

Experimental Results on Neutrinos

Stefan Söldner-Rembold UK HEP Forum "Cosmology, Gravitation and Particle Physics" 28 November 2017

Neutrinos as messengers of physics at large scales

Neutrino masses anomalously small:

- not due to Higgs mechanism?
- first sign of physics beyond the SM?
- might be linked to physics at high scales through see-saw mechanism:

$$\mathcal{L} \sim -\frac{1}{2} \left(\begin{array}{cc} \overline{\nu_L} & \overline{\nu_R^c} \end{array} \right) \left(\begin{array}{cc} 0 & m_D \\ m_D & M \end{array} \right) \left(\begin{array}{cc} \nu_L^c \\ \nu_R \end{array} \right)$$

Minimal extension to Standard Model:

- right-handed neutrinos (v_R)
- Majorana mass term M

$$m_{
m v} pprox rac{m_D^2}{M} ~~ rac{m_D \sim 1~{
m GeV}}{M \sim 10^{12} - 10^{16}\,{
m GeV}}$$

Neutrinos as messengers of physics at large scales

Neutrino masses anomalously small:

- not due to Higgs mechanism?
- first sign of physics beyond the SM?
- might be linked to physics at high scales through *see-saw* mechanism:

$$\mathcal{L} \sim -\frac{1}{2} \left(\begin{array}{cc} \overline{\mathbf{v}_L} & \overline{\mathbf{v}_R^c} \end{array} \right) \left(\begin{array}{cc} 0 & m_D \\ m_D & M \end{array} \right) \left(\begin{array}{c} \mathbf{v}_L^c \\ \mathbf{v}_R \end{array} \right)$$

Minimal extension to Standard Model:

- right-handed neutrinos (v_R)
- Majorana mass term M

$$m_{
m v} pprox rac{m_D^2}{M} ~~ rac{m_D \sim 1~{
m GeV}}{M \sim 10^{12} - 10^{16}\,{
m GeV}}$$

We don't know

- the absolute neutrino mass scale
- the ordering of the neutrino mass eigenstates (hierarchy).

Neutrino Mass Hierarchy

Testing the "three-flavour" paradigm

 $U_{\text{PMNS}} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

CP Violation in the lepton sector might provide support for *Leptogenesis* as mechanism to generate the Universe's matter-antimatter asymmetry.

CP Violation:
$$\delta \neq \{0, \pi\}$$
 $s_{ij} = \sin \theta_{ij}; c_{ij} = \cos \theta_{ij}$

Testing the "three-flavour" paradigm

 $U_{\text{PMNS}} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

CP Violation in the lepton sector might provide support for *Leptogenesis* as mechanism to generate the Universe's matter-antimatter asymmetry.

CP Violation:
$$\delta \neq \{0, \pi\}$$
 $s_{ij} = \sin \theta_{ij}; c_{ij} = \cos \theta_{ij}$

Caveat:

No direct evidence for *Leptogenesis*, since a model is needed to connect the low-scale CPV observed here to high-scale CPV for heavy neutrinos that lead to *Leptogenesis*.

Other questions

Why are CKM and PMNS matrices different?

Are neutrinos Majorana?

Neutrinos are also excellent astrophysical probes - not discussed here.

 $m^2 (eV^2)$

Ve

ν_u

ν_τ

 $\nabla_{\mathbf{s}}$

27/11/17

v_e appearance gives access to δ

- v_e appearance amplitude depends on θ_{13} , θ_{23} , δ_{CP} , and matter effects (MSW).
- Large value of $\sin^2(2\theta_{13})$ allows significant v_e appearance sample.

27/11/17

The θ_{13} miracle

M. He, NNN17

Optimising L/E

$L \approx 200 \text{ km}$

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\nu} < 1 \, \text{GeV}$$

- no matter effects; first oscillation maximum.
- use narrow width beam (off axis).

Water Cherenkov

L > 1000 km

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \qquad E_{\rm v} > 2\,{\rm GeV}$$

- matter effects; first and second oscillation maximum.
- use broad-band beam (on axis).
- unfold CP and MH effects through energy dependence.

Operating Long-baseline Experiments

27/11/17

MANCHESTER

27/11/17

Stefan Söldner-Rembold

Neutrino beams

T2K Far Detector Rates

NOvA – v_{μ} Disappearance

NOvA vs T2K

NOvA excludes maximal mixing at 2.6 σ

NOvA – v_e Appearance

- Normal Hierarchy favoured
- Need anti-neutrino data to resolve degeneracies.
- Lower left octant in inverted hierarchy excluded at 3σ for all δ

CP Phase

• T2K: CP conservation hypothesis outside 2σ interval.

Status Quo

- Both experiments slightly prefer normal hierarchy and $\delta = -\pi/2$.
- (Different preference for maximal vs. non-maximal mixing)

T2K – Far Detector Rates

	Predicted Rates				Observed
Sample	δ_{cp} =- $\pi/2$	$\delta_{cp} = 0$	$\delta_{cp} = \pi/2$	$\delta_{cp}{=}\pi$	Rates
CCQE 1-Ring e-like FHC	73.5	61.5	49.9	62.0	74
$CC1\pi$ 1-Ring e-like FHC	6.92	6.01	4.87	5.78	15
CCQE 1-Ring e-like RHC	7.93	9.04	10.04	8.93	7
CCQE 1-Ring μ -like FHC	267.8	267.4	267.7	268.2	240
CCQE 1-Ring $\mu\text{-like}$ RHC	63.1	62.9	63.1	63.1	68

Sensitivity driven by electron-like excess of events

T2K and NOvA Projections

T2K

NOvA

- Currently have 17% (NOvA) and 30% (T2K) of approved POTs
- Expect $\approx 2-3\sigma$ on CPV by the time DUNE and HK turn on

IceCube and KM3NET

MANCHESTER 1824

IceCube and KM3NET

MANCHESTER

IceCube and KM3NET

Mass hierarchy significance $[\sigma]$

 $\begin{array}{cc} 44 & 46 \\ \theta_{23} \, \text{[degrees]} \end{array}$

48

50

Good chance to resolve mass hierarchy before

next-generation LBL experiments turn on.

KM3NeT

42

40

- Approximately 40 kt fiducial mass liquid argon Far Detector.
- Located 1300 km baseline_at SURF's 1478 m level (2,300 mwe).
- Compare $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillations.

Hyper-Kamiokande

Sensitivity CP Phase

Hyper-K

DUNE

CP Violation Sensitivity

Sensitivity CP Phase

Hyper-K

DUNE

Supernova and Mass Hierarchy

 $v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$

Supernova at 10 kpc in DUNE (40 kt), time dependent signal

"Instant" determination of mass hierarchy ..

Garching model, ICARUS energy resolution, 5 MeV threshold

ProtoDUNE@CERN

ProtoDUNEs@CERN

Short-baseline experiments

SBND and **ICARUS**

MANCHESTER Michel Electrons at MicroBooNE

Demonstration of 'text book' measurements using liquid-argon

LAr detectors can discriminate electrons from photons

SBN Physics Goals

- Explore MiniBooNE (and other) anomalies.
- Search for low-mass sterile neutrinos (~ 1 eV).
- Measure neutrino cross sections on argon – important for DUNE programme.

Stefan Söldner-Rembold

Sterile Neutrinos

Sterile neutrino searches effectively test "three-flavour paradigm".

^t
$$P_{\nu_{\mu} \to \nu_{e}}(L/E) \approx 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E}\right)$$

27/11/17

Stefan Söldner-Rembold

Particle Physics and Cosmology

- The amount of radiation (p,) related to the effective number of relativistic degrees of freedom, N_{eff}
- *N*_{eff} can be interpreted as 'number of neutrino flavours'

 $\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right] \rho_{\gamma}$

MANCHESTER

Particle Physics and Cosmology

Relate $(\sin^2\theta, \Delta m^2)$ to $(N_{\rm eff}, m^{\rm eff})$

Particle Physics and Cosmology

Solve quantum kinetic equations that govern thermalisation using LASAGNA

1 active and 1 sterile flavour

S. Bridle *et al.*, Phys. Lett. **B764**, 322 (2017)

v_e Disappearance (1+1)

1+1 model only allows to study one active-sterile mixing angle at a time

Moving to a 3+1 model

- Daya Bay/MINOS combination of v_e/v_μ disappearance data.
- Planck exclusion obtained using mean-momentum approximation
- Comparison is necessarily model-dependent.

Neutrinoless Double-β Decay

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(Z,A) \rightarrow (Z+2,A) + \dot{\mathbf{e}}_{1} + \mathbf{e}_{2}^{*}$$

$$\nabla = v \underbrace{ \begin{bmatrix} \mathbf{p}_{1}}{\mathbf{p}_{1}} & \mathbf{p}_{2} \\ \mathbf{p}_{2} & \mathbf{p}_{3} \\ \mathbf{p}_{3} & \mathbf{p}_{3} \end{bmatrix}$$

$$K \begin{bmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$K \begin{bmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ \mathbf{p}_{3} & \mathbf{p}_{3} \end{bmatrix}$$

$$K \begin{bmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ \mathbf{p}_{3} & \mathbf{p}_{3} \end{bmatrix}$$

$$K \begin{bmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$K \begin{bmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\frac{1}{T_{1/2}^{2\nu}} = G^{2\nu}(Q,Z)|M^{2\nu}|^2$$

 $\Delta L = 2$ - only possible for Majorana neutrinos with m > 0

Creation of Electrons

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(Z,A) \rightarrow (Z+2,A) + \dot{\mathbf{q}} + \mathbf{e}_{2}^{*}$$

$$\prod_{\nabla = \vee} \underbrace{\mathbf{P}}_{\nabla = \vee}$$

$$\frac{1}{T_{1/2}^{2\nu}} = G^{2\nu}(Q,Z)|M^{2\nu}|^2$$

 $\Delta L = 2$ - only possible for Majorana neutrinos with m > 0

Status 2015

- Goal of current and near-future experiments: cover inverted hierarchy.
- Width of bands depend on mixing parameters (within 3 flavour model).
- Oscillation experiments provide input regarding hierarchy.
- Only cover running experiments that gave updates this year.

How to build a 0vßß experiment

$$T_{1/2}^{\beta\beta0\nu} > N_A \cdot \frac{\epsilon}{A} \cdot \sqrt{\frac{M \cdot t}{(N_{bg} \cdot \Delta E)}}$$

- Increase efficiency and mass
- Decrease background
- Improve energy resolution

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_\nu \rangle^2$$

- Optimize phase space factor and NME.
- Choose isotopes that can be easily enriched.

J. Vergados et al., arXiv:1205.0649

CUORE and Gerda

CUORE first results (Oct 2017) arXiv:1710.07988 [nucl-ex] Residual (0) Stefano Dell'Oro, NNN17 CUORE Preliminary Exposure: 86.3 kg-yr Counts / (2.5 keV) GERDA-II new results (Jul 2017) L. Pandola, talk @ TAUP 2017 1.4 Counts/(2 keV) Q_{ββ} 1.2 1 0.8 0.6 0.4 0.2 2520 Reconstructed Energy (keV) $t_{1/2}^{0\nu}(^{130}\text{Te}) > 1.5 \cdot 10^{25} \text{ yr } @ 90\% \text{ C. L.}$ 0 1950 2000 2100 2150 2050 $T_{1/2} > 1.5 \times 10^{25}$ years Energy [keV] $t_{1/2}^{0\nu} > 8.0 \cdot 10^{25}$ yr @ 90% C. L.

Low background experiments with excellent energy resolution.

 $T_{1/2} > 8.0 \times 10^{25}$ years

2200

EXO-200

 $T_{1/2} > 1.8 \times 10^{25}$ years $m_{\beta\beta} < 147 - 398$ meV

KamLAND-Zen

Full data set not shown

 $T_{1/2} > 1.07 \times 10^{26}$ years $m_{\beta\beta} < 61 - 165$ meV

27/11/17

KamLAND-Zen

Summary

- Current long-baseline experiments have preference for NH and CP violation, but statistical significance is low.
- Future programme progressing well; will ultimately resolve these questions and test three-flavour paradigm.
- Experiments severely constrain light sterile neutrinos.
- Neutrinoless double-β decay experiments are coming close to probing inverted hierarchy.