

Dark Matter: from simulations to detection

Nassim Bozorgnia

Institute for Particle Physics Phenomenology Durham University

Dark Matter halo

What is the distribution of Dark Matter (DM) in halo of our Galaxy?

Dark Matter halo

What is the distribution of Dark Matter (DM) in halo of our Galaxy?

Dark Matter searches

• Searching for WIMPs in three complementary ways:

indirect detection

Nassim Bozorgnia UK HEP Forum, 29 Nov 2017

Dark Matter searches

• Searching for WIMPs in three complementary ways:

Use high resolution cosmological simulations to extract the DM distribution and make accurate predictions for *direct* and *indirect* DM searches.

Prospects for direct DM searches

Direct DM detection event rate

• The differential event rate:

$$\frac{dR}{dE_R} = \frac{\rho_{\chi}}{m_{\chi}m_N} \int_{v > v_{\min}} d^3v \ \frac{d\sigma_{\chi N}}{dE_R} \ v \ f_{\det}(\mathbf{v}, t)$$

where $v_{\min} = \sqrt{m_N E_R / (2\mu_{\chi N}^2)}$ is the minimum DM speed required to produce a recoil energy E_R .

Direct DM detection event rate

• The differential event rate:

where $v_{\min} = \sqrt{m_N E_R / (2\mu_{\chi N}^2)}$ is the minimum DM speed required to produce a recoil energy E_R .

- Astrophysical inputs:
 - **local DM density:** *normalization in event rate.*
 - **local DM velocity distribution:** enters the event rate through an integration.

Direct DM detection event rate

• The differential event rate:

• For standard spin-independent and spin-dependent interactions:

$$\frac{dR}{dE_R} = \frac{\sigma_0 F^2(E_R)}{2m_\chi \mu_{\chi N}^2} \rho_\chi \eta(v_{\min}, t)$$

particle physics

where

$$\eta(v_{\min}, t) \equiv \int_{v > v_{\min}} d^3 v \; \frac{f_{\det}(\mathbf{v}, \mathbf{t})}{v}$$

halo integral

Local Dark Matter distribution

What is the distribution of DM in the Sun's neighborhood?

Standard Halo Model

 The simplest model for the DM distribution in our Galaxy is the Standard Halo model (SHM): isothermal sphere with an isotropic Maxwell-Boltzmann velocity distribution.

Drukier, Freese, Spergel, 1986

Standard Halo Model

 The simplest model for the DM distribution in our Galaxy is the Standard Halo model (SHM): isothermal sphere with an isotropic Maxwell-Boltzmann velocity distribution.

Drukier, Freese, Spergel, 1986

- Hydrostatic equilibrium: pressure balances gravitational potential
- Density profile: $ho(r) \propto r^{-2}$
- Local DM density: 0.3 GeV/cm³
- Typical DM speed: 220 km/s

Actual DM distribution may deviate substantially from the SHM.

Direct detection results

Assumption in these kinds of plots: SHM

Local Dark Matter density

From observations:

- Local estimates: use kinematical data from a nearby population of stars.
 - Robust measurements, but need to account for the local contribution of baryons which has significant uncertainties. —> large error bars

Local Dark Matter density

From observations:

- Local estimates: use kinematical data from a nearby population of stars.
 - Robust measurements, but need to account for the local contribution of baryons which has significant uncertainties. —> large error bars

- Global estimates: based on mass modeling of the MW, and fits to kinematical data across the Galaxy.
 - Good precision (~10%), but estimates are strongly model dependent. ----> systematic uncertainties

Local Dark Matter density

Read, 1404.1938

Local DM velocity distribution

- The velocity distribution depends on the halo model.
- In the SHM, a truncated Maxwellian velocity distribution is assumed:

$$f_{\text{gal}}(\mathbf{v}) = \begin{cases} N \exp\left(-\mathbf{v}^2/v_c^2\right) & v < v_{\text{esc}} \\ 0 & v \ge v_{\text{esc}} \end{cases}$$

with
$$v_c=220~{
m km/s}$$
 and $v_{
m esc}=550~{
m km/s}$.
 $\sigma_v=\sqrt{3/2}~v_c$ independent of radius.

Local DM velocity distribution

- The velocity distribution depends on the halo model.
- In the SHM, a truncated Maxwellian velocity distribution is assumed:

$$f_{\text{gal}}(\mathbf{v}) = \begin{cases} N \exp\left(-\mathbf{v}^2/v_c^2\right) & v < v_{\text{esc}} \\ 0 & v \ge v_{\text{esc}} \end{cases}$$

with
$$v_c=220~{
m km/s}$$
 and $v_{
m esc}=550~{
m km/s}$.
 $\sigma_v=\sqrt{3/2}~v_c$ independent of radius.

• What can we learn from numerical simulations of galaxy formation about the local DM velocity distribution?

Dark Matter only simulations

 DM speed distributions from cosmological N-body simulations without baryons, deviate substantially from a Maxwellian.

• Significant systematic uncertainty since the impact of baryons neglected.

 Each hydrodynamical (DM + baryons) simulation adopts a different galaxy formation model, spatial resolution, DM particle mass.

 Large variation in DM speed distributions between the results of different simulations.

 Each hydrodynamical (DM + baryons) simulation adopts a different galaxy formation model, spatial resolution, DM particle mass.

 Large variation in DM speed distributions between the results of different simulations.

- To make precise quantitative predictions:
 - Model baryonic processes in a way that the main galaxy population properties are broadly reproduced.
 - Identify MW-like galaxies by taking into account observational constraints on the MW.

- To make precise quantitative predictions:
 - Model baryonic processes in a way that the main galaxy population properties are broadly reproduced.
 - Identify MW-like galaxies by taking into account observational constraints on the MW.
- We use the EAGLE and APOSTLE hydrodynamic simulations. calibrated to reproduce the observed distribution of stellar masses and sizes of low-redshift galaxies.
- Companion Dark Matter only (DMO) simulations were run assuming all the matter content is collisionless.

EAGLE Simulations

EAGLE Simulations, 1407.7040

Nassim Bozorgnia UK HEP Forum, 29 Nov 2017

Milky Way analogues

Nassim Bozorgnia UK HEP Forum, 29 Nov 2017

Identifying Milky Way analogues

 We introduce new criteria to identify MW analogues using observed MW kinematical data: rotation curves, total stellar mass.

Dark Matter density profiles

• Spherically averaged DM density profiles of the MW analogues:

Dark Matter density profiles

• Spherically averaged DM density profiles of the MW analogues:

 To find the DM density at the position of the Sun, consider a torus aligned with the stellar disc.

$$\rho_{\chi}$$
 = 0.41 - 0.73 GeV/cm³

Bozorgnia et al., 1601.04707

Local speed distributions

In the galactic rest frame:

Local speed distributions

In the galactic rest frame:

- Maxwellian distribution with a free peak provides a better fit to haloes in the hydrodynamical simulations compared to their DMO counterparts.
- Best fit peak speed:

Local speed distributions

Common trends in different hydrodynamical simulations:

- Baryons deepen the gravitational potential in the inner halo, shifting the peak of the DM speed distribution to higher speeds.
- In most cases, baryons appear to make the local DM speed distribution more Maxwellian.

Bozorgnia & Bertone, 1705.05853

Components of the velocity distribution

How common are dark disks?

- Clear velocity anisotropy at the Solar circle.
- Two haloes have a rotating DM component in the disc with mean velocity comparable (within 50 km/s) to that of the stars.

How common are dark disks?

- Clear velocity anisotropy at the Solar circle.
- Two haloes have a rotating DM component in the disc with mean velocity comparable (within 50 km/s) to that of the stars.
- Hint for the existence of a co-rotating dark disk in 2 out of 14 MW-like haloes. Dark disks are relatively rare in our halo sample.
 Bozorgnia et al., 1601.04707

Schaller et al., 1605.02770

How common are dark disks?

- Clear velocity anisotropy at the Solar circle.
- Two haloes have a rotating DM component in the disc with mean velocity comparable (within 50 km/s) to that of the stars.
- Hint for the existence of a co-rotating dark disk in 2 out of 14 MW-like haloes.
 Dark disks are relatively rare in our halo sample.

 Bozorgnia et al., 1601.04707 Schaller et al., 1605.02770
- Sizable dark disks also rare in other hydro simulations:
 - They only appear in simulations where a large satellite merged with the MW in the recent past, which is robustly excluded from MW kinematical data.

Bozorgnia & Bertone, 1705.05853

The halo integral

 Halo integrals for the best fit Maxwellian velocity distribution (peak speed 223 - 289 km/s) fall within the 1σ uncertainty band of the halo integrals of the simulated haloes.

Bozorgnia et al., 1601.04707

The halo integral

Common trend in different hydrodynamical simulations:

 Halo integrals and hence direct detection event rates obtained from a Maxwellian velocity distribution with a free peak are similar to those obtained directly from the simulated haloes.

> Bozorgnia et al., 1601.04707 (EAGLE & APOSTLE) Kelso et al., 1601.04725 (MaGICC) Sloane et al., 1601.05402 Bozorgnia & Bertone, 1705.05853

Assuming the Standard Halo Model:

Nassim BozorgniaUK HEP Forum, 29 Nov 2017

• Compare with simulated Milky Way-like haloes:

Fix local ρ_{χ} =0.3 GeV cm⁻³

- Difference in the local DM density —> overall difference with the SHM.
- Variation in the peak of the DM speed distribution —> shift in the low mass region.

Comparison to other hydrodynamical simulations:

Fix local ρ_X =0.3 GeV cm⁻³

Bozorgnia & Bertone, 1705.05853

Non-standard interactions

• For a very general set of non-relativistic effective operators:

Kahlhoefer & Wild, 1607.04418

$$\frac{d\sigma_{\chi N}}{dE_R} = \frac{d\sigma_1}{dE_R} \frac{1}{v^2} + \frac{d\sigma_2}{dE_R}$$

Non-standard interactions

• For a very general set of non-relativistic effective operators:

 $\frac{d\sigma_{\chi N}}{dE_R} = \frac{d\sigma_1}{dE_R} \frac{1}{v^2} + \frac{d\sigma_2}{dE_R}$ $\eta(v_{\min}, t) \qquad h(v_{\min}, t) = \int_{v > v_{\min}} d^3v \ v \ f_{det}(\mathbf{v}, t)$

Non-standard interactions

• For a very general set of non-relativistic effective operators:

 $\frac{d\sigma_{\chi N}}{dE_R} = \frac{d\sigma_1}{dE_R} \frac{1}{v^2} + \frac{d\sigma_2}{dE_R}$ $\eta(v_{\min}, t) \qquad h(v_{\min}, t) = \int_{v > v_{\min}} d^3v \ v \ f_{det}(\mathbf{v}, t)$

• Best fit Maxwellian $h(v_{\min})$ falls within the $I \sigma$ uncertainty band of the $h(v_{\min})$ of the simulated haloes.

Prospects for indirect DM searches

Indirect DM searches

• Expected gamma-ray flux from DM annihilation:

$$\frac{d\Phi_{\gamma}}{dE} = \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \frac{dN_{\gamma}}{dE} \int_{\text{l.o.s.}} ds \frac{\rho^2(r(s,\psi))}{\rho^2(r(s,\psi))}$$

• Large uncertainties in the DM density profile in the inner few kpc.

Nassim Bozorgnia

UK HEP Forum, 29 Nov 2017

Indirect DM searches

• Expected gamma-ray flux from DM annihilation:

$$\frac{d\Phi_{\gamma}}{dE} = \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \frac{dN_{\gamma}}{dE} \int_{\text{l.o.s.}} ds \frac{\rho^2(r(s,\psi))}{\rho^2(r(s,\psi))}$$

• Large uncertainties in the DM density profile in the inner few kpc.

Use cosmological simulations:

- DMO simulations predict NFW profile: $r^{-\gamma}$, where $\gamma \approx 1$ in the inner few kpc.
- What is the DM density profile for MW-like galaxies in hydrodynamical simulations?

Galactic centre GeV excess

 Unexplained excess of gamma rays in Fermi-LAT data from the centre of our Galaxy, above the known astrophysical background.
 Hooper & Goodenough '09, Vitale & Morselli '09,

• DM interpretation:

Best fit value for the inner slope: $\gamma = 1.26 \pm 0.15$

• Other interpretations: unresolved millisecond pulsars, diffuse photons from cosmic rays, stellar source population in the Galactic bulge, ...

Galactic centre GeV excess

- Test the DM density profile predicted by hydrodynamical simulations against the GeV excess data.
- Additional selection criterion of MW-like galaxies: substantial stellar disk component.

4 MW analogues:

2 EAGLE + 2 APOSTLE

• GeV excess data analyzed in the region:

 $2^{\circ} \le |b| \le 20^{\circ} \& |l| \le 20^{\circ}$

radial scale: 0.3 - 3 kpc

 A very conservative approach: power-law extrapolation with maximal asymptotic slope at the Power radius.

EAGLE HR (2 haloes): $0.94 < \gamma_{\text{max}} < 0.98$ at $R_{\text{P03}} = 1.8$ kpc

APOSTLE IR (2 haloes): $0.50 < \gamma_{max} < 0.62$ at $R_{P03} = 1.8$ kpc.

Fitting the GeV excess

• Assuming 100% annihilation into b-quarks:

Similar constraints on DM mass and annihilation cross section, but significantly worse fit.

(238 dof)

Profile	$\langle \sigma v \rangle [\times 10^{-26} \mathrm{cm}^3/\mathrm{s}]$	$m_{\chi}[{ m GeV}]$	χ^2	p-value
gNFW ($\gamma = 1.26$)	1.71 ± 0.11	47.32 ± 1.07	223.9	0.73
EAGLE HR	1.96 ± 0.14	46.37 ± 1.37	246.3	0.34
APOSTLE IR	1.76 ± 0.16	45.36 ± 2.96	283.9	0.02

Fitting the GeV excess

 Even under our very conservative assumption, DM density profiles of our MW-like galaxies do not reproduce the correct morphology of the GeV excess in the inner most regions.

Summary

- Need a precise determination of the DM distribution in the MW.
 Identify MW analogues in simulations by taking into account observational constraints on the MW.
 - Local DM density agrees with local and global estimates.
 - DM density profiles show flattening in the inner few kpc and contraction up to 10 kpc.
 - Halo integrals match well those obtained from best fit Maxwellian velocity distributions.
- A Maxwellian velocity distribution with peak speed constrained by hydro simulations, and independent from the local circular speed, could be used for the analysis of direct detection data.
- DM density profiles of MW-like galaxies fail to reproduce the GeV excess.

Selection criteria for MW analogues

- M_{*} strongly correlated with v_c at 8 kpc, while the correlation of M₂₀₀ with v_c is weaker.
- $M_{\star}(R < 8 \text{ kpc}) = (0.5 0.9)M_{\star}$.
- $M_{\rm tot}(R < 8 \, \rm kpc) = (0.01 0.1) M_{200}$.
- Over the small halo mass range probed, little correlation between *M*_{DM}(*R* < 8 kpc) and *M*₂₀₀.

Departure from isothermal

Nassim Bozorgnia

UK HEP Forum, 29 Nov 2017

Searching for dark disks

DM and stellar velocity distributions:

- Fit with a double Gaussian. Difference in the mean speed of second Gaussian between DM and stars is 35 km/s in the left, and 7 km/s in the right panel.
- Fraction of second Gaussian is 32% in the left panel and 43% in the right panel.

Searching for dark disks

Is there an enhancement of the local DM density in the **Galactic disc** compared to the **halo**?

Compare the the average \(\rho_{DM}\) in the torus with the value in a spherical shell at 7 < R < 9 kpc.</p>

 $ho_{\rm DM}^{\rm torus}$ is larger than $ho_{\rm DM}^{\rm shell}$ by:

2 – 27% for 10 haloes, greater than 10% for 5 haloes, and greater than 20% for only two haloes.

The increase in the DM density in the disc could be due to the DM halo contraction as a result of dissipational baryonic processes.

Halo shapes

- ► To study the shape of the inner (R < 8 kpc) DM haloes, we calculate the inertia tensor of DM particles within 5 and 8 kpc.</p>
 ⇒ ellipsoid with three axes of length a ≥ b ≥ c.
- Calculate the sphericity: s = c/a.
 - s = 1: perfect sphere. s < 1: increasing deviation from sphericity.
 - At 5 kpc, s = [0.85, 0.95]. At 8 kpc, s lower by less than 10%.
 - Due to dissipational baryonic processes, DM sphericity systematically higher in the hydrodynamic simulations compared to DMO haloes in which s = [0.75, 0.85].

Halo shapes

Describe a deviation from sphericity by the triaxiality parameter:

$$T=\frac{a^2-b^2}{a^2-c^2}$$

0

. 0

• Oblate systems, $a \approx b \gg c \Rightarrow T \approx 0$.

In the hydro case, since inner haloes are very close to spherical, deviation towards either oblate or prolate is small. DMO counterparts have a preference for *prolate* inner haloes.

Parameters of the simulations

Ling et al. Eris NIHAO EFS- EAGLE (HR) APOSTLE (IR) MaGICC GA	AMSES ASOLINE GASOLINE2 ET (ANARCHY) 1 ET (ANARCHY) 2 ASOLINE 4	$\begin{array}{r} 2662 \\ 81213 \\ - \\ 1821 - 3201 \\ 2160, \ 3024 \\ 4849, \ 6541 \\ 5845, \ 5460 \end{array}$	$\begin{array}{c} - \\ 2 \times 10^{4} \\ 3.16 \times 10^{5} \\ 2.26 \times 10^{5} \\ 1.3 \times 10^{5} \\ 2.2 \times 10^{5} \\ 2.2 \times 10^{5} \end{array}$	7.46×10^{5} 9.80×10^{4} 1.74×10^{6} 1.21×10^{6} 5.9×10^{5} 1.11×10^{6} 1.5×10^{5}	200 124 931 350 308 310

Properties of the selected MW analogues

Simulation	Count	$M_{\rm star}~[\times 10^{10} {\rm M}_\odot]$	$M_{\rm halo}~[\times 10^{12} {\rm M}_{\odot}]$	$\rho_{\chi}~[{\rm GeV/cm^3}]$	$v_{\rm peak}~[{\rm km/s}]$
Ling et al.	1	~ 8	0.63	0.37 - 0.39	239
Eris	1	3.9	0.78	0.42	239
NIHAO	5	15.9	~ 1	0.42	192 - 363
EAGLE (HR)	12	4.65 - 7.12	2.76 - 14.26	0.42 - 0.73	232 - 289
APOSTLE (IR)	2	4.48, 4.88	1.64 - 2.15	0.41 - 0.54	223 - 234
MaGICC	2	2.4 - 8.3	0.584, 1.5	0.346, 0.493	187, 273
Sloane <i>et al.</i>	4	2.24 - 4.56	0.68 - 0.91	0.3 - 0.4	185 - 204

Morphology of simulated haloes

- Select simulated galaxies whose stellar kinematics show a disc component, rather than ellipticals or undergoing mergers.
- Characterize the morphology of each simulated galaxy by looking for evidence of coherent rotation.
- Use the distribution of angular momentum vectors of individual particles relative to the net angular momentum of the galaxy to discriminate between discs (coherent rotation) and spheroids (no coherent rotation).
- Derive the distribution of the stellar orbital circularity parameter,

$$\epsilon(r) = rac{\dot{j}_z}{\dot{j}_c(r)}$$

A distribution peaked at $\epsilon = 1 \Rightarrow$ disc An almost symmetric distribution around $\epsilon = 0 \Rightarrow$ spheroidal system

Morphology of simulated haloes

- With this criterion we can identify galaxies that have a dominant disc, and remove galaxies that show an almost symmetric distribution around e = 0.

GeV excess spatial profile

Generalized NFW:

$$\rho(r) = \rho_s \frac{r_s^3}{r^{\gamma} (r+r_s)^{3-\gamma}}$$

Calore et al., 1409.0042

GeV excess DM interpretation

Channel	$\langle \sigma v \rangle$ $(10^{-26} \text{ cm}^3 \text{ s}^{-1})$	m_{χ} (GeV)	$\chi^2_{ m min}$	p-value
$\bar{q}q$	$0.83\substack{+0.15 \\ -0.13}$	$23.8^{+3.2}_{-2.6}$	26.7	0.22
$\bar{c}c$	$1.24\substack{+0.15\\-0.15}$	$38.2^{+4.7}_{-3.9}$	23.6	0.37
$\overline{b}b$	$1.75\substack{+0.28\\-0.26}$	$48.7\substack{+6.4 \\ -5.2}$	23.9	0.35
$ar{t}t$	$5.8\substack{+0.8\\-0.8}$	$173.3^{+2.8}_{-0}$	43.9	0.003
gg	$2.16\substack{+0.35 \\ -0.32}$	$57.5_{-6.3}^{+7.5}$	24.5	0.32
W^+W^-	$3.52\substack{+0.48\\-0.48}$	$80.4^{+1.3}_{-0}$	36.7	0.026
ZZ	$4.12_{-0.55}^{+0.55}$	$91.2^{+1.53}_{-0}$	35.3	0.036
hh	$5.33\substack{+0.68\\-0.68}$	$125.7\substack{+3.1 \\ -0}$	29.5	0.13
$ au^+ au^-$	$0.337\substack{+0.047\\-0.048}$	$9.96\substack{+1.05 \\ -0.91}$	33.5	0.055
$\left[\mu^+\mu^-$	$1.57\substack{+0.23 \\ -0.23}$	$5.23\substack{+0.22 \\ -0.27}$	43.9	0.0036] _{JØS}

Calore et al., 1411.4647