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The last weasel that doubted that =

Heidelberg

there is
Physics Beyond the Standard Model

The Cern stone marten, secured for inclusion in the Rotterdam Natural History Museum'’s @ [,’fﬂf, @
Dead Animal Tales exhibition. Photograph: Kees Moeliker From The Guardian website ’



Where is the
New Physics?
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Using gravitational wave detectors RSP

Energy.,Mass

Perhaps
gravitational waves
can also tell

us something here
GW detectors m 9

naturally live
here
Precision,
Intensity,
Small coupling



(searching for WISPy domain walls)

Weakly interacting sub-eV particley
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Adventureous assumption

» Domain walls (significantly) contribute to
DM in galaxy

» This requires some pushing...

= Event rate

| 1 102 Ly v
Event Rate ~ ——— ( 7 ) (10_3)

10 years
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aLIGO THEORETISCHE PHYSIK

+ Has detected gravitational wavesl!!
+ Is an Interferometer

Interference pattern
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Causing a phase shift

* Interaction inside wall creates photon mass
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aLIGO THEORETISCHE PHYSIK

* Has detected gravitational wavesl!
* Is an Interferometer

Interference pattern
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FIG. 6: L = 4000m, w = 1eV, m = 10neV, m, 5 = 1neV,
Na/Ny =1, aa=m/2.2 w/2.5 7/3 (black, blue, red), v chosen
such that signal has roughl\ a length of 0.02s ~ 1 /(50 Hz) this
corresponds to v =1 x 1072,
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FIG. 8 As in Fig. 77 but m,p = 0.1neV, Na/Ns; = 5,
m=0.5neV,a=7/2and v=1x 1072,
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How to distiguish from grav waves?

+ velocity<<c
+ v~10-3

= Time difference between two sites
~few seconds

= Need careful analysis strategies

Promised sensitivity:

/2

1
] m / . ,
mg ~ ~ nev ( ) for m 2 0.1 neV,

10 neV
~ (.1 neV for m < 0.1 neV.




Example I:
Scale invariant EW symmetry breaking
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+ Scale invariance
= No explicit mass scales in the Lagrangian

+ EW symmetry breaking?

V(o) = 10"

No EW breaking at tree level
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Scale invariant EW symmetry breaking [

+ Scale invariance
= No explicit mass scales in the Lagrangian

+ EW symmetry breaking?

S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7 (1973) 1888.



Need dark=hidden sector
* In the CW-SM Higgs would be too light

* top mass too high = unstable

> Remedy:
Generate mass scale in Dark sector

o«

<¢p>= 0 genera?es negative mass for h
R. Hempfling, Phys. Lett. B 379 (1996) 153. 9 EW symm break'"g

K. A. Meissner and H. Nicolai, Phys. Lett. B 648 (2007) 312,




Need dark=hidden sector
* In the CW-SM Higgs would be too light

* top mass too high = unstable

> Remedy:

Generate mass scale in Dark sector

Weak coupling to dark sector
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Ak 1

* OIS ey

* m, typically sizeable often ~v or bigger
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= First order phase transition
= Bubble formation
=>6Gravitational waves




Detectable gravitational waves

aLIGO O5

f/Hz

INSTITUT FR
[777 THEORETISCHE PHYSIK
Heidelberg
University

FIG. 6: Reach of gravitational wave detectors: We show aLIGO together with the fifth phase of aLIGO (both solid black),
and the proposed detectors BBO, DECIGO, ET and eLISA [dashed black] (the sensitivities are taken from the gravitational
wave plotter http://rhcole.com/apps/GWplotter/ [29]). For the curves of the CW phase transition — going from left to right
— we choose vy, = 1 throughout, and respectively (k = 1.0,gp = 0.6,7, = 100 GeV) [in red], (k = 1.0,gp = 0.6,T, = 10 TeV)

[green] and (k = 1.0,gp = 0.6,T% = 500 TeV) [in blue].
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Detectable gravitational waves
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FIG. 7: Reach of gravitational wave detectors for a more conservative scenario ks, = 0.4 (all other parameters as in Fig. .




Example I b:
Deep Throats

The String Soundscape at Gravitational Wave Detectors

Isabel Garcia Garcia,'* Sven Krippendorf," T/ and John March-Russell®’*
! Rudolf Peierls Centre for Theoretical Physics, University of Ozford, 1 Keble Road, Oxford OX1 38NP, UK
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Other models also produce GWs

‘—‘]5 -t 1 L 1 1
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The String Soundscape at Gravitational Wave Detectors

Isabel Garcia Garcia,'* Sven Krippendorf," T/ and John March-Russell®’*
! Rudolf Peierls Centre for Theoretical Physics, University of Ozford, 1 Keble Road, Oxford OX1 38NP, UK



Example IT:
GW Waves from Monodromy Inflation
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Monodromy potential

"Axion” potential
(pseudo-6oldstone pot.)

Monodromy add-on
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Monodromy potential T
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Funny potential

+ enlarged
field range

E. Silverstein and A. Westphal, “Monodromy in the CMB: Gravity Waves and String Inflation,”
Phys. Rev. D 78, 106003 (2008) doi:10.1103/PhysRevD.78.106003 [arXiv:0803.3085 [hep-th]).
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Including fluctuations P
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Including fluctuations P
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Different parts of Universe end in different minima
= Bubbles form
= 6W are produced




Gravitational wave spectra
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Figure 12: Gravitational wave spectra as in (5.22) with w = 1/3. The inflaton mass is
fixed to m ~ 107°M,,. Spectra are shown as solid lines for different values of «, f and
/ . - ’ -') T

T'rpr: the blue curve is obtained for & = 5, f = 0.1M, Try ~ 102 GeV; the brown curve

for K = 10, f = 0.01M,, Try ~ 10" GeV; the red one for k = 70, f = 0.001M/,
5.22

10" GeV. We have also taken w = 1/3,0, = 107%,0 = 10~ in

P lTRH ~

. For the values of

the reheating temperature considered here, we have g,(Tgry) ~ 10%. Sensitivity curves
of some ground- and space-based interferometers are shown for comparison as dashed

curves (data taken from [74]).



Tunneling from
an oscillating vacuum. ..
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Luc Darme @ Planck 2017
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Bubbles can collapse T
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Figure 8: Field profiles showing lattice bubble evolution for oscillation reaching
1.24/2a4y, (left panel) and 0.8y/2aiy (right panel). The values defining the potential
were set to ¢ = 1/10, b =1/300 and ¢ = 1.




Discovering the QCD Axion with Black Holes and Gravitational Waves
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GWs probe axion detectors

Discovering the QCD Axion with Black Holes and Gravitational Waves

Asimina Arvanitaki[f]
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada

Masha Baryakht&rm and Xinlu Huang]ﬂ
Stanford Institute for Theoretical Physics, Department of Physics,
Stanford University, Stanford, CA 94305, USA

If light bosons
=> superradiance for Spinning Black holes
= efficient if RBH~1/mBOSO,,

=> spin is quickly “"used up” to produce bosons
=> Measure spin of black holes (aLIGO, LISA)
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Sensitivity to “zero” couplings
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Do statistics with aLIGO
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FIG. 2. Expected distribution of intrinsic (top) and measured (bottom) spins and masses of merging BHs in the absence

(left) and the presence (right) of an axion of mass 6 x 107"* &V, normalized to 1000 events detected at aLIGO. We assume
om /M ~ 10% measurement error in the mass and oo, ~ 0.25 error in the spin [30, [31]. We have assumed that all BEHs formed
at a distance such that they take 10'” years to merge. The theoretical curves shown are boundaries of the regions where SR
had at most 10'"" years to spin down the BHs, and the effect of the companion BH does not significantly affect the SR rate.
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Black Hole Mergers and the QCD Axion at Advanced LIGO

Asimina Arvanitaki,’ Iﬂ Masha Baryakhtar,’ ' Savas Dimopou]os,g'lﬂ Sergei DllhOVSk}",z'El and Robert Lasenby’
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3 Center for Cosmology and Particle Physics, New York University New York, NY, 10003, USA
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MO re S i g na I S... THEORETISCHE PHYSIK

Bose enhanced level transitions
= Monofrequency signals

Annihilation of bosons into gravitons
= Monofrequency signal w=2m,



Conclusions
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Conclusions THEORETISCHE PRYSK
+ Gravitational wave detectors are amazing tools

mm use to learn about dark sectors

* Use to directly search for new particles
(Example WISPy domain walls and ultralight
bosons such as axions)

+ Use gravitational wave signatures to probe
dark sectors populated by heavier particles

that are hard to detect otherwise
=) Challenge: Need to develop specificity

to distinguish different scenarios!







