Thursday 11th January, 2018

Incoherent Mapping of the Gravitational Wave Background

Using 2+ earth-based detectors

Arianna I. Renzini supervised by Carlo Contaldi

Introduction: what is the GWB?

Energy spectrum of the Gravitational Wave Background [Allen and Romano, 1999]:

$$\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}}{d\ln f} \tag{1}$$

Astrophysical bgd

Cosmological bgd

overlap of unresolved signals:

- Compact binary inspirals
- Asymmetric SN explosions
- Gravitational captures

sourced by:

- Inflation
- Phase transitions
- Cosmic strings

• ..

Focus: **stationary background** of multiple overlapping sources.

Ο...

Figure 1: Current constraints on the GWB and models, from [Moore et al., 2014]

Imperial College London An incoherent approach

In general, the background will be an **incoherent superposition** of GWs, with a **characteristic (anisotropic) power on the sky**, so map **Stokes' Param.s:**

Frequency band will be detector dependent \Rightarrow so will the probed background origin.

 \Rightarrow **Incoherent approach**: integrate signal over detector frequency range.

Imperial College London Objectives and motivation

The goal is to **map gravitational wave anisotropies on the sky**, using the detectors we have.

astrophysical bgd: investigate large scale structure, intrinsic alignment, other polarisation properties

cosmological bgd: highly model and frequency dependent, not in band...

Limit for inspiral-dominated GWB [Abbott et al., 2017]:

$$\Omega_{2/3}(\textbf{\textit{n}}) < 2-6 imes 10^{-8}\,{
m sr}^{-1}$$

obtained in a specific, 2-detector frame. The multiple baseline search needs a more general frame and will be more constraining.

What we measure

7

The measured strain is

$$h = F_{+}(\boldsymbol{n}) h_{+}(\boldsymbol{n}, f) + F_{\times}(\boldsymbol{n}) h_{\times}(\boldsymbol{n}, f)$$
(2)

 F_+ and F_{\times} are the **polarisation response functions** of the detector - depend on (lat,lon), pol. response, position of earth w.r.t. pol. basis $\Rightarrow n \equiv n(t)$. Incoherent Mapping of the GWB Arianna I. Renzini

Correlating detecors, creating a beam on the sky

Correlate detectors to eliminate detector noise. Focus on GWB intensity ${\it I}$ on the sky

$$I \propto < h_{+} h_{+}^{'\star} > + < h_{\times} h_{\times}^{'\star} >$$

where $h_+(\pmb{n},f)$ and $h'_+\equiv h_+(\pmb{n'},f')$ from \neq detectors.

The combined response to I of a single baseline (pair of dect.s) is

$$\gamma_{I,ab}(\boldsymbol{n}) = F_a^+ F_b^{+\star} + F_a^{\times} F_b^{\times\star}$$
(3)

a, b: dect. labels.

note: \neq pol. modes have \neq **overlap functions**; we use **quaternions** to deal with geometry+polarisation.

Incoherent Mapping of the GWB

Figure 4: The overlap function γ_I on the sky for the LIGO detector pair.

Incoherent Mapping of the GWB

Noise-domination

The correlated signal $< H_a H_b^{'\star} > \equiv d_t(\boldsymbol{b}, f)$ is¹

$$d_t(\boldsymbol{b}, f) = \delta_{\boldsymbol{n}, \boldsymbol{n}'} \, \delta_{f, f'} \int_{S^2} d\boldsymbol{m} \, \gamma_{I, \, ab}(\boldsymbol{m}) \, I(f, \, \boldsymbol{m}) \, e^{2\pi i f \, \boldsymbol{m} \cdot \boldsymbol{b}} \quad (4)$$

this is noise-dominated:

$$d_t(\boldsymbol{b},f) = s_t(\boldsymbol{b},f) + n_t(f). \tag{5}$$

\Rightarrow The PSD of the noise is just the PSD of the data:

$$< n_{t,a}(f) n_{t,b}^{\star}(f') >= \delta_{tt'} \delta_{ff'} N_{t,t'}(f,f'),$$
(6)
$$N_{t,t'}(f,f') = P_{t,a}(f) P_{t',b}(f'), \qquad P_t(f) = < d_t(f) >^2.$$

¹if all anisotropies are 0.

Incoherent Mapping of the GWB

Making the map: spherical harmonics decomposition

$$d_t(\boldsymbol{b}, f) = \int_{S^2} d\boldsymbol{m} \, I(\boldsymbol{m}) \, \gamma_I(\boldsymbol{m}) \, E(f) \, e^{2\pi i f \, \boldsymbol{b} \cdot \boldsymbol{m}} \tag{7}$$

is the correlated data as a function of frequency f and the **baseline** b(t); decompose it:

$$d_{t}(\boldsymbol{b}, f) = \sum_{lm} d_{lm}^{t}(f) Y_{lm}^{\star}(\hat{b}),$$

$$d_{lm}^{t} = 4\pi i^{l} F_{l}(b) \sum_{LM, L'M'} a_{LM}^{l} \gamma_{L'M'}^{l} K_{LM, L'M', lm}.$$
(8)

 $K_{LM,L'M',lm}$: coupling kernel. Summing over (*Im*), (*L'M'*) we get

$$d_t(\boldsymbol{b}, f) = \sum_{LM} a'_{LM} M'_{LM}(\boldsymbol{b}, f) \,. \tag{9}$$

Incoherent Mapping of the GWB

Arianna I. Renzini

11

Making the map: maximum likelihood map

Extract a'_{LM} by minimizing the χ^2 of the map given the data [Thrane et al, 2009]; defining the **dirty map** z_{LM} :

$$z_{LM} := \sum_{T,f} \frac{M_{LM}^{\prime \star}(\hat{b})}{N(f)} d^{T}(f,\hat{b}); \qquad (10)$$

$$z_{LM} = \sum_{\tilde{L}\tilde{M}} A_{\tilde{L}\tilde{M}LM} a_{\tilde{L}\tilde{M}}^{I}, \quad A_{\tilde{L}\tilde{M}LM} = \sum_{T,f} \frac{M_{\tilde{L}\tilde{M}}^{I}(\hat{b})M_{LM}^{I^{\star}}(\hat{b})}{N(f)}, \qquad (11)$$

and the map solution which maximizes likelyhood is

$$a_{\tilde{L}\tilde{M}}^{\prime} = \sum_{LM} \left(A_{\tilde{L}\tilde{M}LM} \right)^{-1} z_{LM} \,. \tag{12}$$

We call $a_{\tilde{L}\tilde{M}}^{I}$ the **clean map** and A the **beam-pattern matrix**.

Incoherent Mapping of the GWB

Making the map: what happens in the code

Track time-coincident blocks of data in the dect.s and divide into equal segments, which are FFTd to get d_f ; then:

$$z_{LM} = \sum_{T \in \text{ block }} \sum_{b \in \text{ base }} \sum_{f \in F} M_{LM f_i} \tilde{d}_{f_i}, \qquad \tilde{d}_{f_i} = \delta_{ij} N_{f_i f_j}^{-1} d_{f_j}, \quad (13)$$

$$f_i, f_j \in \tilde{T} = F = \{f_1, f_2, f_3, ..., f_N\}.$$

Build $A_{\tilde{L}\tilde{M}LM}$ and invert it to get the clean map $a_{\tilde{L}\tilde{M}}$

$$A_{\tilde{L}\tilde{M}LM} = \sum_{T \in \text{ block }} \sum_{b \in \text{ base }} \sum_{f \in F} M_{\tilde{L}\tilde{M},f}^{T} N_{ff}^{-1} M_{LM,f}^{T}, \qquad (14)$$

$$a_{\tilde{L}\tilde{M}}=A_{\tilde{L}\tilde{M}\,LM}^{-1}z_{LM}\,,$$

which gets accumulated over time.

Incoherent Mapping of the GWB

Imperial College London What's in a map

Figure 5: The output of the analysis of \sim 2 days of LIGO S6 (2009-2010) open data. Unexciting as $\ell_{max}=4.$

We are still interpreting this... and inputting simulated data.

Incoherent Mapping of the GWB

Imperial College London Multiple baselines

The beam-pattern matrix for 1 baseline isn't easily invertible, we've been relying on SVD techniques.

We need multiple baselines to break the singularity of the beam-pattern matrix, and scan the LM space more efficiently.

The code allows an input from any number of detectors on earth - one just needs to simulate data from extra detectors \rightarrow *coming soon!*

Imperial College London Input maps

We simulate input maps by treating the signal and the noise separately;

- input noise: take PSD of existing data and simulate gaussian noise around it
- input signal: create input h_+ , h_\times signals and feed them into the detector [Cornish, 2001]:

$$H_{a}(f) = \int_{S^{2}} d\boldsymbol{n} \sum_{P=+,\times} h_{P}(f, \boldsymbol{n}) F_{a}^{P}(f, \boldsymbol{n}) \exp(2\pi i f \boldsymbol{n} \cdot \boldsymbol{x}_{a})$$
(15)

Comparing input/output maps is key to testing the mapper.

Next steps

In bullet points:

- Test the code and interpret spherical harmonic response of the setup
- Produce model-based input maps to input
- Include polarisation reconstruction
- Get better data (e.g. Advanced LIGO and Virgo runs)
- Generalize to other detector types: LISA

LISA is expected to probe extensively the frequency range for the AGWB... good news!

Thanks for listening!

Incoherent Mapping of the GWB

Making the map: maximum likelihood map

The goal is to extract the a'_{LM} . We do this by minimizing the χ^2 of the map given the data [Thrane et al, 2009]:

$$\chi^{2}(a_{LM}') = -\frac{1}{2} \sum_{t, f} \frac{(d_{t} - \langle d_{t} \rangle)(d_{t} - \langle d_{t} \rangle)^{*}}{N(f)}$$
(16)
where $d_{t}(f) = s_{a, t}^{*}(f) s_{b, t}(f), \qquad \langle d_{t}(\boldsymbol{b}, f) \rangle \equiv d_{t}(\boldsymbol{b}, f).$
from (9): $\frac{\partial \langle d_{t}(\boldsymbol{b}, f) \rangle}{\partial a_{LM}} = M_{LM}'(\hat{b});$

then we carry out the calculations...

Incoherent Mapping of the GWB

Making the map: maximum likelihood map

Defining the **dirty map** z_{LM} :

$$z_{LM} := \sum_{T,f} \frac{M_{LM}^{I\star}(\hat{b})}{N(f)} d^{T}(f,\hat{b}); \qquad (17)$$

$$z_{LM} = \sum_{\tilde{L}\tilde{M}} A_{\tilde{L}\tilde{M}LM} a_{\tilde{L}\tilde{M}}^{I}, \quad A_{\tilde{L}\tilde{M}LM} = \sum_{T,f} \frac{M_{\tilde{L}\tilde{M}}^{I}(\hat{b})M_{LM}^{I*}(\hat{b})}{N(f)}, \quad (18)$$

and the map solution which maximizes likelyhood is

$$a_{\tilde{L}\tilde{M}}^{I} = \sum_{LM} \left(A_{\tilde{L}\tilde{M}LM} \right)^{-1} z_{LM} \,. \tag{19}$$

We call $a'_{\tilde{L}\tilde{M}}$ the **clean map** and A the **beam-pattern matrix**.

Incoherent Mapping of the GWB