@q

fu(x, q) =
↵3CF

⇡

Z 1�µ/q

0
dz Pff (z) [fu(x/z, q)� fu(x)]

q

@

@q

f

u

(x, q) =
↵3CF

⇡

Z 1�µ/q

x

dz P
ff

(z)f
u

(x/z, q)

u u
u u

g
g

µ ! 0

PV
f (q) = �

Z 1�µ/q

0
dz Pff (z)
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SU(2) Evolution
• Consider evolution of uL quark PDF

• z=1 doesn’t cancel       double-log evolution

15

For	usual	QCD	evolu@on	of	PDF’s	solu@on	to	DGLAP	is	only	
single	logarithmic

34
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Virtual Real
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Logarithmic singularity as z→1 vanishes
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For	usual	QCD	evolu@on	of	PDF’s	solu@on	to	DGLAP	is	only	
single	logarithmic

34

Consider evolution of quark pdf:

Virtual Real

Combination

Logarithmic singularity as z→1 vanishes

t

d

dt
fu(x, t) =
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u
u,d u

u,dW3,+

W3,-

µ ⇠ mW

M Ciafaloni, P Ciafaloni, D Comelli,  hep-ph/9809321, 0001142, 0111109, 0505047
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f (q)fu(x, q)
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SU(2) Evolution
• Consider evolution of uL quark PDF

• z=1 doesn’t cancel       double-log evolution

16

For	usual	QCD	evolu@on	of	PDF’s	solu@on	to	DGLAP	is	only	
single	logarithmic
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General Evolution

•                      with                  for 

• Introduce Sudakov factor

• Then

17

There	most	general	form	of	the	DGLAP	equa@on	has	a	very	
simple	form

29

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H� are included. The relationship

to the 4 Higgs fields in the unbroken basis to the physical Higgs and the longitudinal gauge

bosons is as follows: The H± PDFs correspond to those of the longitudinally polarized

W±. In the notation of Ref. [8], the neutral Higgs fields are

H0 =
(h� iZL)p

2
, H̄0 =

(h+ iZL)p
2

, (2.8)

where h and ZL represent the Higgs and the longitudinal Z0 fields, respectively. The

corresponding PDFs are

fH0 =
1

2
[fh + fZL

+ i (fhZL
� fZLh)] , (2.9)

f
¯H0 =

1

2
[fh + fZL

� i (fhZL
� fZLh)] , (2.10)

and one can also define the mixed PDFs

fH0
¯H0 =

1

2
[fh � fZL

� i (fhZL
+ fZLh)] , (2.11)

f
¯H0H0 =

1

2
[fh � fZL

+ i (fhZL
+ fZLh)] . (2.12)

Both of these mixed PDF carry non-zero hypercharge, such that they are not produced by

the DGLAP evolution in the unbroken gauge theory as considered in this paper3. Thus,

one immediately finds

fh � fZL
= fhZL

+ fZLh = 0 , (2.13)

and

fh = fZL
=

1

2
(fH0 + f

¯H0) , fhZL
= �fZLh = � i

2
(fH0 � f

¯H0) . (2.14)

In summary, there are a total of 52 parton distribution functions that need to be

considered. Apart from the QCD quark and gluon distributions and the electroweak PDFs

(2.6), all the other SM PDFs are set to zero at scale q
0

= mV and evolve according to the

generalized DGLAP equations presented below.

2.2 General evolution equations

We consider the x-weighted PDFs of parton species i at momentum fraction x and scale q,

fi(x, q). In general they satisfy evolution equations of the following forms:

q
@

@q
fi(x, q) =

X

I

↵I(q)

⇡

2

4P V
i,I(q) fi(x, q) +

X

j

Cij,I

Z zij,Imax(q)

x
dz PR

ij,I(z)fj(x/z, q)

3

5

⌘
X

I


q
@

@q
fi(x, q)

�

I

. (2.15)

3They are only produced through insertions of the Higgs vacuum
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as well as a partial Sudakov factor for each interaction

�i,I(q) = exp

Z q

q0

dq0

q0
↵I(q0)

⇡
P V
i,I(q

0)

�
, (2.29)

where q
0

is an arbitrary cuto↵, which for convenience we set equal to mV . This allows us

to write 
�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.30)

where again the notation [. . .]I implies that only terms from the interaction I are kept.

This gives

�i(q) q
@

@q


fi(x, q)

�i(q)

�
=

X

I


�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
X

I

↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.31)

where

PR
ij,I ⌦ fj ⌘

Z zij,Imax(q)

x
dz PR

ij,I(z)fj(x/z, q) . (2.32)

2.3 Splitting functions

The splitting functions depend only on the type of particles, which for the Standard Model

are the spin 1/2 fermions, denoted by f , spin 1 gauge bosons, denoted by V , as well as

spin 0 Higgs bosons, denoted by H.

Denoting the three gauge interactions of the Standard Model collectively by I = G,

the splitting functions involving gauge bosons are given by

PR
ff,G(z) =

1 + z2

1� z
, (2.33)

PR
V f,G(z) = Pff,G(1� z) , (2.34)

PR
fV,G(z) =

1

2

⇥
z2 + (1� z)2

⇤
, (2.35)

PR
V V,G(z) = 2


z

1� z
+

1� z

z
+ z(1� z)

�
(2.36)

PR
HH,G(z) =

2z

1� z
, (2.37)

PR
VH,G(z) = PR

HH,G(1� z) , (2.38)

PR
HV,G(z) = z(1� z) . (2.39)

The factor of 1/2 in PfV has to be included since we are considering fermions with definite

chirality. For the Yukawa interaction (Y ), one obtains

PR
ff,Y (z) =

1� z

2
, (2.40)

PR
Hf,Y (z) = PR

ff,Y (1� z) , (2.41)

PR
fH,Y (z) =

1

2
. (2.42)
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The factor of 1/2 in PfV has to be included since we are considering fermions with definite

chirality. For the Yukawa interaction (Y ), one obtains

PR
ff,Y (z) =

1� z

2
, (2.40)

PR
Hf,Y (z) = PR

ff,Y (1� z) , (2.41)

PR
fH,Y (z) =

1

2
. (2.42)
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Can define a Sudakov factor by exponentiating virtual piece

Allows to write a slightly simpler form of the DGLAP equation

There	most	general	form	of	the	DGLAP	equa@on	has	a	very	
simple	form

29

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H� are included. The relationship

to the 4 Higgs fields in the unbroken basis to the physical Higgs and the longitudinal gauge

bosons is as follows: The H± PDFs correspond to those of the longitudinally polarized

W±. In the notation of Ref. [8], the neutral Higgs fields are

H0 =
(h� iZL)p

2
, H̄0 =

(h+ iZL)p
2

, (2.8)

where h and ZL represent the Higgs and the longitudinal Z0 fields, respectively. The

corresponding PDFs are

fH0 =
1

2
[fh + fZL

+ i (fhZL
� fZLh)] , (2.9)

f
¯H0 =

1

2
[fh + fZL

� i (fhZL
� fZLh)] , (2.10)

and one can also define the mixed PDFs

fH0
¯H0 =

1

2
[fh � fZL

� i (fhZL
+ fZLh)] , (2.11)

f
¯H0H0 =

1

2
[fh � fZL

+ i (fhZL
+ fZLh)] . (2.12)

Both of these mixed PDF carry non-zero hypercharge, such that they are not produced by

the DGLAP evolution in the unbroken gauge theory as considered in this paper3. Thus,

one immediately finds

fh � fZL
= fhZL

+ fZLh = 0 , (2.13)

and

fh = fZL
=

1

2
(fH0 + f

¯H0) , fhZL
= �fZLh = � i

2
(fH0 � f

¯H0) . (2.14)

In summary, there are a total of 52 parton distribution functions that need to be

considered. Apart from the QCD quark and gluon distributions and the electroweak PDFs

(2.6), all the other SM PDFs are set to zero at scale q
0

= mV and evolve according to the

generalized DGLAP equations presented below.

2.2 General evolution equations

We consider the x-weighted PDFs of parton species i at momentum fraction x and scale q,

fi(x, q). In general they satisfy evolution equations of the following forms:

q
@

@q
fi(x, q) =

X

I

↵I(q)

⇡

2

4P V
i,I(q) fi(x, q) +

X

j

Cij,I

Z zij,Imax(q)

x
dz PR

ij,I(z)fj(x/z, q)

3

5

⌘
X

I


q
@

@q
fi(x, q)

�

I

. (2.15)

3They are only produced through insertions of the Higgs vacuum
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as well as a partial Sudakov factor for each interaction

�i,I(q) = exp

Z q

q0

dq0

q0
↵I(q0)

⇡
P V
i,I(q

0)

�
, (2.29)

where q
0

is an arbitrary cuto↵, which for convenience we set equal to mV . This allows us

to write 
�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.30)

where again the notation [. . .]I implies that only terms from the interaction I are kept.

This gives

�i(q) q
@

@q


fi(x, q)

�i(q)

�
=

X

I


�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
X

I

↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.31)

where

PR
ij,I ⌦ fj ⌘

Z zij,Imax(q)

x
dz PR

ij,I(z)fj(x/z, q) . (2.32)

2.3 Splitting functions

The splitting functions depend only on the type of particles, which for the Standard Model

are the spin 1/2 fermions, denoted by f , spin 1 gauge bosons, denoted by V , as well as

spin 0 Higgs bosons, denoted by H.

Denoting the three gauge interactions of the Standard Model collectively by I = G,

the splitting functions involving gauge bosons are given by

PR
ff,G(z) =

1 + z2

1� z
, (2.33)

PR
V f,G(z) = Pff,G(1� z) , (2.34)

PR
fV,G(z) =

1

2

⇥
z2 + (1� z)2

⇤
, (2.35)

PR
V V,G(z) = 2


z

1� z
+

1� z

z
+ z(1� z)

�
(2.36)

PR
HH,G(z) =

2z

1� z
, (2.37)

PR
VH,G(z) = PR

HH,G(1� z) , (2.38)

PR
HV,G(z) = z(1� z) . (2.39)

The factor of 1/2 in PfV has to be included since we are considering fermions with definite

chirality. For the Yukawa interaction (Y ), one obtains

PR
ff,Y (z) =

1� z

2
, (2.40)

PR
Hf,Y (z) = PR

ff,Y (1� z) , (2.41)

PR
fH,Y (z) =

1

2
. (2.42)
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as well as a partial Sudakov factor for each interaction

�i,I(q) = exp

Z q

q0

dq0

q0
↵I(q0)

⇡
P V
i,I(q

0)

�
, (2.29)

where q
0

is an arbitrary cuto↵, which for convenience we set equal to mV . This allows us

to write 
�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.30)

where again the notation [. . .]I implies that only terms from the interaction I are kept.

This gives

�i(q) q
@

@q


fi(x, q)

�i(q)

�
=

X

I


�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
X

I

↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.31)

where

PR
ij,I ⌦ fj ⌘

Z zij,Imax(q)

x
dz PR

ij,I(z)fj(x/z, q) . (2.32)

2.3 Splitting functions

The splitting functions depend only on the type of particles, which for the Standard Model

are the spin 1/2 fermions, denoted by f , spin 1 gauge bosons, denoted by V , as well as

spin 0 Higgs bosons, denoted by H.

Denoting the three gauge interactions of the Standard Model collectively by I = G,

the splitting functions involving gauge bosons are given by

PR
ff,G(z) =

1 + z2

1� z
, (2.33)

PR
V f,G(z) = Pff,G(1� z) , (2.34)

PR
fV,G(z) =

1

2

⇥
z2 + (1� z)2

⇤
, (2.35)

PR
V V,G(z) = 2


z

1� z
+

1� z

z
+ z(1� z)

�
(2.36)

PR
HH,G(z) =

2z

1� z
, (2.37)

PR
VH,G(z) = PR

HH,G(1� z) , (2.38)

PR
HV,G(z) = z(1� z) . (2.39)

The factor of 1/2 in PfV has to be included since we are considering fermions with definite

chirality. For the Yukawa interaction (Y ), one obtains

PR
ff,Y (z) =

1� z

2
, (2.40)

PR
Hf,Y (z) = PR

ff,Y (1� z) , (2.41)

PR
fH,Y (z) =

1

2
. (2.42)
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as well as a partial Sudakov factor for each interaction

�i,I(q) = exp

Z q

q0

dq0

q0
↵I(q0)

⇡
P V
i,I(q

0)

�
, (2.29)

where q
0

is an arbitrary cuto↵, which for convenience we set equal to mV . This allows us

to write 
�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.30)

where again the notation [. . .]I implies that only terms from the interaction I are kept.

This gives

�i(q) q
@

@q


fi(x, q)

�i(q)

�
=

X

I


�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
X

I

↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.31)

where

PR
ij,I ⌦ fj ⌘

Z zij,Imax(q)

x
dz PR

ij,I(z)fj(x/z, q) . (2.32)

2.3 Splitting functions

The splitting functions depend only on the type of particles, which for the Standard Model

are the spin 1/2 fermions, denoted by f , spin 1 gauge bosons, denoted by V , as well as

spin 0 Higgs bosons, denoted by H.

Denoting the three gauge interactions of the Standard Model collectively by I = G,

the splitting functions involving gauge bosons are given by

PR
ff,G(z) =

1 + z2

1� z
, (2.33)

PR
V f,G(z) = Pff,G(1� z) , (2.34)

PR
fV,G(z) =

1

2

⇥
z2 + (1� z)2

⇤
, (2.35)

PR
V V,G(z) = 2


z

1� z
+

1� z

z
+ z(1� z)

�
(2.36)

PR
HH,G(z) =

2z

1� z
, (2.37)

PR
VH,G(z) = PR

HH,G(1� z) , (2.38)

PR
HV,G(z) = z(1� z) . (2.39)

The factor of 1/2 in PfV has to be included since we are considering fermions with definite

chirality. For the Yukawa interaction (Y ), one obtains

PR
ff,Y (z) =

1� z

2
, (2.40)

PR
Hf,Y (z) = PR

ff,Y (1� z) , (2.41)

PR
fH,Y (z) =

1

2
. (2.42)
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Can define a Sudakov factor by exponentiating virtual piece

Allows to write a slightly simpler form of the DGLAP equation

There	most	general	form	of	the	DGLAP	equa@on	has	a	very	
simple	form

29

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H� are included. The relationship

to the 4 Higgs fields in the unbroken basis to the physical Higgs and the longitudinal gauge

bosons is as follows: The H± PDFs correspond to those of the longitudinally polarized

W±. In the notation of Ref. [8], the neutral Higgs fields are

H0 =
(h� iZL)p

2
, H̄0 =

(h+ iZL)p
2

, (2.8)

where h and ZL represent the Higgs and the longitudinal Z0 fields, respectively. The

corresponding PDFs are

fH0 =
1

2
[fh + fZL

+ i (fhZL
� fZLh)] , (2.9)

f
¯H0 =

1

2
[fh + fZL

� i (fhZL
� fZLh)] , (2.10)

and one can also define the mixed PDFs

fH0
¯H0 =

1

2
[fh � fZL

� i (fhZL
+ fZLh)] , (2.11)

f
¯H0H0 =

1

2
[fh � fZL

+ i (fhZL
+ fZLh)] . (2.12)

Both of these mixed PDF carry non-zero hypercharge, such that they are not produced by

the DGLAP evolution in the unbroken gauge theory as considered in this paper3. Thus,

one immediately finds

fh � fZL
= fhZL

+ fZLh = 0 , (2.13)

and

fh = fZL
=

1

2
(fH0 + f

¯H0) , fhZL
= �fZLh = � i

2
(fH0 � f

¯H0) . (2.14)

In summary, there are a total of 52 parton distribution functions that need to be

considered. Apart from the QCD quark and gluon distributions and the electroweak PDFs

(2.6), all the other SM PDFs are set to zero at scale q
0

= mV and evolve according to the

generalized DGLAP equations presented below.

2.2 General evolution equations

We consider the x-weighted PDFs of parton species i at momentum fraction x and scale q,

fi(x, q). In general they satisfy evolution equations of the following forms:

q
@

@q
fi(x, q) =

X

I

↵I(q)

⇡

2

4P V
i,I(q) fi(x, q) +

X

j

Cij,I

Z zij,Imax(q)

x
dz PR

ij,I(z)fj(x/z, q)

3

5

⌘
X

I


q
@

@q
fi(x, q)

�

I

. (2.15)

3They are only produced through insertions of the Higgs vacuum
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as well as a partial Sudakov factor for each interaction

�i,I(q) = exp

Z q

q0

dq0

q0
↵I(q0)

⇡
P V
i,I(q

0)

�
, (2.29)

where q
0

is an arbitrary cuto↵, which for convenience we set equal to mV . This allows us

to write 
�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.30)

where again the notation [. . .]I implies that only terms from the interaction I are kept.

This gives

�i(q) q
@

@q


fi(x, q)

�i(q)

�
=

X

I


�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
X

I

↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.31)

where

PR
ij,I ⌦ fj ⌘

Z zij,Imax(q)

x
dz PR

ij,I(z)fj(x/z, q) . (2.32)

2.3 Splitting functions

The splitting functions depend only on the type of particles, which for the Standard Model

are the spin 1/2 fermions, denoted by f , spin 1 gauge bosons, denoted by V , as well as

spin 0 Higgs bosons, denoted by H.

Denoting the three gauge interactions of the Standard Model collectively by I = G,

the splitting functions involving gauge bosons are given by

PR
ff,G(z) =

1 + z2

1� z
, (2.33)

PR
V f,G(z) = Pff,G(1� z) , (2.34)

PR
fV,G(z) =

1

2

⇥
z2 + (1� z)2

⇤
, (2.35)

PR
V V,G(z) = 2


z

1� z
+

1� z

z
+ z(1� z)

�
(2.36)

PR
HH,G(z) =

2z

1� z
, (2.37)

PR
VH,G(z) = PR

HH,G(1� z) , (2.38)

PR
HV,G(z) = z(1� z) . (2.39)

The factor of 1/2 in PfV has to be included since we are considering fermions with definite

chirality. For the Yukawa interaction (Y ), one obtains

PR
ff,Y (z) =

1� z

2
, (2.40)

PR
Hf,Y (z) = PR

ff,Y (1� z) , (2.41)

PR
fH,Y (z) =

1

2
. (2.42)

– 9 –

as well as a partial Sudakov factor for each interaction

�i,I(q) = exp

Z q

q0

dq0

q0
↵I(q0)

⇡
P V
i,I(q

0)

�
, (2.29)

where q
0

is an arbitrary cuto↵, which for convenience we set equal to mV . This allows us

to write 
�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.30)

where again the notation [. . .]I implies that only terms from the interaction I are kept.

This gives

�i(q) q
@

@q


fi(x, q)

�i(q)

�
=

X

I


�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
X

I

↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.31)

where

PR
ij,I ⌦ fj ⌘

Z zij,Imax(q)

x
dz PR

ij,I(z)fj(x/z, q) . (2.32)

2.3 Splitting functions

The splitting functions depend only on the type of particles, which for the Standard Model

are the spin 1/2 fermions, denoted by f , spin 1 gauge bosons, denoted by V , as well as

spin 0 Higgs bosons, denoted by H.

Denoting the three gauge interactions of the Standard Model collectively by I = G,

the splitting functions involving gauge bosons are given by

PR
ff,G(z) =

1 + z2

1� z
, (2.33)

PR
V f,G(z) = Pff,G(1� z) , (2.34)

PR
fV,G(z) =

1

2

⇥
z2 + (1� z)2

⇤
, (2.35)

PR
V V,G(z) = 2


z

1� z
+

1� z

z
+ z(1� z)

�
(2.36)

PR
HH,G(z) =

2z

1� z
, (2.37)

PR
VH,G(z) = PR

HH,G(1� z) , (2.38)

PR
HV,G(z) = z(1� z) . (2.39)

The factor of 1/2 in PfV has to be included since we are considering fermions with definite

chirality. For the Yukawa interaction (Y ), one obtains

PR
ff,Y (z) =

1� z

2
, (2.40)

PR
Hf,Y (z) = PR

ff,Y (1� z) , (2.41)

PR
fH,Y (z) =

1

2
. (2.42)
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as well as a partial Sudakov factor for each interaction

�i,I(q) = exp

Z q

q0

dq0

q0
↵I(q0)

⇡
P V
i,I(q

0)

�
, (2.29)

where q
0

is an arbitrary cuto↵, which for convenience we set equal to mV . This allows us

to write 
�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.30)

where again the notation [. . .]I implies that only terms from the interaction I are kept.

This gives

�i(q) q
@

@q


fi(x, q)

�i(q)

�
=

X

I


�i,I(q) q

@

@q

fi(x, q)

�i,I(q)

�

I

=
X

I

↵I(q)

⇡

X

j

Cij,IP
R
ij,I ⌦ fj , (2.31)

where

PR
ij,I ⌦ fj ⌘

Z zij,Imax(q)

x
dz PR

ij,I(z)fj(x/z, q) . (2.32)

2.3 Splitting functions

The splitting functions depend only on the type of particles, which for the Standard Model

are the spin 1/2 fermions, denoted by f , spin 1 gauge bosons, denoted by V , as well as

spin 0 Higgs bosons, denoted by H.

Denoting the three gauge interactions of the Standard Model collectively by I = G,

the splitting functions involving gauge bosons are given by

PR
ff,G(z) =

1 + z2

1� z
, (2.33)

PR
V f,G(z) = Pff,G(1� z) , (2.34)

PR
fV,G(z) =

1

2

⇥
z2 + (1� z)2

⇤
, (2.35)

PR
V V,G(z) = 2


z

1� z
+

1� z

z
+ z(1� z)

�
(2.36)

PR
HH,G(z) =

2z

1� z
, (2.37)

PR
VH,G(z) = PR

HH,G(1� z) , (2.38)

PR
HV,G(z) = z(1� z) . (2.39)

The factor of 1/2 in PfV has to be included since we are considering fermions with definite

chirality. For the Yukawa interaction (Y ), one obtains

PR
ff,Y (z) =

1� z

2
, (2.40)

PR
Hf,Y (z) = PR

ff,Y (1� z) , (2.41)

PR
fH,Y (z) =

1

2
. (2.42)
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Can define a Sudakov factor by exponentiating virtual piece

Allows to write a slightly simpler form of the DGLAP equation

(I = 1, 2, 3, . . .)

zij,I
max

= 1� µ/q µ = O(mV ) j ! iV
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Before	I	show	results,	let	me	give	the	complete	evolu@on	of	
quark	pdf	as	an	example

33

2.5 I = 3: SU(3) interactions

We start by considering the well known case of SU(3) interactions. The relevant degrees

of freedom are the gluon, as well as left and right-handed quarks. The coupling constants

are

Cqq,3 = Cgq,3 = CF , Cqg,3 = TR , Cgg,3 = CA . (2.34)

This gives for the evolution of a quark or gluon4


�q,3 q

@

@q

fq
�q,3

�

3

=
↵
3

⇡

⇥
CFP

R
ff,G ⌦ fq + TRP

R
fV,G ⌦ fg

⇤
, (2.35)


�g,3 q

@

@q

fg
�g,3

�

3

=
↵
3

⇡

2

4CAP
R
V V,G ⌦ fg +

X

f

CFP
R
V f,G ⌦ fq

3

5 . (2.36)

The Sudakov factor can be obtained from Eq. (2.13) using the coupling constants in

Eq. (2.34). This gives

P V
q,3(q) = �CF

Z
1

0

z dz
⇥
PR
ff,G(z) + PR

V f,G(z)
⇤

P V
g,3(q) = �

Z
1

0

z dz
⇥
CA PR

V V,G(z) + 8ng TR PR
fV,G(z)

⇤
, (2.37)

where we have used in the last line that there are 8 chiral quarks plus antiquarks per

generation.

Since the gluon is massless, the upper limit in all the z integration is equal to 1 [see

Eq. (3.13)]. This imples that the convolutions PR
ff,G⌦fq and PR

V V,G⌦fg in Eqs. (2.35) and

(2.36) are both divergent. However, at the same time the virtual splitting functions that

enters the Sudakov factors �q,3(q) and �g,3(q) defined in Eq. (3.9) are also divergent, such

that the divergences cancel in the evolution of the actual PDFs. Using +-distributions, as

explained in Section 3, one obtains evolution equations that are free of any divergences, and

which can be implemented numerically. Alternatively, for parton shower implementation,

one can impose a cuto↵ of the form Eq. (3.13) with mV replaced by a small parameter

mg > ⇤
QCD

.

2.6 I = 1: U(1) interactions

For U(1) the relevant degrees of freedom are left and right-handed fermions (denoted by

the label f), as well as the U(1) gauge boson B. The couplings involving fermions and

gauge bosons are

Cff,1 = CBf,1 = Y 2

f , CfB,1 = Nf Y
2

f , CBB,1 = 0 (2.38)

where the hypercharges of the di↵erent fermions are given by

YqL =
1

6
, YuR =

2

3
, YdR = �1

3
, Y`L = �1

2
, YeR = �1 , (2.39)

4From now on we omit the arguments of functions for brevity.
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and the color factor Nf is equal to 3 for quarks and 1 for leptons. The couplings involving

the Higgs bosons are

Chh,1 = CBh,1 = ChB,1 =
1

4
, (2.40)

where h here stands for any of the 4 Higgs bosons.

Plugging this into the general evolution equation gives

�f,1 q

@

@q

ff
�f,1

�

1

=
↵
1

⇡
Y 2

i

⇥
PR
ff,G ⌦ ff +NfP

R
fV,G ⌦ fB

⇤
, (2.41)


�B,1 q

@

@q

fB
�B,1

�

1

=
↵
1

⇡

2

4
X

f

Y 2

f P
R
V f,G ⌦ ff +

1

4

X

h

PR
VH,G ⌦ fh

3

5 , (2.42)


�H,1 q

@

@q

fh
�h,1

�

1

=
↵
1

⇡

1

4

⇥
PR
HH,G ⌦ fh + PR

HV,G ⌦ fB
⇤
. (2.43)

The virtual splitting functions, required for the Sudakov factor are given by

P V
f,1(q) = �Y 2

f

"Z
1�mV

q

0

z dz PR
ff,G(z) +

Z
1

0

z dz PR
V f,G(z)

#

P V
B,1(q) = �ng

✓
11

9
NC + 3

◆Z
1

0

z dz PR
fV,G(z)�

Z
1

0

z dz PR
HV,G(z)

P V
H,1(q) = �1

4

"Z
1�mV

q

0

z dz PR
HH,G(z) +

Z
1

0

z dz PR
VH,G(z)

#
, (2.44)

where we have used in the second line that for each generation there are 4 left-handed quarks

(one needs to count particles and antiparticles separately), 2 right-handed up-type quarks,

2 right-handed down-type quarks, 4 left-handed leptons and 2 right-handed electrons, and

that there are a total of 4 Higgs bosons.

2.7 I = 2: SU(2) interactions

The SU(2) interactions are more complicated, since the emission of W± bosons changes

the flavor of the emitting particle. This, combined with the SU(2) breaking in the input

hadron PDFs, leads to double logarithmic dependence in the DGLAP evolution, rather

than only single logarithmic dependence as in the evolution based on U(1) and SU(3).

The relevant coupling constants are (where u and d denote any up- and down-type

fermion, and Wi any of the SU(2) gauge bosons)

Cud,2 = Cdu,2 = CW±f,2 =
1

2
,

Cuu,2 = CW 3u,2 = Cdd,2 = CW 3d,2 =
1

4
,

CfW±,2 = Nf
1

2
,

CuW 3,2 = CdW 3,2 = Nf
1

4
,

CWiWj ,2 = 1 , (2.45)
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where as before the color factor Nf = 3 for quarks, 1 for leptons. The couplings of the W 3

state to the Higgs are given by

Chuhu,2 = CW 3hu,2 = ChuW 3,2 = Chdhd,2 = CW 3hd,2 = �ChdW 3,2 =
1

4
, (2.46)

while those of the charged W states to the Higgs are given by

CH+H0,2 = CH0H+,2 = CH+W+,2 = CH�
¯H0,2 = C

¯H0H�,2 = CH�W�,2 =
1

2
(2.47)

This gives for the evolution of the fermions

�fL,2 q

@

@q

fuL

�fL,2

�

2

=
↵
2

⇡

⇢
PR
ff,G ⌦


fdL
2

+
fuL

4

�

+NfPfV,G ⌦

fW+

2
+

fW 3

4

��
(2.48)


�fL,2 q

@

@q

fdL
�fL,2

�

2

=
↵
2

⇡

⇢
PR
ff,G ⌦


fuL

2
+

fdL
4

�

+NfPfV,G ⌦

fW�

2
+

fW 3

4

��
, (2.49)

where uL and dL stand for left-handed up and down-type fermions and as always Nf = 3

for quarks and 1 for leptons.

For the W+ and W 3 bosons we have

�W,2 q

@

@q

fW+

�W,2

�

2

=
↵
2

⇡

⇢
PR
V V,G ⌦ [fW+ + fW 3 ] +

1

2
PR
VH,G ⌦ [fH+ + f

¯H0 ]

+
X

gen

1

2
PfV,G ⌦ ⇥

fuL + f
¯dL

+ f⌫L + f
¯`L

⇤�
(2.50)


�W,2 q

@

@q

fW 3

�W,2

�

2

=
↵
2

⇡

⇢
PR
V V,G ⌦ [fW+ + fW� ] +

1

4
PR
VH,G ⌦

X

h

fh

+
1

4

X

fL

PR
fV,G ⌦ ffL

�
, (2.51)

and the equation for the W� can be obtained from that of the W+ by taking anti-particles

everywhere. The sum over j in the last line is over all left-handed fermions.

Finally, for the Higgs boson we have

�hu,2 q

@

@q

fhu

�h,2

�

2

=
↵
2

⇡

⇢
PR
HH,G ⌦


fhd

2
+

fhu

4

�

+PHV,G ⌦

fW+

2
+

fW 3

4

��
(2.52)


�hd,2 q

@

@q

fH0

�H0,2

�

2

=
↵
2

⇡

⇢
PR
HH,G ⌦


fhu

2
+

fhd

4

�

+PHV,G ⌦

fW�

2
+

fW 3

4

��
. (2.53)
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The virtual splitting functions are

P V
f,2(q) = �3

4

"Z
1�mV

q

0

z dz PR
ff,G(z) +

Z
1

0

z dz PR
V f,G(z)

#

P V
W,2(q) = �2

Z
1�mV

q

0

z dz PR
V V,G(z)� ng(NC + 1)

Z
1

0

z dz PR
fV,G(z)�

Z
1

0

z dz PR
HV,G(z)

P V
H,2(q) = �3

4

"Z
1�mV

q

0

z dz PR
HH,G(z) +

Z
1

0

z dz PR
VH,G(z)

#
, (2.54)

from which the Sudakov factor can be constructed using Eq. (3.9).

An important aspect of the SU(2) evolution equations is that, contrary to the other

gauge groups, the dependence on the ratio mV /q does not cancel between the real and

virtual splitting functions. As an example, consider the evolution equation for an up-type

fermion, given on the first line of Eq. (2.48), with the virtual contribution given by the

first line of Eq. (2.54). The sum of the contributions of real and virtual splitting functions

is given by

↵
2

⇡

Z
1�mV

q

0

dz
1

4
PR
ff,G(z) [2 fdL(x/z) + fuL(x/z)� 3 fuL(x)] . (2.55)

Thus, the SU(2) breaking in the proton, which renders fu(z) 6= fd(z), gives rise to a

logarithmic dependence on mv/q, which leads to a double logarithmic dependence upon

the integration over q. As we will see later, the e↵ect of this double logaritmic dependence

is to double logarithmically suppress the SU(2) breaking e↵ects at large energies.

2.8 I = Y : Yukawa interactions

The interaction of Higgs particles with fermions is described by the Yukawa interactions.

In this work we only keep the top Yukawa coupling, setting all others to zero. This gives

the following couplings

Cq3LtR,Y = CH0tR,Y = CH+tR,Y = CtRq3L,T
= C

¯H0tL,Y
= CH�bL,Y = 1 , (2.56)

where q3L denotes either the left-handed top or bottom quark. We furthermore need

CtRH0,Y = CtRH+,Y = CtL ¯H0,Y = CbLH�,Y = NC . (2.57)

This gives contributions to the top quark PDF, as well as the left-handed bottom PDF

"
�q3L,Y

q
@

@q

ftL
�q3L,Y

#

Y

=
↵Y

⇡

⇢
PR
ff,Y ⌦ ftR +NCPfH,Y ⌦ f

¯H0

�


�tR,Y q

@

@q

ftR
�tR,Y

�

Y

=
↵Y

⇡

⇢
PR
ff,Y ⌦ [ftL + fbL ] +NCPfH ⌦ [fH0 + fH+ ]

�

"
�q3L,Y

q
@

@q

fbL
�q3L,Y

#

Y

=
↵Y

⇡

⇢
PR
ff,Y ⌦ ftR +NCPfH,Y ⌦ fH�

�
(2.58)
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It also contributes to the evolution of the Higgs bosons

�H,Y q

@

@q

fH+

�H,Y

�

Y

=
↵Y

⇡
PR
Hf,Y ⌦ ⇥

ftR + f
¯bL

⇤


�H,Y q

@

@q

fH0

�H0,Y

�

Y

=
↵Y

⇡
PR
Hf,Y ⌦ ⇥

ftR + f
¯tL

⇤
. (2.59)

The Sudakov factors can be obtained using Eq. (3.9) with

P V
q3L,Y

(q) =
1

2
P V
tR,Y (q) = �

Z
1

0

z dz PR
ff,Y (z)�

Z
1

0

z dz PR
Hf,Y (z)

P V
H,Y (q) = �2NC

Z
1

0

z dz PR
fH,Y (z) . (2.60)

2.9 I = M : Mixed B �W
3

interactions

Finally, we need to consider the evolution involving the mixed BW boson. The non-

vanishing couplings are

CBWfu,M = �CBWfd,M =
Yf
2

,

CfuBW,M = �CfdBW,M = Nf
Yf
2

. (2.61)

The diagonal coe�cients Cfufu,M and Cfdfd,M are zero because there is no vector boson

with both U(1) and SU(2) interactions. For the same reason, there are no Sudakov factors

associated with the mixed interaction. The couplings involving the Higgs bosons are

CBWhu,M = ChuBW,M = �CBWhd,M = �ChdBW,M =
1

4
. (2.62)

Plugging these into the general evolution equation gives the equations

q
@

@q
ffu

�

M

=
↵M

⇡

Yf
2
NfP

R
fV,G ⌦ fBW , (2.63)


q
@

@q
ffd

�

M

= �↵M

⇡

Yf
2
NfP

R
fV,G ⌦ fBW , (2.64)


�BW q

@

@q

fBW

�BW

�

M

=
↵M

⇡

⇥X

fu

Yf
2
PR
V f,G ⌦ ffu �

X

fd

Yf
2
PR
V f,G ⌦ ffd

+
1

4

X

hu

PR
VH,G ⌦ fhu � 1

4

X

hd

PR
VH,G ⌦ fhd

⇤
, (2.65)


q
@

@q
fhu

�

M

=
↵M

⇡

1

4
PR
HV,G ⌦ fBW , (2.66)


q
@

@q
fhd

�

M

= �↵M

⇡

1

4
PR
HV,G ⌦ fBW , (2.67)

where fu are the up-type left-handed fermions and antifermions, that is uL, ⌫L, ūL, ⌫̄L
for all generations, fd are the down-type left-handed fermions and antifermions, that is
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U(1):

SU(2):

SU(3):

Yukawa:

Mixed:

Before	I	show	results,	let	me	give	the	complete	evolu@on	of	
quark	pdf	as	an	example
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2.5 I = 3: SU(3) interactions

We start by considering the well known case of SU(3) interactions. The relevant degrees

of freedom are the gluon, as well as left and right-handed quarks. The coupling constants

are

Cqq,3 = Cgq,3 = CF , Cqg,3 = TR , Cgg,3 = CA . (2.34)

This gives for the evolution of a quark or gluon4


�q,3 q

@

@q

fq
�q,3

�

3

=
↵
3

⇡

⇥
CFP

R
ff,G ⌦ fq + TRP

R
fV,G ⌦ fg

⇤
, (2.35)


�g,3 q

@

@q

fg
�g,3

�

3

=
↵
3

⇡

2

4CAP
R
V V,G ⌦ fg +

X

f

CFP
R
V f,G ⌦ fq

3

5 . (2.36)

The Sudakov factor can be obtained from Eq. (2.13) using the coupling constants in

Eq. (2.34). This gives

P V
q,3(q) = �CF

Z
1

0

z dz
⇥
PR
ff,G(z) + PR

V f,G(z)
⇤

P V
g,3(q) = �

Z
1

0

z dz
⇥
CA PR

V V,G(z) + 8ng TR PR
fV,G(z)

⇤
, (2.37)

where we have used in the last line that there are 8 chiral quarks plus antiquarks per

generation.

Since the gluon is massless, the upper limit in all the z integration is equal to 1 [see

Eq. (3.13)]. This imples that the convolutions PR
ff,G⌦fq and PR

V V,G⌦fg in Eqs. (2.35) and

(2.36) are both divergent. However, at the same time the virtual splitting functions that

enters the Sudakov factors �q,3(q) and �g,3(q) defined in Eq. (3.9) are also divergent, such

that the divergences cancel in the evolution of the actual PDFs. Using +-distributions, as

explained in Section 3, one obtains evolution equations that are free of any divergences, and

which can be implemented numerically. Alternatively, for parton shower implementation,

one can impose a cuto↵ of the form Eq. (3.13) with mV replaced by a small parameter

mg > ⇤
QCD

.

2.6 I = 1: U(1) interactions

For U(1) the relevant degrees of freedom are left and right-handed fermions (denoted by

the label f), as well as the U(1) gauge boson B. The couplings involving fermions and

gauge bosons are

Cff,1 = CBf,1 = Y 2

f , CfB,1 = Nf Y
2

f , CBB,1 = 0 (2.38)

where the hypercharges of the di↵erent fermions are given by

YqL =
1

6
, YuR =

2

3
, YdR = �1

3
, Y`L = �1

2
, YeR = �1 , (2.39)

4From now on we omit the arguments of functions for brevity.
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and the color factor Nf is equal to 3 for quarks and 1 for leptons. The couplings involving

the Higgs bosons are

Chh,1 = CBh,1 = ChB,1 =
1

4
, (2.40)

where h here stands for any of the 4 Higgs bosons.

Plugging this into the general evolution equation gives

�f,1 q

@

@q

ff
�f,1

�

1

=
↵
1

⇡
Y 2

i

⇥
PR
ff,G ⌦ ff +NfP

R
fV,G ⌦ fB

⇤
, (2.41)


�B,1 q

@

@q

fB
�B,1

�

1

=
↵
1

⇡

2

4
X

f

Y 2

f P
R
V f,G ⌦ ff +

1

4

X

h

PR
VH,G ⌦ fh

3

5 , (2.42)


�H,1 q

@

@q

fh
�h,1

�

1

=
↵
1

⇡

1

4

⇥
PR
HH,G ⌦ fh + PR

HV,G ⌦ fB
⇤
. (2.43)

The virtual splitting functions, required for the Sudakov factor are given by

P V
f,1(q) = �Y 2

f

"Z
1�mV

q

0

z dz PR
ff,G(z) +

Z
1

0

z dz PR
V f,G(z)

#

P V
B,1(q) = �ng

✓
11

9
NC + 3

◆Z
1

0

z dz PR
fV,G(z)�

Z
1

0

z dz PR
HV,G(z)

P V
H,1(q) = �1

4

"Z
1�mV

q

0

z dz PR
HH,G(z) +

Z
1

0

z dz PR
VH,G(z)

#
, (2.44)

where we have used in the second line that for each generation there are 4 left-handed quarks

(one needs to count particles and antiparticles separately), 2 right-handed up-type quarks,

2 right-handed down-type quarks, 4 left-handed leptons and 2 right-handed electrons, and

that there are a total of 4 Higgs bosons.

2.7 I = 2: SU(2) interactions

The SU(2) interactions are more complicated, since the emission of W± bosons changes

the flavor of the emitting particle. This, combined with the SU(2) breaking in the input

hadron PDFs, leads to double logarithmic dependence in the DGLAP evolution, rather

than only single logarithmic dependence as in the evolution based on U(1) and SU(3).

The relevant coupling constants are (where u and d denote any up- and down-type

fermion, and Wi any of the SU(2) gauge bosons)

Cud,2 = Cdu,2 = CW±f,2 =
1

2
,

Cuu,2 = CW 3u,2 = Cdd,2 = CW 3d,2 =
1

4
,

CfW±,2 = Nf
1

2
,

CuW 3,2 = CdW 3,2 = Nf
1

4
,

CWiWj ,2 = 1 , (2.45)
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where as before the color factor Nf = 3 for quarks, 1 for leptons. The couplings of the W 3

state to the Higgs are given by

Chuhu,2 = CW 3hu,2 = ChuW 3,2 = Chdhd,2 = CW 3hd,2 = �ChdW 3,2 =
1

4
, (2.46)

while those of the charged W states to the Higgs are given by

CH+H0,2 = CH0H+,2 = CH+W+,2 = CH�
¯H0,2 = C

¯H0H�,2 = CH�W�,2 =
1

2
(2.47)

This gives for the evolution of the fermions

�fL,2 q

@

@q

fuL

�fL,2

�

2

=
↵
2

⇡

⇢
PR
ff,G ⌦


fdL
2

+
fuL

4

�

+NfPfV,G ⌦

fW+

2
+

fW 3

4

��
(2.48)


�fL,2 q

@

@q

fdL
�fL,2

�

2

=
↵
2

⇡

⇢
PR
ff,G ⌦


fuL

2
+

fdL
4

�

+NfPfV,G ⌦

fW�

2
+

fW 3

4

��
, (2.49)

where uL and dL stand for left-handed up and down-type fermions and as always Nf = 3

for quarks and 1 for leptons.

For the W+ and W 3 bosons we have

�W,2 q

@

@q

fW+

�W,2

�

2

=
↵
2

⇡

⇢
PR
V V,G ⌦ [fW+ + fW 3 ] +

1

2
PR
VH,G ⌦ [fH+ + f

¯H0 ]

+
X

gen

1

2
PfV,G ⌦ ⇥

fuL + f
¯dL

+ f⌫L + f
¯`L

⇤�
(2.50)


�W,2 q

@

@q

fW 3

�W,2

�

2

=
↵
2

⇡

⇢
PR
V V,G ⌦ [fW+ + fW� ] +

1

4
PR
VH,G ⌦

X

h

fh

+
1

4

X

fL

PR
fV,G ⌦ ffL

�
, (2.51)

and the equation for the W� can be obtained from that of the W+ by taking anti-particles

everywhere. The sum over j in the last line is over all left-handed fermions.

Finally, for the Higgs boson we have

�hu,2 q

@

@q

fhu

�h,2

�

2

=
↵
2

⇡

⇢
PR
HH,G ⌦


fhd

2
+

fhu

4

�

+PHV,G ⌦

fW+

2
+

fW 3

4

��
(2.52)


�hd,2 q

@

@q

fH0

�H0,2

�

2

=
↵
2

⇡

⇢
PR
HH,G ⌦


fhu

2
+

fhd

4

�

+PHV,G ⌦

fW�

2
+

fW 3

4

��
. (2.53)
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The virtual splitting functions are

P V
f,2(q) = �3

4

"Z
1�mV

q

0

z dz PR
ff,G(z) +

Z
1

0

z dz PR
V f,G(z)

#

P V
W,2(q) = �2

Z
1�mV

q

0

z dz PR
V V,G(z)� ng(NC + 1)

Z
1

0

z dz PR
fV,G(z)�

Z
1

0

z dz PR
HV,G(z)

P V
H,2(q) = �3

4

"Z
1�mV

q

0

z dz PR
HH,G(z) +

Z
1

0

z dz PR
VH,G(z)

#
, (2.54)

from which the Sudakov factor can be constructed using Eq. (3.9).

An important aspect of the SU(2) evolution equations is that, contrary to the other

gauge groups, the dependence on the ratio mV /q does not cancel between the real and

virtual splitting functions. As an example, consider the evolution equation for an up-type

fermion, given on the first line of Eq. (2.48), with the virtual contribution given by the

first line of Eq. (2.54). The sum of the contributions of real and virtual splitting functions

is given by

↵
2

⇡

Z
1�mV

q

0

dz
1

4
PR
ff,G(z) [2 fdL(x/z) + fuL(x/z)� 3 fuL(x)] . (2.55)

Thus, the SU(2) breaking in the proton, which renders fu(z) 6= fd(z), gives rise to a

logarithmic dependence on mv/q, which leads to a double logarithmic dependence upon

the integration over q. As we will see later, the e↵ect of this double logaritmic dependence

is to double logarithmically suppress the SU(2) breaking e↵ects at large energies.

2.8 I = Y : Yukawa interactions

The interaction of Higgs particles with fermions is described by the Yukawa interactions.

In this work we only keep the top Yukawa coupling, setting all others to zero. This gives

the following couplings

Cq3LtR,Y = CH0tR,Y = CH+tR,Y = CtRq3L,T
= C

¯H0tL,Y
= CH�bL,Y = 1 , (2.56)

where q3L denotes either the left-handed top or bottom quark. We furthermore need

CtRH0,Y = CtRH+,Y = CtL ¯H0,Y = CbLH�,Y = NC . (2.57)

This gives contributions to the top quark PDF, as well as the left-handed bottom PDF

"
�q3L,Y

q
@

@q

ftL
�q3L,Y

#

Y

=
↵Y

⇡

⇢
PR
ff,Y ⌦ ftR +NCPfH,Y ⌦ f

¯H0

�


�tR,Y q

@

@q

ftR
�tR,Y

�

Y

=
↵Y

⇡

⇢
PR
ff,Y ⌦ [ftL + fbL ] +NCPfH ⌦ [fH0 + fH+ ]

�

"
�q3L,Y

q
@

@q

fbL
�q3L,Y

#

Y

=
↵Y

⇡

⇢
PR
ff,Y ⌦ ftR +NCPfH,Y ⌦ fH�

�
(2.58)
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It also contributes to the evolution of the Higgs bosons

�H,Y q

@

@q

fH+

�H,Y

�

Y

=
↵Y

⇡
PR
Hf,Y ⌦ ⇥

ftR + f
¯bL

⇤


�H,Y q

@

@q

fH0

�H0,Y

�

Y

=
↵Y

⇡
PR
Hf,Y ⌦ ⇥

ftR + f
¯tL

⇤
. (2.59)

The Sudakov factors can be obtained using Eq. (3.9) with

P V
q3L,Y

(q) =
1

2
P V
tR,Y (q) = �

Z
1

0

z dz PR
ff,Y (z)�

Z
1

0

z dz PR
Hf,Y (z)

P V
H,Y (q) = �2NC

Z
1

0

z dz PR
fH,Y (z) . (2.60)

2.9 I = M : Mixed B �W
3

interactions

Finally, we need to consider the evolution involving the mixed BW boson. The non-

vanishing couplings are

CBWfu,M = �CBWfd,M =
Yf
2

,

CfuBW,M = �CfdBW,M = Nf
Yf
2

. (2.61)

The diagonal coe�cients Cfufu,M and Cfdfd,M are zero because there is no vector boson

with both U(1) and SU(2) interactions. For the same reason, there are no Sudakov factors

associated with the mixed interaction. The couplings involving the Higgs bosons are

CBWhu,M = ChuBW,M = �CBWhd,M = �ChdBW,M =
1

4
. (2.62)

Plugging these into the general evolution equation gives the equations

q
@

@q
ffu

�

M

=
↵M

⇡

Yf
2
NfP

R
fV,G ⌦ fBW , (2.63)


q
@

@q
ffd

�

M

= �↵M

⇡

Yf
2
NfP

R
fV,G ⌦ fBW , (2.64)


�BW q

@

@q

fBW

�BW

�

M

=
↵M

⇡

⇥X

fu

Yf
2
PR
V f,G ⌦ ffu �

X

fd

Yf
2
PR
V f,G ⌦ ffd

+
1

4

X

hu

PR
VH,G ⌦ fhu � 1

4

X

hd

PR
VH,G ⌦ fhd

⇤
, (2.65)


q
@

@q
fhu

�

M

=
↵M

⇡

1

4
PR
HV,G ⌦ fBW , (2.66)


q
@

@q
fhd

�

M

= �↵M

⇡

1

4
PR
HV,G ⌦ fBW , (2.67)

where fu are the up-type left-handed fermions and antifermions, that is uL, ⌫L, ūL, ⌫̄L
for all generations, fd are the down-type left-handed fermions and antifermions, that is

– 13 –

U(1):

SU(2):

SU(3):

Yukawa:

Mixed:

(Nf = 3 for quarks, 1 for leptons)
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Mixed U(1)xSU(2) PDF

• Left-handed quarks have isospin and hypercharge, 
so they can generate fBW

• This means in broken basis we have fg, fZ and fgZ

20

Besides	these	“standard”	forward	pdf’s,	one	also	needs	to	
consider	non-forward,	mixed	pdf’s

27

2. The evolution of parton distributions in the full Standard model

2.1 Definition of the parton distribution functions

The standard definition of an x-weighted parton distribution is given by the matrix element

of a bi-local operator, separated along the lightcone. For fermions, one finds the standard

definition, but without spin averaging as we are separating the fermions into left and right

handed, thus each fermion has only one possible spin determined by its helicity and the

sign of its momentum.

fi(x) = x

Z
dy

2⇡
e�i 2xn̄·p y⌦p

��  ̄(i)(y) n̄/ (i)(�y)
��p
↵
, (2.1)

f
¯i(x) = x

Z
dy

2⇡
e�i 2xn̄·p y⌦p

�� (i)(y) n̄/  ̄(i)(�y)
��p
↵
. (2.2)

To include all gauge interactions of the standard model, one needs to include separate

parton distribution functions for left- and right- handed fields. This implies that for each

generation, there are a total of 8 quark PDFs and 6 lepton PDFs to consider, for a total

of 42 fermion PDFs.

Parton distributions functions of the vector bosons are given by

fV (x) =
2

n̄·p
Z
dy

2⇡
e�i 2xn̄·p y n̄µn̄

⌫
⌦
p
��V µ�(y)V�⌫(�y)

��p
↵���
spin avg.

. (2.3)

Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the

SU(2) ⌦ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into

account. For the W+ and W� boson we simply include separate PDFs for each of the two

gauge bosons. For the B and W
3

, however, one needs to be more careful to take the mixing

between these two bosons into account. This implies that besides PDFs for each of these

two particles, one needs to include a mixed PDF, which is given by

fBW (x) =
1

2

✓
2

n̄·p
Z
dy

2⇡
e�i 2xn̄·p y n̄µn̄

⌫
⌦
p
��Bµ�(y)W 3

�⌫(�y)
��p
↵���
spin avg.

+ h.c.

◆
. (2.4)

From these PDFs one can then construct the PDF for the Z, the photon and their mixed

state as a transformation of the PDF for the B, the W 3 and their mixed state. Using

A = cWB + sWW 3 and Z = �sWB + cWW 3 one finds
0

B@
f�
fZ
f�Z

1

CA =

0

B@
c2W s2W 2cW sW
s2W c2W �2cW sW

�cW sW cW sW c2W � s2W

1

CA

0

B@
fB
fW 3

fBW

1

CA . (2.5)

Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) =

Z
dy

2⇡
e�i 2xn̄·p y ⌦p

���(y)�(�y)
��p
↵
,

(2.6)

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H� are included.

In summary, there are a total of 52 parton distrbution functions that need to be

considered.
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This pdf is required to describe mixed processes with Z or 
gamma in initial state

p

p

W3 B

g

q
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q

p

p

W3 BfBW

Besides	these	“standard”	forward	pdf’s,	one	also	needs	to	
consider	non-forward,	mixed	pdf’s
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2. The evolution of parton distributions in the full Standard model

2.1 Definition of the parton distribution functions

The standard definition of an x-weighted parton distribution is given by the matrix element

of a bi-local operator, separated along the lightcone. For fermions, one finds the standard

definition, but without spin averaging as we are separating the fermions into left and right

handed, thus each fermion has only one possible spin determined by its helicity and the

sign of its momentum.

fi(x) = x

Z
dy

2⇡
e�i 2xn̄·p y⌦p

��  ̄(i)(y) n̄/ (i)(�y)
��p
↵
, (2.1)

f
¯i(x) = x

Z
dy

2⇡
e�i 2xn̄·p y⌦p

�� (i)(y) n̄/  ̄(i)(�y)
��p
↵
. (2.2)

To include all gauge interactions of the standard model, one needs to include separate

parton distribution functions for left- and right- handed fields. This implies that for each

generation, there are a total of 8 quark PDFs and 6 lepton PDFs to consider, for a total

of 42 fermion PDFs.

Parton distributions functions of the vector bosons are given by

fV (x) =
2

n̄·p
Z
dy

2⇡
e�i 2xn̄·p y n̄µn̄

⌫
⌦
p
��V µ�(y)V�⌫(�y)

��p
↵���
spin avg.

. (2.3)

Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the

SU(2) ⌦ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into

account. For the W+ and W� boson we simply include separate PDFs for each of the two

gauge bosons. For the B and W
3

, however, one needs to be more careful to take the mixing

between these two bosons into account. This implies that besides PDFs for each of these

two particles, one needs to include a mixed PDF, which is given by

fBW (x) =
1

2

✓
2

n̄·p
Z
dy

2⇡
e�i 2xn̄·p y n̄µn̄

⌫
⌦
p
��Bµ�(y)W 3

�⌫(�y)
��p
↵���
spin avg.

+ h.c.

◆
. (2.4)

From these PDFs one can then construct the PDF for the Z, the photon and their mixed

state as a transformation of the PDF for the B, the W 3 and their mixed state. Using

A = cWB + sWW 3 and Z = �sWB + cWW 3 one finds
0

B@
f�
fZ
f�Z

1

CA =

0

B@
c2W s2W 2cW sW
s2W c2W �2cW sW

�cW sW cW sW c2W � s2W

1

CA

0

B@
fB
fW 3

fBW

1

CA . (2.5)

Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) =

Z
dy

2⇡
e�i 2xn̄·p y ⌦p

���(y)�(�y)
��p
↵
,

(2.6)

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H� are included.

In summary, there are a total of 52 parton distrbution functions that need to be

considered.
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This pdf is required to describe mixed processes with Z or 
gamma in initial state

p

p

W3 B

g

q

g

q

p

p

W3 BfBW

↵M =
p
↵1↵2

right-handed. Thus, each fermion has only one possible spin determined by its helicity and

the sign of its momentum

fi(x, µ) = x

Z
dy

2⇡
e�i 2xn̄·p y⌦p

��  ̄(i)(y) n̄/ (i)(�y)
��p
↵
, (2.1)

f
¯i(x, µ) = x

Z
dy

2⇡
e�i 2xn̄·p y⌦p

�� (i)(y) n̄/  ̄(i)(�y)
��p
↵
, (2.2)

where µ is the renormalization scale. Since we have separate left- and right-handed PDFs,

for each generation there are a total of 8 quark PDFs and 6 lepton PDFs to consider, giving

a total of 42 fermion PDFs.

Parton distributions functions of the vector bosons are given by

fV (x, µ) =
2

n̄·p
Z
dy

2⇡
e�i 2xn̄·p y n̄µn̄

⌫
⌦
p
��V µ�(y)V�⌫(�y)

��p
↵���
spin avg.

. (2.3)

Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the

SU(2) ⌦ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into

account. For the W+ and W� boson we simply include separate PDFs for each of the two

gauge bosons. For the B and W
3

, however, one needs to be more careful to take the mixed

contributions of these two bosons into account. Such contributions arise from the fact that

the left-handed fermions and Higgs carry both isospin and hypercharge. This implies that

besides B and W
3

PDFs one needs to include a mixed PDF, which is given by2

fBW (x) =
2

n̄·p
Z
dy

2⇡
e�i 2xn̄·p y n̄µn̄⌫

⌦
p
��Bµ�(y)W

�⌫
3

(�y)
��p
↵���
spin avg.

+ h.c. . (2.4)

From these PDFs one can then construct the PDF for the photon, the transversely-polarized

Z0 and their mixed state as a transformation of the PDF for the B, the W
3

and their mixed

state. Using A = cWB + sWW
3

and Z0 = �sWB + cWW
3

one finds
0

B@
f�
fZ
f�Z

1

CA =

0

B@
c2W s2W cW sW
s2W c2W �cW sW

�2cW sW 2cW sW c2W � s2W

1

CA

0

B@
fB
fW3

fBW

1

CA . (2.5)

For the electroweak input at scale µ = q
0

we have f� 6= 0 and fZ = f�Z = 0, so the input

conditions at that scale are

fB = c2W f� , fW3 = s2W f� , fBW = 2cW sW f� . (2.6)

After evolving these three unbroken PDFs to a higher scale q, the physical photon and Z0

PDFs are reconstructed there using the corresponding running values of cW and sW .

Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) = x

Z
dy

2⇡
e�i 2xn̄·p y ⌦p

���(y)�(�y)
��p
↵
,

(2.7)

2Note that our definition of the mixed PDF fBW is the sum of BW3 and W3B contributions, and

similarly for the mixed PDF f�Z .
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Isospin (T) + CP PDFs

• Double logs only appear in T≠0 PDFs

21

By	studying	the	equa@ons	more	carefully,	one	finds	that	the	
double	logarithms	restore	electroweak	symmetry	breaking

36

By switching from a flavor basis to an isospin basis

f

0(x, t) =
fu(x, t) + fd(x, t)

2
f

1(x, t) =
fu(x, t)� fd(x, t)

2

f

I
(x, t) ⇠ exp


�I(I + 1)

2

↵2

⇡

ln

2 t

mV

�

States with I ≠ 0 go double 
logarithmically to zero
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�
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�
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�
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�
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�
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6
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1
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1

3
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⇠ [�i,2(q)]
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⇡
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Counting PDFs

22

19
16

8
8
1

{T,CP} fields

{0,+} 2ng ⇥ qR , ng ⇥ `R , ng ⇥ qL , ng ⇥ `L , g ,W ,B ,H

{0,�} 2ng ⇥ qR , ng ⇥ `R , ng ⇥ qL , ng ⇥ `L , H

{1,+} ng ⇥ qL , ng ⇥ `L , BW,H

{1,�} ng ⇥ qL , ng ⇥ `L ,W,H

{2,+} W

Table 1: The 52 PDFs required for the SM evolution can written in a basis with definite conserved
quantum numbers. (5ng+4) PDFs contribute to the {0,+} state, (5ng+1) to the {0,�}, (2ng+2)
to each to the {1,+} and {1,�} and 1 to the {2,+}.

The sum of momenta of all non-mixed PDFs in the particle basis is conserved, since it

is the momentum of the proton. Momentum conservation applies independently for each

interaction X

i

Z
1

0

dx


q
@

@q
fi(x, q)

�

I

= 0 , (2.18)

This is equivalent to the sum over all T = 0, CP = + PDFs in the isospin and CP basis

because only these states contribute to a sum over the PDFs in the particle basis. For the

other values of T and CP, the PDFs correspond to di↵erences of PDFs in the particle basis.

For example an isospin 1 PDF is added in PDF of an up-type fermion, but subtracted in

the down-type PDF, thus it has no e↵ect on the sum.

Combining Eqs. (2.15) and (2.18) gives

0 =
X

i

P V
i

Z
1

0

dx fi(x, q) +
X

i,j

Cij,I

Z
1

0

dx

Z zij,Imax(q)

x
dz PR

ij,I(z) fj(x/z, q)

=
X

i

P V
i

Z
1

0

dx fi(x, q) +
X

i,j

Cij,I

Z zij,Imax(q)

0

dz PR
ij,I(z)

Z z

0

dxfj(x/z, q)

=
X

i

P V
i hfi(q)i+

X

i,j

Cij,I

Z zij,Imax(q)

0

z dz PR
ij,I(z)hfj(q)i , (2.19)

where we have defined the momentum averaged PDF

hfi(q)i ⌘
Z

1

0

dx fi(x, q) . (2.20)

Solving the equation for each of the hfi(q)i, since all the input particle PDFs can be set

independently, we get

P V
i,I(q) = �

X

j

Cji,I

Z zji,Imax(q)

0

z dz PR
ji,I(z) . (2.21)

Thus, momentum conservation determines the factor P V
i,I for all non-mixed fields in the

particle basis.
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Counting PDFs

• 52 SM PDFs for unpolarised proton (36 distinct)

• Only those with same {T,CP} can mix

• Only {0,+} contribute to momentum

• Momentum conserved for each interaction

23

19
16

8
8
1

52

{T,CP} fields

{0,+} 2ng ⇥ qR , ng ⇥ `R , ng ⇥ qL , ng ⇥ `L , g ,W ,B ,H

{0,�} 2ng ⇥ qR , ng ⇥ `R , ng ⇥ qL , ng ⇥ `L , H

{1,+} ng ⇥ qL , ng ⇥ `L , BW,H

{1,�} ng ⇥ qL , ng ⇥ `L ,W,H

{2,+} W

Table 1: The 52 PDFs required for the SM evolution can written in a basis with definite conserved
quantum numbers. (5ng+4) PDFs contribute to the {0,+} state, (5ng+1) to the {0,�}, (2ng+2)
to each to the {1,+} and {1,�} and 1 to the {2,+}.

The sum of momenta of all non-mixed PDFs in the particle basis is conserved, since it

is the momentum of the proton. Momentum conservation applies independently for each

interaction X

i

Z
1

0

dx


q
@

@q
fi(x, q)

�

I

= 0 , (2.18)

This is equivalent to the sum over all T = 0, CP = + PDFs in the isospin and CP basis

because only these states contribute to a sum over the PDFs in the particle basis. For the

other values of T and CP, the PDFs correspond to di↵erences of PDFs in the particle basis.

For example an isospin 1 PDF is added in PDF of an up-type fermion, but subtracted in

the down-type PDF, thus it has no e↵ect on the sum.

Combining Eqs. (2.15) and (2.18) gives

0 =
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dx fi(x, q) +
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ij,I(z)hfj(q)i , (2.19)

where we have defined the momentum averaged PDF

hfi(q)i ⌘
Z

1

0

dx fi(x, q) . (2.20)

Solving the equation for each of the hfi(q)i, since all the input particle PDFs can be set

independently, we get

P V
i,I(q) = �

X

j

Cji,I

Z zji,Imax(q)

0

z dz PR
ji,I(z) . (2.21)

Thus, momentum conservation determines the factor P V
i,I for all non-mixed fields in the

particle basis.
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SMevol Implementation
• Input at 10 GeV: CT14qed partons with LUXqed photon

• SU(3)xU(1)em LO evolution (inc. leptons) up to 100 GeV

• SU(3)xSU(2)xU(1) LO evolution from 100 to 108 GeV

• Evolution due to Yukawa interaction of top quark

• Neglect all power-suppressed effects

24
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FIG. 4. The ratio of common PDF sets to our LUXqed result,
along with the LUXqed uncertainty band (light red). The CT14
and MRST bands correspond to the range from the PDF mem-
bers shown in brackets (68% cl. in CT14’s case). The NNPDF

bands span from max(µr � �r, r16) to µr + �r, where µr is
the average (represented by the blue line), �r is the standard
deviation over replicas, and r16 denotes the 16th percentile
among replicas. Note the di↵erent y-axes for the panels.

estimate of the uncertainty in the resonance region taken
as the di↵erence between the CLAS and CB fits (RES);
a systematic uncertainty due to the choice of the transi-
tion scale between the HERMES F

2

fit and the pertur-
bative determination from the PDFs, obtained by reduc-
ing the transition scale from 9 to 5 GeV2 (M); missing
higher order e↵ects, estimated using a modification of
Eq. (6), with the upper bound of the Q2 integration set
to µ2 and the last term adjusted to maintain ↵2(↵

s

L)n

accuracy (HO); a potential twist-4 contribution to F
L

parametrised as a factor (1 + 5.5 GeV2/Q2) [57] for
Q2 � 9GeV2 (T). One-sided errors are all symmetrised.
Our final uncertainty, shown as a solid line in Fig. 3, is
obtained by combining all sources in quadrature and is
about 1-2% over a large range of x values.

In Fig. 4 we compare our LUXqed result for the MS f
�/p

to determinations available publicly within LHAPDF [58].
Of the model-based estimates, CT14qed inc [28] and
MRST2004 [21], CT14qed inc is in good agreement with
LUXqed within its uncertainties. Its model for the in-
elastic component is constrained by ep ! e� + X data
from ZEUS [29] and includes an elastic component. Note
however that, for the neutron, CT14qed inc neglects the
important neutron magnetic form factor. As for the
model-independent determinations, NNPDF30 [59], which

FIG. 5. �� luminosity in pp collisions as a function of the
�� invariant mass M , at four collider centre-of-mass energies.
The NNPDF30 results are shown only for 8 and 100 TeV. The
uncertainty of our LUXqed results is smaller than the width of
the lines.

notably extends NNPDF23 [22] with full treatment of
↵(↵

s

L)n terms in the evolution [60], almost agrees with
our result at small x. At large x its band overlaps with
our result, but the central value and error are both much
larger.
Similar features are visible in the corresponding ��

partonic luminosities, defined as

dL
��

d lnM2

=
M2

s

Z
dz

z
f
�/p

(z,M2) f
�/p

✓
M2

zs
,M2

◆
, (9)

and shown in Fig. 5, as a function of the �� invariant
mass M , for several centre-of-mass energies.
As an application, we consider pp ! HW+(! `+⌫) +

X at
p
s = 13 TeV, for which the total cross section with-

out photon-induced contributions is 91.2 ± 1.8 fb [61],
with the error dominated by (non-photonic) PDF uncer-
tainties. Using HAWK 2.0.1 [62], we find a photon-induced
contribution of 5.5+4.3

�2.9

fb with NNPDF30, to be compared
to 4.4± 0.1 fb with LUXqed.
In conclusion, we have obtained a formula (i.e. Eq. (6))

for the MS photon PDF in terms of the proton structure
functions, which includes all terms of order ↵L (↵

s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n. Our method can be eas-
ily generalised to higher orders in ↵

s

and holds for any
hadronic bound state. Using current experimental in-
formation on F

2

and F
L

for protons we obtain a pho-
ton PDF with much smaller uncertainties than existing
determinations, as can be seen from Fig. 4. The pho-
ton PDF has a substantial contribution from the elas-
tic form factor (⇠ 20%) and from the resonance region
(⇠ 5%) even for high values of µ ⇠ 100�1000 GeV.
Our photon distribution, incorporating quarks and glu-
ons from PDF4LHC15 nnlo 100 [44] and evolved with a
QED-extended version of HOPPET is available as part of

CT14: Schmidt, Pumplin, 
Stump, Yuan, 1509.02905

LUX: Manohar, Nason, Salam, 
Zanderighi, 1607.04266

Ratios to LUXqed at 100 GeV SMevol: Bauer, Ferland, 
BW, 1703.08562
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Matching at 100 GeV

• At q=100 GeV:  fg≠0, fZ=fgZ=0, hence

• Project back on fg, fZ and fgZ at higher scales

• fW=fH=0 at q≤100 GeV

• ft=0 at q≤mt(mt)=163 GeV

25

right-handed. Thus, each fermion has only one possible spin determined by its helicity and

the sign of its momentum

fi(x, µ) = x

Z
dy

2⇡
e�i 2xn̄·p y⌦p

��  ̄(i)(y) n̄/ (i)(�y)
��p
↵
, (2.1)

f
¯i(x, µ) = x

Z
dy

2⇡
e�i 2xn̄·p y⌦p

�� (i)(y) n̄/  ̄(i)(�y)
��p
↵
, (2.2)

where µ is the renormalization scale. Since we have separate left- and right-handed PDFs,

for each generation there are a total of 8 quark PDFs and 6 lepton PDFs to consider, giving

a total of 42 fermion PDFs.

Parton distributions functions of the vector bosons are given by

fV (x, µ) =
2

n̄·p
Z
dy

2⇡
e�i 2xn̄·p y n̄µn̄

⌫
⌦
p
��V µ�(y)V�⌫(�y)

��p
↵���
spin avg.

. (2.3)

Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the

SU(2) ⌦ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into

account. For the W+ and W� boson we simply include separate PDFs for each of the two

gauge bosons. For the B and W
3

, however, one needs to be more careful to take the mixed

contributions of these two bosons into account. Such contributions arise from the fact that

the left-handed fermions and Higgs carry both isospin and hypercharge. This implies that

besides B and W
3

PDFs one needs to include a mixed PDF, which is given by2

fBW (x) =
2

n̄·p
Z
dy

2⇡
e�i 2xn̄·p y n̄µn̄⌫

⌦
p
��Bµ�(y)W

�⌫
3

(�y)
��p
↵���
spin avg.

+ h.c. . (2.4)

From these PDFs one can then construct the PDF for the photon, the transversely-polarized

Z0 and their mixed state as a transformation of the PDF for the B, the W
3

and their mixed

state. Using A = cWB + sWW
3

and Z0 = �sWB + cWW
3

one finds
0

B@
f�
fZ
f�Z

1

CA =

0

B@
c2W s2W cW sW
s2W c2W �cW sW

�2cW sW 2cW sW c2W � s2W

1

CA

0

B@
fB
fW3

fBW

1

CA . (2.5)

For the electroweak input at scale µ = q
0

we have f� 6= 0 and fZ = f�Z = 0, so the input

conditions at that scale are

fB = c2W f� , fW3 = s2W f� , fBW = 2cW sW f� . (2.6)

After evolving these three unbroken PDFs to a higher scale q, the physical photon and Z0

PDFs are reconstructed there using the corresponding running values of cW and sW .

Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) = x

Z
dy

2⇡
e�i 2xn̄·p y ⌦p

���(y)�(�y)
��p
↵
,

(2.7)

2Note that our definition of the mixed PDF fBW is the sum of BW3 and W3B contributions, and

similarly for the mixed PDF f�Z .
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Results

26
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Quarks relative to QCD

27
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Bosons relative to gluon
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Leptons relative to gluon

• Masses neglected      all generations equal
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Asymmetries (fi-fj)/(fi+fj)
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Asymmetries (fi-fj)/(fi+fj)
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Lepton Pair Production 
at 100 TeV Collider
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Lepton Pair Production

• QCED = SU(3)xU(1)em
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Lepton Pair Production

• SM = SU(3)xSU(2)LxU(1)Y
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Lepton Pair Production

• QCED = SU(3)xU(1)em
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Lepton Pair Production

• SM = SU(3)xSU(2)LxU(1)Y
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Matching to 
Fixed Order
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Matching to O(a) EW

• Define

38
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Matching to O(a) EW

• Define

• Then

39

f

SM
i (x, q) = f

QCED
i (x, q) + gi(x, q) +O(↵2)

�QCED
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j , �SM

ij = fSM
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ij 6= 0 , else

�SMexp2
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ij is resummation of (IS) HO logs
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Preliminary Results 
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• SM-SMExp(2) is 
extra HO 
contribution

• Large HO 
contributions 
to VBF
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Preliminary Results 
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• Overall HO 
contribution is 
smaller (few %)
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Conclusions and Prospects
• Rich SM structure inside the proton

✤ 52 parton distributions (36 distinct)

• Symmetries restored double-logarithmically, 
distinct left and right-handed PDFs

✤ Onset of large effects around 10 TeV

✤ Significant for ~100 TeV collider

✤ Matching to FO almost ready 

• Next step: complete SM event generator

✤ Electroweak jets, ISR, MET, …
42
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Thanks for listening!
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Backup
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PDFs and Parton Luminosity

• Factorization

• Momentum sum rule

• Luminosity
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Left-handed quarks
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Right-handed quarks
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Higgs PDFs

• Hence, neglecting power-suppressed 
symmetry breaking effects
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Higgs relative to gluon
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Figure 4: Longitudinal gauge and Higgs bosons PDFs normalized by the gluon PDF. The ZL PDF
is the same as the h PDF. For the hZL PDF, i is factorized.

Figure 5: First generation lepton PDFs normalized by the gluon PDF. Since we treat leptons as
massless, and all leptons have the same initial condition, the results for the other 2 generations are
identical.
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Luminosities at 100 TeV
• qq relative to QCD

• Vq relative to uu+dd
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Luminosities at 100 TeV
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Mangano et al., 1607.01831 Chen, Han, Tweedie, 1611.00788
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Gauge boson PDFs
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Higgs PDFs
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SMevol/LUX gg luminosity
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PeV Collider!
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Lepton Pair Production

• QCED = SU(3)xU(1)em
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Lepton Pair Production

• SM = SU(3)xSU(2)LxU(1)Y
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Lepton Pair Production

• SM = SU(3)xSU(2)LxU(1)Y
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Preliminary Results 
• Large HO contributions to VBF (note scales)
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