YTF10: Lattice Holographic Cosmology

Matthew Mostert¹ Dr. A. Juettner² Prof. K. Skenderis²

¹CDT NGCM, University of Southampton

²University of Southampton

12th January 2018

Image credit: ESA and the Planck Collaboration

< □ > < @ > < 注 > < 注 > ... 注

Engineering and Physical Sciences Research Council

2 The Inflationary Solution...

3 Holographic Cosmology

- Motivation
- Details of the Model
- Comparison to ΛCDM
- Conclusions from HC

4 Lattice Holographic Cosmology

1 Universal Observations and BBT

2 The Inflationary Solution...

Holographic Cosmology

- Motivation
- Details of the Model
- Comparison to ACDM
- Conclusions from HC

4 Lattice Holographic Cosmology

The Faults in Our Universe?

Flatness problem:

- $\Omega_0 = 1.0023^{+0.0056}_{-0.0054}$ from Planck 2015 [1]
- Very fine-tuned initial energy density required?
- Density diverges from critical with cosmic time...
- Closer than 1 in 10^{62} to Ω_c at Big Bang!!

• Horizon Problem:

- In CMB and galaxy surveys: Isotropy
- Cosmological Principle: Homogeneity
- $\blacktriangleright\,$ At CMB, causal sphere was $9 imes 10^5$ ly $ightarrow 1^o$ in sky today
- ► Two causally disconnected regions are homogeneous?! (2.73K)

The Faults in Our Model!

- BBT couldn't solve these.
- Alan Guth submitted "Inflationary universe: A possible solution to the horizon and flatness problems" in 1980
 [2]
- Suggested a period of supercooling in early universe $(10^{-36}s \rightarrow 10^{-32}s)$ would lead to rapid expansion (now calculated at around 60 e-folds)

Figure: A happy Prof. Guth. Credit: MIT

Universal Observations and BBT

2 The Inflationary Solution...

Holographic Cosmology

- Motivation
- Details of the Model
- Comparison to ACDM
- Conclusions from HC

4 Lattice Holographic Cosmology

Solved Problems?

- Inflation became widely accepted scenario
- Further work including that by Andrei Linde (chaotic inflation) and Paul Steinhardt (eternal inflation)

Figure: Typical illustration of universe timeline. Credit: NASA

M. Mostert, NGCM UoS

(日) (周) (三) (三)

New problems

- Unknown mechanism underlying inflation
- Inflation is not falsifiable

Figure: A popular meme

A 🖓 h

1 Universal Observations and BBT

2 The Inflationary Solution...

Holographic Cosmology

Motivation

3

- Details of the Model
- Comparison to ΛCDM
- Conclusions from HC

4 Lattice Holographic Cosmology

Motivation for HC

- Theory of inflation based on gravity coupled to matter around FLRW background
- At very early time, perturbative treatment expected to break down due to increasingly large curvature
- Would thus require theory of quantum gravity!

Motivation for HC

- Quantum gravity expected to be holographic.
- Reduce bulk physics of QG to a QFT with no gravity in one dimension fewer
- Holography can let us predict cosmological observations!
- Bonus: Principle of holographic duality allows models with weakly coupled QFTs

HC Details

- McFadden and Skenderis [3] introduced a class of models based on 3D super-renormalisable QFTs.
- Found that these universally predicted a scalar power spectrum of form:

$$\Delta_0^2(q) = rac{\Delta_0^2}{1 + (gq_*/q) ln |q/eta gq_*| + \mathcal{O}(gq_*/g)^2}$$
 (1)

where g is related to the coupling constant of the theory and β depends on the loop calculations.

٨CDM

- Widely regarded as standard model of cosmology
- Simple version has 6 independent parameters
- Expanded by inflationary scenarios if so chosen
- Predicts the power spectrum of CMB:

$$\Delta_R^2(q) = \Delta_0^2(q_*) \left(\frac{q}{q_*}\right)^{n_s - 1} \quad (2)$$

Parameter	Value		
$\Omega_b h^2$	0.02230 ± 0.00014		
$\Omega_c h^2$	0.1188 ± 0.0010		
$100\theta_{MC}$	1.0415 ± 0.0006		
ns	$0.9667\pm.0040$		
Δ_R^2	$2.441^{+0.088}_{-0.092} imes10^{-9}$		
au	0.066 ± 0.012		

Table: 6 parameters for the ΛCDM model

Competitive Models

- Afshordi et al. [4] compared how well the HC power spectrum 1 fitted the Planck data against ACDM 2
- Both models within 2σ of data, however large difference between them at low $(I \lesssim 30)$ multipole

Figure: TT spectrum for both ACDM and HC against 2015 Planck data. [4]

Conclusions from HC

	HC		ΛCDM	
	best fit	2σ range	best fit	2σ range
$\Omega_b h^2$	0.2217	0.2215 ± 0.00021	0.02227	0.0225 ± 0.00020
$\Omega_c h^2$	0.1173	0.1172 ± 0.0012	0.1185	0.1186 ± 0.0012
$100\theta_{MC}$	1.04112	1.04115 ± 0.00042	1.04103	1.04104 ± 0.00042
τ	0.081	0.082 ± 0.013	0.067	0.067 ± 0.013
$10^{9}\Delta_{0}^{2}$	2.126	2.126 ± 0.058	2.143	2.143 ± 0.052
ns	_	—	0.9682	0.9677 ± 0.0045
g	-0.0070	$-0.0074\substack{+0.0014\\-0.0013}$	_	_
lnβ	0.88	$0.87^{+0.19}_{-0.24}$	_	—
χ^2	11324.5		11319.9	

Table: Parameter comparison between HC and Λ CDM from Afshordi, Gould & Skenderis 2017. All common parameters within 1σ of each other. [5]

3

12 N 4 12 N

< 4 → <

So what's the problem?

Figure: Values of g and $ln|\beta|$ constrained by WMAP and Planck 2015 data. g is pushed lower as data is restricted to low multipoles...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 → Q

1 Universal Observations and BBT

2 The Inflationary Solution...

Holographic Cosmology

- Motivation
- Details of the Model
- Comparison to ACDM
- Conclusions from HC

4 Lattice Holographic Cosmology

Pathway to LHC's (not that one) goal...

- So we are currently using the powers of lattice to model the low multipole region
- This process is going to involve a large number of steps starting from lots of high statistic simulations and culminating with final models making falsifiable predictions against the CMB data once again

Current Progress

- No papers yet...
- Locating the mass parameter in finite lattice simulations which translates to a massless renormalised theory √
- Using computational techniques to increase information yield from MCMC simulations \checkmark
- Using numerical methods to remove finite volume effects to find true critical mass point...
- Begin calculating energy-momentum tensors (Coming soon...)

1 Universal Observations and BBT

2 The Inflationary Solution...

Holographic Cosmology

- Motivation
- Details of the Model
- Comparison to ACDM
- Conclusions from HC

4 Lattice Holographic Cosmology

Summary

- (VERY) brief history lesson
- What drives us to find what drives inflation
- This is a multi-disciplinary collaboration
- In early stages but making promising progress

3

This work was supported by an EPSRC Doctoral Training Centre grant (EP/L015382/1).

Thanks to supervisors A. Juettner and K. Skenderis as well as other collaborators, A. Portelli, G. Cossu, M. Hanada, L. Del Debbio, and E. Gould!

- P. A. R. Ade et al., "<i>Planck</i> 2015 results," Astronomy & Astrophysics, vol. 594, p. A13, oct 2016.
- [2] A. H. Guth, "Inflationary universe: A possible solution to the horizon and flatness problems," *Physical Review D*, vol. 23, pp. 347–356, jan 1981.
- [3] P. McFadden and K. Skenderis, "Holography for cosmology," *Physical Review D*, vol. 81, p. 021301, jan 2010.
- [4] N. Afshordi, C. Corianò, L. Delle Rose, E. Gould, and K. Skenderis, "From Planck Data to Planck Era: Observational Tests of Holographic Cosmology," *Physical Review Letters*, vol. 118, p. 041301, jan 2017.
- [5] N. Afshordi, E. Gould, and K. Skenderis, "Constraining holographic cosmology using Planck data," mar 2017.

- 3

- 4 同 6 4 日 6 4 日 6