

How to rule out cold dark matter

Carlos S. Frenk Institute for Computational Cosmology, Durham

The restauration of the local division of the

The new Ogden Centre at Durham

... or other viable dark matter models

111111 1

The ACDM model of cosmogony

15 thousand million vears The cosmic microwave The big Ball background is emitted 300 thc (t~350,000 yrs) 3 minutes **Production of** he particle dark matter firs (t ~ 10⁻¹⁰ s) 10⁻⁴³ seconds C 0 10³² degrees Universe 10²⁷ degrees **Cosmic inflation** 10¹⁵ degr (initial conditions) $(t \sim 10^{-35} s)$ degrees radiation positron (antiparticles proton heavy particles neutron carrying 18 degrees meson the weak force hydrogen quark deuterium anti-quark e helium 3 degrees K electron _ lithium

The initial conditions for galaxy formation

Quantum fluctuations from inflation

Univer

Planck collaboration '13

University of Durham		Non-baryonic dark matter candidates			
From the 1980s: Type		;	example	mass	
	hot		neutrino	few tens of eV	
	warm		sterile v	keV-MeV	
	cold		axion neutralino	10 ⁻⁵ eV - 100	GeV

Non-linear evolution

Non-linear evolution: simulations

Initial conditions + assumption about content of Universe

Relevant equations:

Collisionless Boltzmann, Poisson, Friedmann eqn, Radiative hydrodynamics Subgrid astrophysics

How to make a virtual universe

Non-baryonic dark matter cosmologies

Neutrino DM → wrong clustering

Neutrinos cannot make appreciable contribution to Ω $\rightarrow m_v << 30 \text{ ev}$

Non-baryonic dark matter cosmologies

Neutrino DM → wrong clustering

Neutrinos cannot make appreciable contribution to Ω $\rightarrow m_{\nu} << 30 \text{ ev}$

Early CDM N-body simulations gave promising results

In CDM structure forms hierarchically

The cosmic power spectrum: from the CMB to the 2dFGRS

⇒ ACDM provides an excellent description of mass power spectrum from 10-1000 Mpc Sanchez et al 06

The cosmic power spectrum: from the CMB to the 2dFGRS

Free streaming \rightarrow

 $\lambda_{cut} \alpha m_x^{-1}$

for thermal relic

 $m_{CDM} \sim 100 GeV$ susy; $M_{cut} \sim 10^{-6} M_{o}$

 $m_{WDM} \sim few \text{ keV}$ sterile v; $M_{cut} \sim 10^9 M_o$

Both CDM & WDM compatible with CMB & galaxy clustering Claims that both types of DM have been discovered: CDM: γ-ray excess from Galactic Center WDM (sterile v): 3.5 X-ray keV line in galaxies and clusters

Very unlikely that both are right!

Sterile neutrinos

Explain:

- Neutrino oscillations and masses
- Baryogenesis
- Absence of right-handed neutrinos in standard model
- Dark matter
- Sterile neutrino minimal standard model (vMSM; Boyarski+ 09):
- Extension of SM w. 3 sterile neutrinos: 2 of GeV; 1 of keV mass
- If $\Omega_N = \Omega_{DM}$, 2 parameters: mass, lepton asymmetry/mixing angle
- GeV particles may be detected at CERN (SHiP)
- Dark matter candidate can be detected by X-ray decay

The cosmic power spectrum: from the CMB to the 2dFGRS

Free streaming \rightarrow

 $\lambda_{cut} \alpha m_x^{-1}$

for thermal relic

 $m_{CDM} \sim 100 GeV$ susy; $M_{cut} \sim 10^{-6} M_{o}$

 $m_{WDM} \sim \text{few keV}$ sterile v; $M_{cut} \sim 10^9 M_o$

Cold Dark Matter

Warm Dark Matter

13.4 billion years ago

cold dark matter

warm dark matter

How can we distinguish between these?

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, Boyarski & Ruchayskiy '12

cold dark matter

warm dark matter

Obvious test: count satellites in MW or M31

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, Boyarski & Ruchayskiy '12

Most subhalos never make a galaxy!

Because:

- Reionization heats gas to 10⁴K, preventing it from cooling and forming stars in small halos (T_{vir} < 10⁴K)
 - Supernovae feedback expels residual gas in slightly larger halos

Luminosity Function of Local Group Satellites

- Median model → correct abund. of sats brighter than M_v=-9 and V_{cir} > 12 km/s
- Model predicts many, as yet undiscovered, faint satellites
- LMC/SMC should be rare (~10% of cases)

Benson, Frenk, Lacey, Baugh & Cole '02 (see also Kauffman+ '93, Bullock+ '00, Somerville '02)

Luminosity Function of Local Group Satellites

- Median model → correct abund. of sats brighter than M_v=-9 and V_{cir} > 12 km/s
- Model predicts many, as yet undiscovered, faint satellites
- LMC/SMC should be rare (~10% of cases)

Benson, Frenk, Lacey, Baugh & Cole '02 (see also Kauffman+ '93, Bullock+ '00, Somerville '02)

VIRG

icc.dur.ac.uk/Eagle

"Evolution and assembly of galaxies and their environment" THE EAGLE PROJECT

Virgo Consortium

Durham: Richard Bower, Michelle Furlong, Carlos Frenk, Matthieu Schaller, James Trayford, Yelti Rosas-Guevara, Tom Theuns, Yan Qu, John Helly, Adrian Jenkins. Leiden: Rob Crain, Joop Schaye. Other: Claudio Dalla Vecchia, Ian McCarthy, Craig Booth...

VIRC

The Eagle Simulations

EVOLUTION AND ASSEMBLY OF GALAXIES AND THEIR ENVIRONMENTS

The Hubble Sequence realised in cosmological simulations

S0

E7

E0

Irr

S Trayford et al '15

APOSTLE EAGLE full hydro simulations

Local Group

Sawala et al '<u>16</u>

Dark matter

APOSTLE EAGLE full hydro simulations

Far fewer satellite galaxies than CDM halos Sawala et al '16

Fraction of dark subhalos

All halos of mass $< 5 \times 10^8 M_o$ or $V_{max} < 7$ km/s are dark (m_{*} $< 10^4 M_o$)

Fattahi et al '16

EAGLE Local Group simulation

When "baryon effects" are taken into account

Observed abundance of satellites is compatible with CDM

There is no such thing as the "satellite problem" in CDM!

How about in WDM?

Luminosity Function of Local Group Satellites in WDM

From "Warm Apostle:" 7keV sterile v $M_h \sim 10^{12} M_o$

Lovell et al. '16

All we have achieved by counting satellite galaxies is to rule out a few WDM models!

Does the inner structure of satellites help?

The Density Profile of Cold Dark Matter Halos

The core-cusp problem

cold dark matter

warm dark matter

Lovell, Eke, Frenk, Gao, Jenkins, Theuns '12

Is this it?

If cores were found in galaxies would that rule out CDM and WDM?

How about baryon effects?

Baryon effects in the MW satellites

Let gas cool and condense to the galactic centre

- → gas self-gravitating
 → star formation/burst
- Rapid ejection of gas during starburst → a core in the halo dark matter density profile
- Navarro, Eke, Frenk '96

Parry, CSF et al. '11 Governato et al. '12 Pontzen & Governato '12 Brooks et al. '12

Figure 3. Equilibrium density profiles of haloes after removal of the disc. The solid line is the original Hernquist profile, common to all cases. The dot-dashed line is the equilibrium profile of the 10 000-particle realization of the Hernquist model run in isolation at t=200. (a) $M_{disc}=0.2$. (b) $M_{disc}=0.1$. (c) $M_{disc}=0.05$.

Cores in dwarf galaxy simulations

Governato et al. assume high density threshold for star formation

- High threshold allows large gas mass to accumulate in centre
 - Sudden repeated removal of gas transfers binding energy

Depends on details of how star formation is modelled (subgrid physics)

Key parameter: gas density threshold for star formation

High density \rightarrow NEF mechanism Low density \rightarrow not enough central gas density to perturb DM

Indirect CDM detection through annihilation radiation

Supersymmetric particles are Majorana particles → annihilate into Standard Model particles (including γ-rays)

Intensity of annihilation radiation at x is:

 $I(x) = \frac{1}{8\pi} \sum_{f} \frac{dN_{f}}{dE} \langle \sigma_{f} v \rangle \int_{los} \left(\frac{\rho_{\chi}}{M_{\chi}} \right)^{2} ldl$ $\int_{cross-section (particle physics)}^{halo density at x (astrophysics)}$

 $\langle \sigma v \rangle = 3 \times 10^{-26} cm^3 s^{-1}$ relic abundance in simple SUSY models

- \Rightarrow Theoretical expectation requires knowing $\rho(\mathbf{x})$
- Accurate high resolution N-body simulations of halo formation from CDM initial conditions

Does Nature have cores?

There is NO evidence for cores in dwarf galaxies

Existing data are consistent with either cusps or cores

Is there any way can distinguish CDM from WDM?

There is no need for despair: there is a way to distinguish them

cold dark matter

warm dark matter

Rather than counting faint galaxies, count the number of dark halos

cold dark matter

warm dark matter

Dark halos can be detected through gravitational lensing

How to rule out CDM

Gravitational lensing: Einstein rings

When the source and the lens are well aligned -> strong arc or an Einstein ring

Einstein Ring Gravitational Lenses

Hubble Space Telescope • ACS

Gravitational lensing: Einstein rings

Halos projected onto an Einstein ring distort the image

Vegetti & Koopmans '09

Detecting substructures with strong lensing

Vegetti & Koopmans '09

Substructures vs interlopers

Subhalos & halos projected along the l.o.s both lens: who wins?

The number of line-of-sight haloes is larger than that of subhaloes

Li, CSF et al. '16

Substructures vs interlopers

Subhalos & halos projected along the l.o.s both lens: who wins?

This is the cleanest possible test: it depends ONLY on the small-mass end of the "field" halo mass function which we know how to calculate and is unaffected by baryons

The subhalo mass function

Detecting substructures with strong lensing

- Σ_{tot} = projected halo number density within Einstein ring
 - m_c= halo cutoff mass
 - 100 Einstein ring systems and detection limit: $m_{low} = 10^7 h^{-1}M_o$

- If DM is 7 keV sterile ν → exclude CDM at >>σ!
- If DM is CDM → exclude
 7 keV sterile v at >>σ

Detection limit = $10^7 h^{-1}M_{o}$ 1.2 0.3 **CDM** WDM N = 100N = 100 $\Sigma_{\text{tot}} > M_{\text{lim}}$ 0.15 0.6∟ 4.0 6.0 8.0 7.0 11.0 9.0 $\log(m_c/h^{-1}M_o)$ $\log(m_c/h^{-1}M_o)$ m_c= halo cutoff mass $m_{c} = 1.3 \times 10^{8} h^{-1} M_{o}$ for coldest 7 keV sterile neutrino

Li, CSF et al '16

- ΛCDM: great success on scales > 1Mpc: CMB, LSS, gal evolution
- But on these scales ACDM cannot be distinguished from WDM
- The identity of the DM makes a big difference on small scales
- Counting faint galaxies cannot distinguish CDM/WDM
- 2. Halos < ~5.10⁸ M_0 are dark; halos >10¹⁰ M_0 are bright (abundance matching fails for halos <10¹⁰ M_0)
- No evidence for cores but baryon effects can make ther
- Distortions of strong gravitational lenses offer a clean test of CDM vs WDM
 and can potentially rule out CDM!