The Cosmic Microwave Background

Jacques Delabrouille CNRS/IN2P3 Laboratoire APC, Paris & DAp, CEA-Saclay

Outline

- CMB science and challenges
 - Hot CMB topics
 - The CORE space mission
 - Context
 - Scientific objectives
 - Mission design
 - Status and feedback
 - What next?
 - Evolving context
 - Option of a mission with India ?
 - Summary

- *simple initial perturbation spectrum (power law)*
- acoustic oscillations in the hot and dense plasma

CMB spectra – Planck mission results (2015)

4

Success ?

- A "standard model of cosmology" has emerged: ACDM
- Very good fit of many cosmological observations $(H, \Omega_m, \Omega_b, \tau, A_s, n_s, ...)$ with mild "tensions" $(H_0, \sigma_8, ...)$
- Open questions !
 - Initial perturbations : did Inflation really happen?
 - If so, physics of inflation? (r, n_s, running, n_t, NG...?)
 - What is Dark Matter? (v's, decaying DM...?)
 - What is Dark Energy? (Λ, w₀, w₁,...?)
 - Any Dark radiation / light relics? (N_{eff}, ...?)
 - Fundamental physics (modified gravity, physics beyond SM)
 - .
 - Is the global ACDM picture correct?

Challenges: Primordial B-modes ?

Challenges: Primordial B-modes ?

The feasibility of reducing foregrounds to 1‰ is unknown

- Foregrounds
- De-lensing

Space missions

JAXA + NASA

Primordial B-modes mission

Earliest Launch > 2027 Phase A ongoing in Japan PIXIE

Absolute spectrophotometer

Earliest Launch > ? Phase A not selected by NASA

Very large scale polarisation and spectral distortions

NASA

Cosmic origins explorer

Earliest Launch > 2031 Phase A not selected by ESA

ALL CMB polarisation (almost) ultimate

ONLY large scale CMB polarisation

Outline

- CMB science and challenges
- Hot CMB topics
 - The CORE space mission
 - Context
 - Scientific objectives
 - Mission design
 - Status and feedback
 - What next?
 - Evolving context
 - Option of a mission with India ?
 - Summary

Primordial B-modes ?

Dust in the BICEP2 field

BICEP2 hint of B modes: Revision with Planck:

PRL 112, id.241101 (2014) PRL 114, id.101301 (2015)

Lensing

Planck lensing: Planck Collaboration A&A 571, 17 (2014) Planck Collaboration A&A 594, 15 (2016)

Lensing potential from Planck

COPYRIGHT 2017 © EUROPEAN SPACE AGENCY.

De-lensing

Planck collaboration A&A 596,

Figure 1. Wiener-filtered lensing potential estimated from the SMICA foreground-cleaned temperature map using the $f_{\rm sky} \simeq 80\%$ lensing mask.

Use lensing potential inferred from dusty galaxies (CIB) and SPT E-modes to infer lensing B-modes

Galaxy clusters

Outline

- CMB science and challenges
- Hot CMB topics
- The CORE space mission
 - Context
 - Scientific objectives
 - Mission design
 - Status and feedback
 - What next?
 - Evolving context
 - Option of a mission with India ?
 - Summary

CMB polarization with CORE (M-class)

Primordial BB modes are very important but uncertain:

- *foregrounds* are a potential killer at I < 10;
- *lensing* and foregrounds are issues at l≈80;
- ground observations will improve in the next 10 years (r ≈ 0.005-0.01 ?);
- *r could be << 0.001,* beyond detection capability;
- the risk of "detecting" r = 0.002 ± 0.001 should be avoided.

CORE avoids these risks with:

- targeting primordial B-modes *down to "reasonable" fundamental limits,* after *both* de-lensing & foreground subtraction (error on r ≈ 0.0004);
- guaranteed high-value "near-optimal" CMB polarization science;
- guaranteed rich legacy.

Signal to noise in lensing maps

- CORE can make signal-dominated full-sky maps of the lensing potential down to 20'
- Improvement comparable to COBE-DMR to WMAP for anisotropies

Discovery space

Inflationary parameters (initial conditions)

$$r = \frac{P_t(k_0)}{P_s(k_0)} = 0$$
 $n_t \simeq -r/8 = 0$

$$\frac{dn_s}{d\ln k}\simeq 0$$

Spatial curvature $\Omega_k h^2 = 0$

Dark Energy equation of state $w_0 = -1$ $w_1 = 0$

Neutrino sector

$$N_{\text{eff}} = 3.046$$
 $\Omega_{\nu} h^2 = \frac{\Sigma m_{\nu}}{93 \,\text{eV}}$ $\Sigma m_{\nu} \simeq 60 \,\text{meV}$

Helium abundance $Y_{\rm He}\simeq 0.25$

Discovery space

Inflationary parameters (initial conditions)

$$r = \frac{P_t(k_0)}{P_s(k_0)} = 0$$
 $n_t \simeq -r/8 = 0$

$$\frac{dn_s}{d\ln k}\simeq 0$$

Spatial curvature $\Omega_k h^2 = 0$

Dark Energy equation of state $w_0 = -1$ $w_1 = 0$

Neutrino sector

 $N_{\rm eff} = 3.046$

$$\Omega_{\nu}h^2 = \frac{\Sigma m_{\nu}}{93 \,\mathrm{eV}}$$

 $\Sigma m_{\nu} \simeq 60 \,\mathrm{meV}$

The CMB can still reduce the

error box volume

by a factor >10⁶

Helium abundance $Y_{\rm He} \simeq 0.25$

Parameter constraints

Hubble constant : tension at 2.5 σ with H₀ = 73.8 ± 2.4 km/s/Mpc (Riess et al. 2011, HST)

Parameter constraints

Figure 12: Forecast 68 % and 95 % CL marginalized regions for (Ω_k, H_0) (left panel), (Ω_k, Ω_m) (middle panel) and (H_0, Ω_m) (right panel) for LiteBIRD (grey) and CORE-M5 (blue) obtained by allowing Ω_k to vary. These forecasts assume $\Omega_k = 0$ as fiducial value. The 68 % and 95 % CL marginalized contours for Planck 2015 TT,TE,EE + lowP + lensing (green) are shown for comparison [4]. Note that the Planck 2015 contours are based on real data whose best-fit is different from the fiducial cosmology used.

CORE: a simple and robust design for M5

- One single instrument
- Passively cooled PLM
- Single frequency, single polarization detectors^(a)
- No moving part in the cold payload
- Spinning at ½ rpm
- 19 frequency bands
- A *lot* of redundancy
- Sensitivity margins
- Guaranteed science

(a) Safest option taking into account European technological readiness at time of submission

References

Space mission: "Exploring Cosmic Origins (ECO) papers" (special issue of JCAP)

DESIGN	 Mission: Delabrouille, de Bernardis, Bouchet et al. Instrument: de Bernardis, Ade, Baselmans et al. 	arXiv:1706.04516 arXiv:1705.02170
SCIENCE	 Inflation: Finelli, Bucher, Achucarro et al. Lensing: Challinor, Allison, Carron, et al. Parameters: Di Valentino, Brinckmann, Gerbino et al. Clusters: Melin, Bonaldi, Remazeilles et al. Velocity: Burigana, Carvalho, Trombetti et al. Sources: De Zotti, Gonzalez-Nuevo, Lopez-Caniego et al. 	arXiv:1612.08270 arXiv:1707.02259 I. arXiv:1612.00021 arXiv:1703.10456 arXiv:1704.05764 t al. arXiv:1609.07263
PROCESSING	 Foregrounds: Remazeilles, Banday, Baccigalupi et al. Systematics: Natoli, Ashdown, Banerji et al. 	arXiv:1704.04501 arXiv:1707.04224

Over 500 useful pages of discussion and comparison of options constitute a reference for the optimization of the mission scientific scope and design.

31

Status

- After the M4 proposal (CORE+), guidance was provided by the ESA-(JAXA) CDF study
 - No technical showstopper, but developments needed;
 - Suitable for a collaboration at \approx 20% level;
 - Recommendations for simplification;
 - Joint mission with JAXA would have been a logical outcome, but did not materialize.
- With no firm commitment from an international partner, CORE was proposed as a (simplified) standalone mission.
- It did not pass the initial ESA screening. The main issue was cost (ESA estimated overcost ≈ 30%).
- Solutions
 - Simplify drastically (hard to envisage without compromising the science);
 - Find an international partner (interest in India, ongoing study in the US).

Outline

- CMB science and challenges
- Hot CMB topics
- The CORE space mission
 - Context
 - Scientific objectives
 - Mission design
 - Status and feedback
- What next?
 - Evolving context
 - Option of a mission with India ?
 - Summary

Other CMB polarization projects

- CMB-S4 (ground-based) in preparation in the US
 - Objective: detect r≥0.003 or constrain r<0.001 (95% CL)</p>
 - 3 to 8% sky coverage for r, using fourteen 0.5m telescopes and one 6m telescope, 4x2 channels from 20 to 270 GHz; 240,000 detectors;
 - 40% sky coverage using two 6m telescopes (for N_{eff}); 140,000 detectors;
 - Budget 412 M\$ + running costs; If funded, observations in 2027+ (Source: CDT document);

• LiteBIRD is in phase A in Japan

- Objective: $\sigma_r = 0.001$
- Frequency coverage 40-400 GHz in 15 bands, most of CMB sensitivity between 140 and 200 GHz (where dust is the dominating foreground); Large scales only (FWHM 30'-60');
- If selected by JAXA (decision ≈ early 2019?), launch foreseen in 2027+;
- Missing:
 - Full sky coverage with resolved CMB polarization (i.e. FWHM \approx 5');
 - Channels to monitor and map thermal dust polarization and the CIB;
 - Spectroscopy;
 - A role for Europe!

A CMB mission in partnership with India ?

- ISRO launcher GSLV Mrk-III seems adequate for CORE.
- ISRO scientific satellites:
 - Successful Moon and Mars orbiters;
 - Successful Astrosat mission;
 - Planned solar mission to L1;
 - Past experience of a mission with CNES (Megha-Tropiques).
- Preliminary discussions for a CMB mission are encouraging.
- Some options:
 - Refocus for optimized complementarity with LiteBIRD and S4;
 - Pointed observation mode;
 - MiniCORE + Absolute spectrometer (smaller than PIXIE).

Spectral distortions ?

Spectral distortions ?

MiniCORE + MiniPIXIE ?

Outline

- CMB science and challenges
- Hot CMB topics
- The CORE space mission
 - Context
 - Scientific objectives
 - Mission design
 - Status and feedback
- What next?
 - Evolving context
 - Option of a mission with India ?
- Summary

Summary

- A very rich science case towards primordial B-modes and beyond.
- To address it, CORE and PIXIE were strongly recommended in the French 2016 CMB roadmap (for good reasons).
- Their non-selection leaves crucial gaps in the CMB programme, not covered by CMB-S4 or LiteBIRD as currently proposed:
 - full sky coverage on scales smaller than ≈1 degree is lacking;
 - full-sky de-lensing capability is lacking;
 - high frequency foregrounds monitoring must be improved;
 - absolute spectroscopy reference is now 25 years old (FIRAS).
- A space mission (or possibly two!) is needed to cover these gaps.
- We must prepare this future now.