Measurement of top quark pair production in association with a vector boson

Why Top still interesting?

- With final Tevatron data set and the ever growing LHC data sample: top quark studies very interesting until today!
- What can we learn?
 - Is the top really the "SM top", or something else? \rightarrow need to measure its production cross section and properties and compare with SM calculations
 - Top quark: only quark decaying before it hadronises \rightarrow can study a bare quark For example can study spin of a quark directly (as it transfers it to the decay products before it could hadronise); or study a quark's charge
 - Top production and decay: via strong and electroweak forces \rightarrow we can learn more about these forces For example: W helicity in top decays
 - Top as window to new physics (since it is the heaviest known particle) S C C \rightarrow searches for many new physics models in the top sector
 - Large top samples at LHC: use top events to develop new tools \rightarrow for example tools to access the colour flow between jet pairs

Background in BSM searches

ttbar + MET (+leptons) : generic BSM signal

irreducible background

BSM Higgs + 2L

Summary of results

			<u>1609.01599</u> <u>1509.05276</u>	<u>1711.02547</u> <u>1510.01131</u>
\sqrt{s}	σ	Theory (NLO)	ATLAS	CMS
8 ToV	$t\bar{t}Z$	215 ± 30 fb	176^{+58}_{-52} fb (4.2 σ)	242^{+65}_{-55} fb (6.4 σ)
o lev	$t\bar{t}W$	232 ± 32 fb	369^{+100}_{-91} fb (5σ)	382^{+117}_{-102} fb (4.8 σ)
$13 \text{ T}_{0}\text{V}$	$t\bar{t}Z$	$0.84\pm0.10~\rm{pb}$	$0.9 \pm 0.3 \text{ pb} (3.9\sigma)$	$0.99 \pm 0.15 \text{ pb} (> 5\sigma)$
TOTEN	$t\bar{t}W$	$0.60\pm0.11~\rm{pb}$	$1.5 \pm 0.8 \text{ pb} (2.2\sigma)$	$0.77 \pm 0.17 \text{ pb} (5.3\sigma)$

only 3 fb⁻¹!

36 fb⁻¹

Future plans:

- full Run 2 dataset
- o differential cross-section
- open new channels (all-hadronic)
- boosted vs resolved techniques

- top sector precision measurement
- BSM effects / EFT interpretation
- (challenging) background for BSM
- connect with other analyses (ttH)

Summary of results

<u>1711.02547</u>
<u>1510.01131</u>
CMS

but more channels than CMS!

nly 3 fb⁻¹!

36 fb⁻¹

Future plans:

- full Run 2 dataset
- o differential cross-section
- open new channels (all-hadronic)
- o boosted vs resolved techniques

- top sector precision measurement
- BSM effects / EFT interpretation
- (challenging) background for BSM
- connect with other analyses (ttH)

Standard Model Total Production Cross Section Measurements Status: July 2017

The ATLAS detector

6

Fig. 3: Rare footage of ATLAS physicists giving birth to a **pixel detector**

Jets and b-tagging

Analysis strategy: "cut & count"

Process	$t\overline{t}$ decay	Boson decay	Channel	$Z \to \ell^+ \ell^-$
$t\bar{t}W^{\pm}$	$(\ell^{\pm}\nu b)(q\bar{q}b)$	$\ell^{\mp} u$	OS dilepton	no
	$(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$q\bar{q'}$	OS dilepton	no
	$(\ell^{\pm}\nu b)(q\bar{q}b)$	$\ell^{\pm} u$	SS dilepton	no
	$(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$\ell^{\pm} u$	Trilepton	no
$t\bar{t}Z$	$(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$q \overline{q}$	OS dilepton	no
	$(q\bar{q}b)(q'\bar{q'}b)$	$\ell^+\ell^-$	OS dilepton	yes
	$(\ell^{\pm}\nu b)(q\bar{q}b)$	$\ell^+\ell^-$	Trilepton	yes
	$(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$\ell^+\ell^-$	Tetralepton	yes

Focus on high- σ regions

low branching fraction but excellent S/B ratio

Same-sign dilepton ttW 🕴 Trilepton ttZ

exceedingly rare in the SM! (= kills off dileptonic top pairs)

 $p_T(\ell) > 25 \text{ GeV}$ $E_T^{\text{miss}} > 40 \text{ GeV}$ $\sum_{\text{jets}} p_T > 240 \text{ GeV}$ $N_{\text{b-jets}} \ge 2$

+ split by lepton flavour

signal lepton

expect 2 neutrinos / a Z

1 hadronic top

Tetralepton region is also good for EFT, but suffers from very low statistics

 $p_T(\ell) > 25, 20 \text{ GeV}$ $|m_{\ell\ell} - m_Z| < 10 \text{ GeV}$ $N_{\text{jets}} \ge 3$ $N_{\text{b-jets}} \ge 1$

Background estimation

Results at 8 TeV

"discovery

"evidence

Results at 13 TeV

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t \bar{t} W}$
Luminosity	2.6%	3.1%
Reconstructed objects	8.3%	9.3%
Backgrounds from simulation	5.3%	3.1%
Fake leptons and charge misID	3.0%	19%
Signal modelling	2.3%	4.2%
Total systematic	11%	22%
Statistical	31%	48%
Total	32%	53%

Results at 13 TeV

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.6%	3.1%
Reconstructed objects	8.3%	9.3%
Backgrounds from simulation	5.3%	3.1%
Fake leptons and charge misID	3.0%	19%
Signal modelling	2.3%	4.2%
Total systematic	11%	22%
Statistical	31%	48%
Total	32%	53%

Constraints on BSM physics

5 relevant dimension-6 EFT operators

New observables from EFT

Conclusions

Measurement of top quark pair production in association with a vector boson at ATLAS

$\sigma_{t \bar{t} Z}$	=	$0.92 \pm 0.30 (\text{stat.}) \pm 0.11 (\text{syst.}) \text{ pb}$
$\sigma_{t \bar{t} W}$	=	$1.38\pm0.70(\mathrm{stat.})\pm0.30(\mathrm{syst.})~\mathrm{pb}$

- Good agreement with SM prediction at NLO
- 2015 + 2016 combination (36 fb⁻¹) under way
- + 2017 : differential cross-section measurement
- Full Run-2 data: large reduction of EFT coupling uncertainties
- Precision measurement and novel techniques can benefit BSM searches too

Run 2 results are coming! Stay tuned...