

Predicting Right-Handed Neutrino Masses from the Littlest Seesaw and Leptogenesis

Sam Rowley¹

¹SHEP Group, Physics and Astronomy, University of Southampton

YTF10, 12 Jan 2018

ongoing work with S. Molina-Sedgwick and Prof. S.F. King

Sam Rowley (University of Southampton)

Predictions for $RH\nu$

YTF10, 12 Jan 2018 1 / 18

Outline

- Background
 - Seesaw Models: Type-I
 - The Littlest Seesaw
 - Leptogenesis
- This Work: Predictions for RH neutrinos
- Preliminary Results
- Outlook

Sam Rowley (University of Southampton)

s YTF:

YTF10, 12 Jan 2018 3 / 18

Why Seesaw Models?

- Standard Model cannot explain neutrino masses and oscillations or the observed BAU
- Need extension theory in order to be consistent with data
- Possible solution: models that utilise a Type-I Seesaw mechanism

The Type-I Seesaw

- Extend the SM by a number of right-handed neutrinos ν_R
- Give rise to additional terms in the Lagrangian:

$$\mathcal{L}_m^D = -Y_
u \overline{\ell}_L \widetilde{H}
u_R + h.c.
ightarrow -m_D \overline{
u_L}
u_R + h.c.$$

$$\mathcal{L}_m^M = -\frac{1}{2} M_R \overline{\nu_R^c} \nu_R + h.c.$$

• Collect terms together \implies neutrino mass matrix:

$$\begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

 In the limit M_R ≫ m_D, approximately diagonalise to obtain light neutrino masses:

$$m_{\nu} = m_D M_R^{-1} m_D^T = v^2 Y_{\nu} M_R^{-1} Y_{\nu}^T$$

Extend the SM by **two** RH ν singlets: $\nu_R = \begin{pmatrix} \nu_R^{atm} \\ \nu_R^{sol} \end{pmatrix}$

$$-\mathcal{L}_{LS} = -\mathcal{L}_{SM} + (Y_{\nu}\overline{\ell}_{L}\widetilde{H}\nu_{R} + \frac{1}{2}M_{R}\overline{\nu_{R}^{c}}\nu_{R} + h.c.)$$

N.B. Y_{ν} is a 2 × 3 matrix and M_R is 2 × 2

Constrained Sequential Dominance \implies heaviest RH ν gives dominant contribution to the heaviest LH neutrino mass

Two RH ν s \implies lightest LH neutrino is **massless**, $m_1 = 0$

Fixes the absolute scale of neutrino masses

Constraints on Δm_{12} and $\Delta m_{13}
ightarrow$ constraints on $\mathbf{m_2}$ and $\mathbf{m_3}$

Figure: [King:1701.04413]

Four distinct cases of the LS, labelled A through D.

Fixes the absolute scale of neutrino masses

Constraints on Δm_{12} and $\Delta m_{13}
ightarrow$ constraints on $\mathbf{m_2}$ and $\mathbf{m_3}$

Figure: [King:1701.04413]

Four distinct cases of the LS, labelled A through D.

Fixes the absolute scale of neutrino masses

Constraints on Δm_{12} and $\Delta m_{13}
ightarrow$ constraints on $\mathbf{m_2}$ and $\mathbf{m_3}$

Figure: [King:1701.04413]

Four distinct cases of the LS, labelled A through D.

The Littlest Seesaw: A and B

• Case A:

$$Y_{\nu}^{\mathcal{A}} = \begin{pmatrix} 0 & be^{i\eta/2} \\ a & nbe^{i\eta/2} \\ a & (n-2)be^{i\eta/2} \end{pmatrix}, \quad M_{R}^{\mathcal{A}} = \begin{pmatrix} M_{atm} & 0 \\ 0 & M_{sol} \end{pmatrix}$$

• Case B:

$$Y_{\nu}^{\mathcal{B}} = \begin{pmatrix} 0 & be^{i\eta/2} \\ a & (n-2)be^{i\eta/2} \\ a & nbe^{i\eta/2} \end{pmatrix}, \quad M_{\mathcal{R}}^{\mathcal{B}} = \begin{pmatrix} M_{atm} & 0 \\ 0 & M_{sol} \end{pmatrix}$$

 η is a complex phase and *n* is the order of CSD.

Southampton

The Littlest Seesaw: C and D

$$Y_{\nu}^{C} = egin{pmatrix} be^{i\eta/2} & 0 \ nbe^{i\eta/2} & a \ (n-2)be^{i\eta/2} & a \end{pmatrix}, \quad M_{R}^{C} = egin{pmatrix} M_{sol} & 0 \ 0 & M_{atm} \end{pmatrix}$$

$$Y^D_
u = egin{pmatrix} be^{i\eta/2} & 0\ (n-2)be^{i\eta/2} & a\ nbe^{i\eta/2} & a \end{pmatrix}, \quad M^D_R = egin{pmatrix} M_{sol} & 0\ 0 & M_{atm} \end{pmatrix}$$

 η is a complex phase and n is the order of CSD.

Southampton

RG Evolution

- Theory defined at $\mu = \Lambda_{GUT}$, data available at low energies
- Evolve observables to low scales through RG running

RG Evolution

- Theory defined at $\mu = \Lambda_{GUT}$, data available at low energies
- Evolve observables to low scales through RG running

Sam Rowley (University of Southampton)

RG Evolution (2)

Southampton

• Observed asymmetry normalised to the entropy density of the universe:

$$Y_B \simeq (0.87 \pm 0.03) imes 10^{-10}$$

- Leptogenesis: mechanism for generating a BAU
- Type-I seesaw models are able to generate a lepton asymmetry through the decay of the lightest $\mathrm{RH}\nu$
- Lepton asymmetry converted to baryon inbalance through sphaleron processes in the SM

This work: *Predictions for RH* νs

• Can we accurately predict the masses of the RH neutrinos in the Littlest Seesaw?

This work: Predictions for $RH\nu s$

- Can we accurately predict the masses of the RH neutrinos in the Littlest Seesaw?
- Use precision neutrino data

Observable	Measured Value	
$sin^2(heta_{12})$	$0.306\substack{+0.012\\-0.012}$	[[]
$sin^2(heta_{13})$	$0.02166\substack{+0.00075\\-0.00075}$	[⊏s 16]
$sin^2(heta_{23})$	$0.441\substack{+0.027\\-0.021}$	
δ	$-99^{\circ}^{+51^{\circ}}_{-59^{\circ}}$	
Δm_{12}^2	$7.50^{+0.19}_{-0.17}\times10^{-5}\text{eV}^2$	
Δm_{13}^2	$2.524^{+0.039}_{-0.040}\times10^{-3}\text{eV}^2$	

Esteban et. al.(NuFit 3.0): l611.01514]

This work: Predictions for $RH\nu s$

- Can we accurately predict the masses of the RH neutrinos in the Littlest Seesaw?
- Use precision neutrino data and BAU from Leptogenesis

Observable	Measured Value	
$sin^2(heta_{12})$	$0.306\substack{+0.012\\-0.012}$	[Esteban et. al.(NuFit 3.0):
$sin^2(heta_{13})$	$0.02166\substack{+0.00075\\-0.00075}$	1611.01514]
$sin^2(heta_{23})$	$0.441\substack{+0.027\\-0.021}$	
δ	$-99^{\circ}^{+51^{\circ}}_{-59^{\circ}}$	[Spergel et. al.:
Δm_{12}^2	$7.50^{+0.19}_{-0.17}\times10^{-5}\text{eV}^2$	astro-ph/06033449]
Δm_{13}^2	$2.524^{+0.039}_{-0.040}\times10^{-3}\text{eV}^2$	
Y _B	$0.87^{+0.03}_{-0.03} imes 10^{-10}$	

UNIVERSITY OF

Southan

This work

Scan over RH neutrino masses:

$$\begin{split} 1.0 \times 10^9 &\leq M_{atm} \leq 5.0 \times 10^{15} \\ 1.0 \times 10^9 &\leq M_{sol} \leq 5.0 \times 10^{15} \end{split}$$

a and *b* are left as free parameters.

n fixed to be 3 and η fixed to be $\pm 2\pi/3$

ⁱAntusch et. al.:hep-ph/0501272.

This work

Scan over RH neutrino masses:

$$\begin{split} 1.0 \times 10^9 &\leq \textit{M}_{atm} \leq 5.0 \times 10^{15} \\ 1.0 \times 10^9 &\leq \textit{M}_{sol} \leq 5.0 \times 10^{15} \end{split}$$

a and *b* are left as free parameters.

n fixed to be 3 and η fixed to be $\pm 2\pi/3$

Grid over parameter space, determine the best fit point for each case by minimising χ^2

ⁱAntusch et. al.:hep-ph/0501272.

Checking 2D Parameter Space

Southampton

Global Minimum Check (Case D)

Preliminary Best Fit Points

	Parameters			χ^2	
	$M_{atm}/{ m GeV}$	$M_{sol}/{ m GeV}$	а	b	X
Case A	$1.0 imes10^{11}$	$1.0 imes10^{15}$	0.0113	0.370534	7.31496
Case B	$1.0 imes 10^{10}$	$1.0 imes10^{15}$	0.00354	0.370534	4.93358
Case C	1.0×10^{15}	$1.0 imes10^{10}$	1.24691	0.00114	3.46989
Case D	$1.0 imes10^{15}$	$1.0 imes10^{10}$	1.24691	0.00114	1.78567

Southampton

Preliminary Best Fit Points: Case D Southampton

Concentrate on Case D, look at variation of χ^2 with RH ν masses. Varying $M_{\rm atm}$:

Parameters				2/2
$M_{atm}/{ m GeV}$	$M_{sol}/{ m GeV}$	а	b	X
$5.0 imes10^{12}$	$1.0 imes10^{10}$	0.0782107	0.00108097	10.0119
$1.0 imes10^{13}$	$1.0 imes10^{10}$	0.110607	0.00108097	13.0470
$5.0 imes10^{13}$	$1.0 imes10^{10}$	0.251836	0.00109801	8.56636
$1.0 imes10^{14}$	$1.0 imes10^{10}$	0.35615	0.00109801	11.0418
$5.0 imes10^{14}$	$1.0 imes10^{10}$	0.839184	0.00111505	3.50215
$1.0 imes10^{15}$	$1.0 imes10^{10}$	0.836253	0.00114306	1.78567

Preliminary Best Fit Points: Case D Southampton

Concentrate on Case D, look at variation of χ^2 with RH ν masses. Varying ${\it M}_{\it sol}$:

Parameters				2 ²
$M_{atm}/{ m GeV}$	$M_{sol}/{ m GeV}$	а	b	X
$1.0 imes10^{15}$	$1.0 imes10^{10}$	0.836253	0.00114306	1.78567
$1.0 imes10^{15}$	$5.0 imes10^{10}$	0.836253	0.00257733	1.79572
$1.0 imes10^{15}$	$1.0 imes10^{11}$	1.24691	0.00367512	2.17086
$1.0 imes10^{15}$	$5.0 imes10^{11}$	1.24691	0.00828538	2.03957
$1.0 imes10^{15}$	$1.0 imes10^{12}$	1.24691	0.0117173	1.78793
$1.0 imes10^{15}$	$5.0 imes10^{12}$	1.24691	0.0264144	1.98070

• Neutrino data seems to be fixing heaviest RH neutrino mass

- Include leptogenesis observables/data into our χ^2 fitting \implies constraints on lighter RH neutrino
- Perform more rigorous fitting by 'homing in' on desirable areas of the parameter space
- Possible use of Markov Chain Monte Carlo (MCMC) methods to find best fit in desirable region

• Neutrino data seems to be fixing heaviest RH neutrino mass

- Include leptogenesis observables/data into our χ^2 fitting \implies constraints on lighter RH neutrino
- Perform more rigorous fitting by 'homing in' on desirable areas of the parameter space
- Possible use of Markov Chain Monte Carlo (MCMC) methods to find best fit in desirable region

Thank you for your attention