

CMS Experiment at LHC, CERN Data recorded: Wed Oct 4 12:02:47 2017 CEST Run/Event: 304366 / 247257181 umi section: 153

Searches for NMSSM Signatures with Low Missing ET at the CMS Detector Alexander Titterton YTF, Durham 2018

University of BRISTOL Southampton

Science & Technology Facilities Council Rutherford Appleton Laboratory

Motivation: A problem with the Standard Model

- Can Supersymmetry fix this?

• Hierarchy problem: Why is Higgs mass 125GeV, not Planck mass or zero?

Minimally Supersymmetric

- MSSM = Minimal Supersymmetric Standard Model.
- which are **not** dimensionless...

$$W_{_{MSSM}} =$$
Yukawa co

Gives solution to hierarchy problem but at low energies appears similar to SM.

• But has a term which is not very natural, involves setting by hand parameters

ouplings $(q, l^+, l^- \text{ masses})$ $+ \mu H_{\mu}H_{d} + \dots$

(Almost) Minimally Supersymmetric

- **NMSSM = Next to** Minimal Supersymmetric Standard Model.
- Gives solution to hierarchy problem but at low energies appears similar to SM.
- But has a term which is more natural, **does not** involve setting by hand parameters which are not dimensionless...

$$W_{NMSSM} = \text{Yukawa couplings } (q, l^+, l^- \text{ masses})$$
$$+ \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{1}{3} \kappa \hat{S}^3 + \dots$$

So we want to search for this...

- Large MET searches have ruled out many areas of parameter space.
- with low MET.
- <u>Idea</u>: What if LSP is Singlino SUSY counterpart of singlet Higgs?
- particles.
- [3].

How about scenario for Lightest Supersymmetric Particle (LSP) production

Consider NLSP —> LSP + X decay, where X decays into Standard Model

• If $M_X \approx M_{NLSP}$ then LSP will carry little momentum, giving small MET signal

• Low MET: Looking at NMSSM cascades ending in

Higgs $\rightarrow bb$ (jets)

- Looking at p p --> squarks, gluinos in initial state.
- Want to turn this into experimental analysis.

So we want to search for this...

$NLSP \rightarrow Higgs + LSP$

Propaganda

• Fig. 1: The CMS detector

Propaganda

Fig. 2: Oversized novelty version for outreach purposes

Simulation Tools

- Generate mass spectrum from Lagrangian parameters using NMSSMTools.
- Fairly new: All cross-sections now at NLO!
- Compute diagrams and matrix elements using MADGraph.
- Decay/shower particles using Pythia 8.
- Simulate the detector measurements using Delphes.

• Benchmark points: (From Arxiv:1412.6394)

		$M_{\tilde{q}} [\text{GeV}]$	$M_{\tilde{g}} [\text{GeV}]$	$M_{\tilde{t}}$ or $M_{\tilde{b}}$ [GeV]	σ [pb]
ſ	P1	1000	1010	decoupled	~ 1.362
l	P2	1400	1410	decoupled	~ 0.1377
	P3	1100	900	decoupled	~ 2.312
	P4	1500	1300	decoupled	~ 0.2018
	P5	1400	1410	$M_{\tilde{t}} = 750$	~ 0.1378
	P6	1100	1110	$M_{\tilde{b}} = 750$	~ 0.737
	P7	1500	1300	$M_{\tilde{t}} = 750$	~ 0.202
	P8	1400	1200	$M_{\tilde{b}} = 750$	~ 0.3577

Simulation

Cut & Count Analysis

- Compare with existing analysis (CMS-SUS-16-038 @ 36.3fb⁻¹) for now to try to find regions of parameter space invisible to current searches.
- Calculate strength parameters at 95%CL for where our signal can realistically sneak in under the radar.

• Depending on the shape of the resulting plots we can then see whether the efficiency of the cuts or the cross-section dominates.

Cut & Count Analysis

- >=6 jets, jets each require >40GeV PT
- >1200GeV HT
- >200GeV MHT
- Biased Delta Phi > 0.5
- = 2, = 3 b-jets (separate categories, will look at both).
- Luminosity = 36.3fb⁻¹@ 13TeV

• Applying same cuts as per high-HT, many jets & b-jets regions in CMS SUS-16-038:

Signal Properties Missing E_T

—— M_sq=2000, M_LSP=3

—— M_sq=2000, M_LSP=1653

600 800 1000 1200 1400 1600 1800 2000 16 MET [GeV]

ΗT

Signal Properties

MHT

at 95% CL

 $\sigma_{\frac{Max}{M}}$

4

Ь

Upper Limit

Theo

at 95% CL

Theo

at 95% CL

Theor)

Conclusions and the Plan Going Forward

- Cross-section seems dominant over current searches: Low SUSY mass gives too high cross-section despite the efficiencies of the cuts.
- However we see the limits are less harsh for very light LSP.
- This region we would like to explore further.
- Current searches not so well equipped to look at low-MET final states, so in the lower cross-section areas we should expect to see a drop in sensitivity.
- Heavy squarks and light LSP means very boosted topologies, can be tricky!

Conclusions and the Plan Going Forward

- Want to explore low-sensitivity region with light-LSP.
- Boosted b-jets: CMS boosted double-b tagger could be used.
- Preliminary approach shows QCD bkg reduced a lot by asking for hard AK4 jets plus 2 AK8 double-b jets.

Thanks!

First Mass Scan

- Squarks 10GeV lighter than Gluino.
- LSP 127GeV (SM Higgs plus a bit) lighter than NLSP.
- Squarks in 50GeV steps from 1000 to 2000.
- LSP in 50GeV steps from 3 to 853.
- When M_sq=1000 and M_LSP=853, we only have 10GeV between gluino and squark, and 20GeV between Squark and NLSP...
- This could give us low MET and low HT...
- Then also scan in styles of other points P3, P5, P7.

