

University

Dark Matter at Collider & Interplay

Björn Penning Brandeis & Bristol

The LHC

	2011/12	Design
Energy	7 / 8TeV	13-14 TeV
Bunch Spacing	50ns	25(50)ns
Luminosity	3.6/8×10 ³³	10 ³⁴ cm ⁻² s ⁻¹
Pile-Up	~20/40	~50(100)

CMS Integrated Luminosity, pp

The LHC

Data [unit fb⁻¹]

- published: 12-36 fb⁻¹
- recorded: 100 fb⁻¹
- your PhD: 150-300 fb⁻¹

- If all evidence of DM is gravitational, why should we look for it at collider (particularly hadron)?
- Well motivated:
 - 'WIMP paradigm' predicts particles approximate EW scale
 - Many HEP BSM theories predict viable DM candidates
 - Complementarity, collider have different strengths and uncertainties
 - Colliders would be uniquely able to measure the WIMPs properties

- DM has to be kinematically accessible: ~1-1000GeV
- Essentially two types of collider searches:
 - 1. Search for DM (mono-X)
 - 2. Search for the Mediator

Signature

- At collider the WIMPs are invisible but are inevitably produced in association with visible particles from ISR
 - → 'back-to-back' signature due to momentum conservation in the CoM
- Can be parametrize this via EFT or more commonly & robust as simplified models

- Leads to known interactions
 - scalar (ψψ),
- vector $\overline{\psi}\gamma^{\mu}\psi$,
 - pseudo scalar $(\overline{\psi}\gamma^5\psi)$ axial-vector $(\overline{\psi}\gamma^\mu\gamma^5\psi)$

• Protons collide

- DM produced will escape the detector and recoil from the visible state
- Signature explores wide range of interactions and final states particles

- Protons collide and produce almost always visible particle
- DM produced will escape the detector and recoil from the visible state
- Signature explores wide range of interactions and final states particles

- Protons collide and produce almost always visible particle
- DM escapes the detector and recoil from the visible state
- Signature explores wide range of interactions and final states particles

- Protons collide and produce almost always visible particle
- DM escapes the detector and recoil from the visible state
- Signature explores wide range of interactions and final states particles

Colliding protons have no transverse momentum → vectorial sum must vanish
 → non-vanishing (e.g. missing) transverse momentum indicates invisible particle escaping

- 'Missing Energy' most powerful variable in search for new physics
- Different DM candidates couple with different strengths to different visible particles

(Hadron) Collider searches

- Searches performed in mono-X signature with X=γ,j, tt, H, W, Z etc
- In the simplified picture mono-jet searches often most senstitive
- Energies at LHC can boost decay particles of final states into merged 'fat jet': mono-V

- Mono- γ , appears less sensitive bc. of α_{em} / α_s
- Such coupling difference actually lead to possibly DM natures
- Vast majority of searches probe very trigger strategy: MET and High p_T visible object

Brandeis

University

mono-j/V results

arXiv:1711.03301, 1703.01651, 1706.03794

- Both ATLAS & CMS analysed 2016 dataset (36fb⁻¹)
- Best results for vector type couplings
- The mono-V channels also allows to constrain H→inv mostly from GF compared to dedicated searches mostly accessing VBF and VH

DM & heavy quarks

arXiv:1710.11412, 1706.02581

- Scalar type couplings also result in mono-tt/bb with interesting features
- Also only current t-channel (b-FDM) model

- Scalar type couplings also result in mono-tt/bb with intersting features
- CP Structure of DM impacts angular variables or m(tt) spectrum

Björn Penning • UK HEP Forum • November 29, 2017

Searches with Higgs bosons

ā

- Higgs 'natural' messenger to dark world, minimal extension to Lagrangian, 'Higgs Portal'
- Search for $H \rightarrow XX$ or DM+H production
- Mono-H searches quite similar to mono-j, more interesting searches with more than one mediator
 - Allow for interesting signatures and to set relic density

- H→XX only sensitive to masses of m_{DM}≤m_H
- Leading searches utilize H→bb and H→γγ decays

Searches for Mediator

- Collider DM searches are actually searches for the mediator
- Search for the mediator itself in decays to hadrons and interpret them in axial-vector model
- Narrow resonance in dijet spectrum → perhaps most straightforward searches

- Stringent constraints at high masses
- Not dominated by single experiment because of challenging environment
- At low masses actually not well constrained

Björn Penning • UK HEP Forum • November 29, 2017

• DM part of extended sector of new physics at TeV scale

• Discovery may be rather easy, property measurement very hard

- Results interpreted in cMSSM, pMSSM and simplified models, no excess
- Often the neutralino is the DM candidate (LSP)

A N	TLAS SUSY Sea	rches*	- 95%	% Cl	L Lov	ver Limits		ATLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeV
	Model	e, μ, τ, γ	′ Jets	E ^{miss} T	∫ <i>L dt</i> [fb	$\frac{1}{\sqrt{s}} = 7,$	8 TeV \sqrt{s} = 13 TeV	Reference
n. Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ (\text{compressed}) \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow q (\ell \ell / \ell \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow q (\ell \ell / \ell \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow q (\ell \ell / \ell \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow q (\ell \ell / \ell \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow q (\ell \ell / \ell \nu) \tilde{\chi}_$	$\begin{array}{c} 0\text{-3 } e, \mu/1\text{-2 } \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1\text{-2 } \tau + 0\text{-1 } \tau \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 7-11 jets ℓ 0-2 jets - 1 b 2 jets 2 jets 2 jets -	 b Yes Yes Yes Yes - Yes Yes Yes Yes Yes Yes 	20.3 36.1 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	<i>q̃</i> , <i>š̃</i>	$\begin{split} &m(\tilde{q}) = m(\tilde{g}) \\ &m(\tilde{\chi}^0) < 200 \ \text{GeV}, \ m(1^{st} \ \text{gen}, \tilde{q}) = m(2^{nd} \ \text{gen}, \tilde{q}) \\ &m(\tilde{\chi}^0) < 200 \ \text{GeV} \\ &m(\tilde{\chi}^0) < 200 \ \text{GeV} \\ &m(\tilde{\chi}^0) < 200 \ \text{GeV} \ m(\tilde{\chi}^0) + m(\tilde{g})) \\ &m(\tilde{\chi}^0) < 200 \ \text{GeV} \\ &m(\tilde{\chi}^0) < 200 \ \text{GeV} \\ &m(\tilde{\chi}^0) < 400 \ \text{GeV} \\ &m(\tilde{\chi}^0) < 400 \ \text{GeV} \\ &cr(NLSP) < 0.1 \ mm \\ &m(\tilde{\chi}^0) > 680 \ \text{GeV}, \ cr(NLSP) < 0.1 \ mm, \ \mu < 0 \\ &m(NLSP) > 430 \ \text{GeV} \\ &m(NLSP) < 1.1 \ mm, \ \mu > 0 \\ &m(NLSP) > 430 \ \text{GeV} \\ &m(\tilde{g}) = m(\tilde{q}) = 1.5 \ TeV \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd ger ẽ med	$egin{array}{llllllllllllllllllllllllllllllllllll$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	š 1.92 TeV š 1.97 TeV š 1.37 TeV	$m(\tilde{x}_{1}^{1}) > 600 \text{ GeV}$ $m(\tilde{x}_{1}^{0}) > 200 \text{ GeV}$ $m(\tilde{x}_{1}^{0}) < 300 \text{ GeV}$	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to b\tilde{x}_{1}^{0} \\ \tilde{b}_{1}b_{1}, \tilde{b}_{1} \to b\tilde{x}_{1}^{1} \\ \tilde{t}_{1}\tilde{b}_{1}, \tilde{t}_{1} \to b\tilde{x}_{1}^{1} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to Wb\tilde{x}_{1}^{0} \text{ or } \tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to \mathcal{K}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to \mathcal{K}_{1}^{0} \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \to \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \to \tilde{t}_{1} + h \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0.2 \ e, \mu \\ 0.2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	\$\vec{b}_1\$ 950 GeV \$\vec{b}_1\$ 275-700 GeV \$\vec{b}_1\$ 117-170 GeV \$\vec{l}_1\$ 117-170 GeV \$\vec{l}_1\$ 90-198 GeV \$\vec{l}_1\$ 90-323 GeV \$\vec{l}_1\$ 90-323 GeV \$\vec{l}_2\$ 150-600 GeV \$\vec{l}_2\$ 290-790 GeV \$\vec{l}_2\$ 320-880 GeV	$\begin{split} & m(\tilde{k}_{1}^{0}){<}420~GeV \\ & m(\tilde{k}_{1}^{0}){<}200~GeV, m(\tilde{k}_{1}^{+}){=}m(\tilde{k}_{1}^{0}){+}100~GeV \\ & m(\tilde{k}_{1}^{0}){=}2m(\tilde{k}_{1}^{0}), m(\tilde{k}_{1}^{0}){=}55~GeV \\ & m(\tilde{k}_{1}^{0}){=}1~GeV \\ & m(\tilde{r}_{1}){-}m(\tilde{k}_{1}^{0}){=}5~GeV \\ & m(\tilde{k}_{1}^{0}){=}150~GeV \\ & m(\tilde{k}_{1}^{0}){=}0~GeV \\ & m(\tilde{k}_{1}^{0}){=}0~GeV \\ \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{l} \tilde{\ell}_{LR} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_1^+, \tilde{\chi}_2^0, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_L \nu \tilde{\ell}_L \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1^0, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_2^0 \tilde{\chi}_3, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{\ell}_R \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_1^0 - \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_1^0 - \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \rightarrow \gamma \tilde{G} 1 \ e, \mu + \gamma \\ \gamma \gamma \tilde{G} 2 \ \gamma \end{array}$	0 0 - 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_1^0) \!\!=\!\! 0 \\ & m(\tilde{\chi}_1^0) \!\!=\!\! 0, m(\tilde{\ell}, \tilde{\nu}) \!\!=\!\! 0.5(m(\tilde{\chi}_1^\pm) \!\!+\! m(\tilde{\chi}_1^0)) \\ & m(\tilde{\chi}_1^0) \!\!=\!\! 0, m(\tilde{\tau}, \tilde{\nu}) \!\!=\!\! 0.5(m(\tilde{\chi}_1^\pm) \!\!+\! m(\tilde{\chi}_1^0)) \\ & sm(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0) \!\!=\!\! 0, m(\tilde{\ell}, \tilde{\nu}) \!\!=\!\! 0.5(m(\tilde{\chi}_1^\pm) \!\!+\! m(\tilde{\chi}_1^0)) \\ & m(\tilde{\chi}_1^\pm) \!\!=\!\! m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0) \!\!=\!\! 0, \tilde{\ell} decoupled \\ & m(\tilde{\chi}_1^\pm) \!\!=\!\! m(\tilde{\chi}_2^0), m(\tilde{\ell}, \tilde{\nu}) \!\!=\!\! 0.5(m(\tilde{\chi}_2^\pm) \!\!+\! m(\tilde{\chi}_1^0)) \\ & cr <\!\! 1 nm \\ & cr <\!\! 1 nm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	$\begin{array}{l} \text{Direct} \ \tilde{\chi}_1^+ \tilde{\chi}_1^- \ \text{prod., long-lived} \ \tilde{\chi}_1^\pm \\ \text{Direct} \ \tilde{\chi}_1^+ \tilde{\chi}_1^- \ \text{prod., long-lived} \ \tilde{\chi}_1^\pm \\ \text{Stable, stopped} \ \tilde{g} \ \text{R-hadron} \\ \text{Stable} \ \tilde{g} \ \text{R-hadron} \\ \text{Metastable} \ \tilde{g} \ \text{R-hadron} \\ \text{GMSB, stable} \ \tilde{\tau}, \ \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu) \\ \text{GMSB,} \ \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \ \text{long-lived} \ \tilde{\chi}_1^0 \\ \tilde{g} \ \tilde{g}, \ \tilde{\chi}_1^0 \rightarrow 2 \tilde{G} \\ \text{GGM} \ \tilde{g} \ \tilde{g}, \ \tilde{\chi}_1^0 \rightarrow 2 \tilde{G} \end{array}$	Disapp. trk dE/dx trk 0 trk dE/dx trk $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$ displ. vtx + je	1 jet - 1-5 jets - - - - μμ - ts -	Yes Yes - - Yes - Yes -	36.1 18.4 27.9 3.2 19.1 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_1^+) \cdot m(\tilde{\chi}_1^0) \sim 160 \; MeV, \; \tau(\tilde{\chi}_1^\pm) = 0.2 \; ns \\ & m(\tilde{\chi}_1^+) \cdot m(\tilde{\chi}_1^0) \sim 160 \; MeV, \; \tau(\tilde{\chi}_1^\pm) < 15 \; ns \\ & m(\tilde{\chi}_1^0) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ & m(\tilde{\chi}_1^0) = 100 \; GeV, \; \tau > 10 \; ns \\ & 10 < tan\beta < 50 \\ & 1 < \tau(\tilde{\chi}_1^0) < 3 \; ns, \; SPS8 \; model \\ & 7 < c\tau(\tilde{\chi}_1^0) < 740 \; mm, \; m(\tilde{g}) = 1.3 \; TeV \\ & 6 < c\tau(\tilde{\chi}_1^0) < 480 \; mm, \; m(\tilde{g}) = 1.1 \; TeV \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow W\tilde{x}_{1}^{0}, \tilde{x}_{1}^{0} \rightarrow eev, e\muv, \mu\muv \\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow W\tilde{x}_{1}^{0}, \tilde{x}_{1}^{0} \rightarrow \tau\tauv_{e}, e\tauv_{\tau} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow qqq \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow qq\tilde{x}_{1}^{0}, \tilde{x}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}_{1}^{0}, \tilde{x}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}_{1}^{1}, \tilde{t}_{1} \rightarrow bs \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau\\ 2 \ e, \mu \ (SS)\\ 4 \ e, \mu\\ 3 \ e, \mu + \tau\\ 0 \ 4\\ 1 \ e, \mu \ 8\\ 1 \ e, \mu \ 8\\ 0\\ 2 \ e, \mu\end{array}$		- Yes Yes ets - ets - 4 b - 4 b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} \lambda_{311}'=0.11, \lambda_{132/133/233}=0.07 \\ m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \ mm \\ m(\tilde{k}_{1}^{0})>400 \ GeV, \lambda_{12k}\neq0 \ (k=1,2) \\ m(\tilde{k}_{1}^{0})>0.2\times m(\tilde{k}_{1}^{1}), \lambda_{133}\neq0 \\ BR(t)=BR(c)=0\% \\ m(\tilde{k}_{1}^{0})=800 \ GeV \\ \hline \ m(\tilde{k}_{1}^{0})=800 \ GeV \\ \hline \ m(\tilde{k}_{1}^{0})=1 \ TeV, \lambda_{112}\neq0 \\ m(\tilde{t}_{1})=1 \ TeV, \lambda_{323}\neq0 \\ BR(\tilde{t}_{1}\rightarrow be/\mu)>20\% \end{array}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2017-036
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	č 510 GeV	$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325
*Only pher	a selection of the available ma nomena is shown. Many of the	ass limits on limits are ba	new state ased on	es or	1	0^{-1} 1	Mass scale [TeV]	

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/

Current Results

Results

Results

Results

Results

Results

Results

Results

spin-independent

Brandeis University

Collider Overview

Boosted dijet (35.9 fb⁻¹) 10⁻³⁹ DM + j/V (35.9 fb⁻¹) [EXO-16-048] 10⁻⁴⁰ **DM +** γ (12.9 fb⁻¹) [EXO-16-039] **10**⁻⁴¹ DM + Z_{II} (35.9 fb⁻¹) [EXO-16-052] 10^{-42} DD/ID observed exclusion 90% CL PICASSO 10⁻⁴³ [arXiv:1611.01499] PICO-60 [arXiv:1702.07666] Super-K (bb) 10⁻⁴⁴ [arXiv:1503.04858] IceCube (bb) [arXiv:1612.05949] 10^{-45} IceCube (tt) 10² 10 10^{3} [arXiv:1601.00653] Dark matter mass m_{DM} [GeV]

 Setting stringent constraints on spin-(in)dependent DM

 Remember, spinindependent suppressed at DD

 All searches employ similar tigger/models

(Pseudo-)Scalar searches are just becoming sensitive

• Some model dependency

 Many more interesting searches I cannot cover here

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ CombinedSummaryPlots/EXOTICS/ https://twiki.cern.ch/twiki/pub/ CMSPublic/ PhysicsResultsEXO/DM-summary-plots-Jul17.pdf

How do we connect and learn from all three fields?

Reminder

 In a real life we need some mediator between the 'dark World' and the known Universe

- Leads to known interactions
 - scalar (ψψ),
 - pseudo scalar ($\overline{\Psi}\gamma^{5}\Psi$),
 - vector $\overline{\psi}\gamma^{\mu}\psi$,
 - axial-vector $(\overline{\Psi}\gamma^{\mu}\gamma^{5}\Psi)$
- Interesting kinematics and experimental sensitivities
 Björn Penning UK HEP Forum• November 29, 2017

Parameterizing Dark Matter

Vector

 $g_{\rm DM} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi$

EWK style (equal to leptons)

Besides very low DM masses DD wins clearly over collider

Axial-Vector

 $g_{\rm DM} Z^{\prime\prime}_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$

DD and collider are equal in overall sensitivity but probe different regions of parameter space

mass based (Yukawa)

Scalar

$g_{\rm DM}S\bar\chi\chi$

DD and collider are equal in overall sensitivity but probe different regions of parameter space **Pseudo-Scalar**

 $g_{\rm DM} P \bar{\chi} \gamma^5 \chi$

No limits from DD (only from ID). Collider provides limits similar to scalar couplings

DM can only b discovered by combining these approaches

The (near) future

LHC Run Plan

Year

The Path to Discovery

created using code from Chris McCabe

created using code from Chris McCabe

created using code from Chris McCabe

created using code from Chris McCabe

created using code from Chris McCabe

created using code from Chris McCabe

created using code from Chris McCabe

Some final remarks

DM searches at e⁺e⁻ collider

- We can also search in the clean environments of e⁺e⁻ collider for light mediators (√s≤10 GeV)
- Barbar had (partial) mono-photon trigger, already advancing in uncharted territory
- Belle-II (2018) will provide great sensitivity
- Similar constraints from rare decays (KLEO etc) and LHCb searches are in preparation

Beam Dump Experiments

• Beam Dump experiments performed at JLab, SLAC, Fnal, others also probe light mediators using 'dark photon' or 'Vector portal'

Brandeis

University

3 8 2

- Limits are set using dimensionless DM annihilation xsec $Y = \epsilon^2 \alpha_D (m_X/m_V)^4$
- Potential to powerfully probe yet unexplored region, dedicated experiments planned

New approaches

- Large experience, rapid increases in energy/lumi and great phenomenological effort led to quite comprehensive analysis of simple s-channel models that cause the prominent mono-X signature
- No excess, but variety of DM models have been ruled out and new inter-disciplinary developments instigated.
 - Present models and searches are among the most simple ones using similar phase space
 - ~5% of LHC data recorded, 2% analyzed using similar models and phase space

- New approaches will push the field far beyond today's state:
 - long-lived particle searches [1706.07407, 1704.06515]
 - new signatures [1503.00009, 1706.07407, 1308.0592]
 - new production modes [1308.0592, 1607.06680]
 - dark sectors [1707.05326]
 - dark-photon searches [1310.6752, 1311.0029]
 - Novel detectors (milliQan, Faser, MATHUSLA) [1705.06327, 1708.09389, 1410.6816].

Summary

- DM is out there and will transform our understanding of the universe
- Collider searches are particularly powerful at low WIMP masses and are not subject to significant astrophysical uncertainties.
- LHC is running, direct detection, and indirect detection are improving rapidly – the field is being transformed now
- DM searches need to be interdisciplinary
 - DM has to be discovered in several fields to be confirmed and measured
- The WIMP miracle does not necessarily imply vanilla dark matter: SuperWIMPs, WIMPless DM may be warm, self-interacting...
- If discovery in DD or ID, collider might be best suited to measure DM in lab → provide physics case for future machine

What is DM?

- Dark matter is a hugely successful theory to explain plenty of observations
- It is the one theory that can successfully simulate and reproduce the universe on all scales:
 - Galaxy rotation curves
 - Galaxy clustering
 - Cluster collision
 - Large-scale structures
 - CMB fluctuations
 - Gravitational lensing
- Unambiguous evidence for new physics

 Global fit of cosmological parameters, ΛCDM:
 → Ω_Λ≈ 0.68, Ω_{DM} ≈ 0.27, Ω_b≈ 0.05