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Introduction: what is the GWB?
Energy spectrum of the Gravitational Wave Background [Allen and
Romano, 1999]:

ΩGW (f ) =
1

ρc

dρGW

d ln f
(1)

Astrophysical bgd

overlap of unresolved signals:

Compact binary inspirals

Asymmetric SN explosions

Gravitational captures

..

Cosmological bgd

sourced by:

Inflation

Phase transitions

Cosmic strings

..

Focus: stationary background of multiple overlapping sources.
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Figure 1: Current constraints on the GWB and models, from [Moore et al., 2014]

.
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An incoherent approach

In general, the background will be an incoherent superposition of
GWs, with a characteristic (anisotropic) power on the sky, so
map Stokes’ Param.s:

I Q U V

total power +/× R/L R/L

Frequency band will be detector dependent ⇒ so will the probed
background origin.

⇒ Incoherent approach: integrate signal over detector frequency
range.
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Objectives and motivation
The goal is to map gravitational wave anisotropies on the sky,
using the detectors we have.

astrophysical bgd: investigate large scale structure, intrinsic
alignment, other polarisation properties

cosmological bgd: highly model and frequency dependent,
not in band...

Limit for inspiral-dominated GWB [Abbott et al., 2017]:

Ω2/3(n) < 2− 6× 10−8 sr−1

obtained in a specific, 2-detector frame. The multiple baseline
search needs a more general frame and will be more constraining.
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What we measure
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Figure 2: Signal in time
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Figure 3: Power Spectrum Density

The measured strain is

h = F+(n) h+(n, f ) + F×(n) h×(n, f ) (2)

F+ and F× are the polarisation response functions of the detector - depend
on (lat,lon), pol. response, position of earth w.r.t. pol. basis ⇒ n ≡ n(t).
filler
filler
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Correlating detecors, creating a beam on the
sky
Correlate detectors to eliminate detector noise. Focus on GWB
intensity I on the sky

I ∝< h+ h
′ ?
+ > + < h× h

′ ?
× >

where h+(n, f ) and h′+ ≡ h+(n′, f ′) from 6= detectors.

The combined response to I of a single baseline (pair of dect.s) is

γI , ab(n) = F+
a F+ ?

b + F×a F× ?b (3)

a, b: dect. labels.

note: 6= pol. modes have 6= overlap functions; we use
quaternions to deal with geometry+polarisation.
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Figure 4: The overlap function γI on the sky for the LIGO detector pair.
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Noise-domination
The correlated signal < Ha H

′ ?
b >≡ dt(b, f ) is1

dt(b, f ) = δn,n′ δf ,f ′

∫
S2

dm γI , ab(m) I (f , m) e2πif m·b (4)

this is noise-dominated:

dt(b, f ) = st(b, f ) + nt(f ) . (5)

⇒ The PSD of the noise is just the PSD of the data:

< nt, a(f ) n?t, b(f ′) >= δtt′δff ′Nt, t′(f , f
′) , (6)

Nt, t′(f , f
′) = Pt, a(f )Pt′, b(f ′) , Pt(f ) =< dt(f ) >2 .

1if all anisotropies are 0.
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Making the map: spherical harmonics
decomposition

dt(b, f ) =

∫
S2

dm I (m) γI (m)E (f ) e2πif b·m (7)

is the correlated data as a function of frequency f and the
baseline b(t); decompose it:

dt(b, f ) =
∑
lm

d t
lm(f )Y ?

lm(b̂) ,

d t
lm = 4πi lFl (b)

∑
LM,L′M′

aI
LMγ

I
L′M′KLM,L′M′,lm .

(8)

KLM,L′M′,lm: coupling kernel. Summing over (lm), (L′M ′) we get

dt(b, f ) =
∑
LM

aI
LMM I

LM(b, f ) . (9)
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Making the map: maximum likelihood map
Extract aI

LM by minimizing the χ2 of the map given the data
[Thrane et al, 2009]; defining the dirty map zLM :

zLM :=
∑
T , f

M I?
LM (b̂)

N(f )
dT (f , b̂) ; (10)

zLM =
∑
L̃M̃

AL̃M̃LMaI
L̃M̃

, AL̃M̃LM =
∑
T , f

M I
L̃M̃

(b̂)M I?

LM (b̂)

N(f )
, (11)

and the map solution which maximizes likelyhood is

aI
L̃M̃

=
∑
LM

(
AL̃M̃LM

)−1
zLM . (12)

We call aI
L̃M̃

the clean map and A the beam-pattern matrix.
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Making the map: what happens in the code
Track time-coincident blocks of data in the dect.s and divide into
equal segments, which are FFTd to get df ; then:

zLM =
∑

T∈ block

∑
b∈ base

∑
f ∈F

MLM fi
d̃fi
, d̃fi

= δijN
−1
fi fj

dfj
, (13)

fi , fj ∈ T̃ = F = {f1, f2, f3, ..., fN} .

Build AL̃M̃LM and invert it to get the clean map aL̃M̃

AL̃M̃LM =
∑

T∈ block

∑
b∈ base

∑
f ∈F

MT
L̃M̃, f

N−1ff MT
LM ,f , (14)

aL̃M̃ = A−1
L̃M̃ LM

zLM ,

which gets accumulated over time.
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What’s in a map
Mollweide view

-2.32964e-23 2.15294e-23

Figure 5: The output of the analysis of ∼ 2 days of LIGO S6 (2009-2010) open data.
Unexciting as `max = 4.

We are still interpreting this... and inputting simulated data.
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Multiple baselines

The beam-pattern matrix for 1 baseline isn’t easily invertible, we’ve
been relying on SVD techniques.

We need multiple baselines to break the singularity of the
beam-pattern matrix, and scan the LM space more efficiently.

The code allows an input from any number of detectors on earth -
one just needs to simulate data from extra detectors → coming
soon!
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Input maps

We simulate input maps by treating the signal and the noise
separately;

input noise: take PSD of existing data and simulate gaussian
noise around it

input signal: create input h+, h× signals and feed them into
the detector [Cornish, 2001]:

Ha (f ) =

∫
S2

dn
∑

P=+,×
hP (f , n)FP

a (f , n) exp(2πif n · xa) (15)

Comparing input/output maps is key to testing the mapper.

Incoherent Mapping of the GWB Arianna I. Renzini 16



Next steps
In bullet points:

Test the code and interpret spherical harmonic response of the
setup

Produce model-based input maps to input

Include polarisation reconstruction

Get better data (e.g. Advanced LIGO and Virgo runs)

Generalize to other detector types: LISA

LISA is expected to probe extensively the frequency range for the

AGWB... good news!

Thanks for listening!
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Making the map: maximum likelihood map

The goal is to extract the aI
LM . We do this by minimizing the χ2

of the map given the data [Thrane et al, 2009]:

χ2(aI
LM) = −1

2

∑
t, f

(dt− < dt >)(dt− < dt >)?

N(f )
(16)

where dt(f ) = s?a, t(f ) sb, t(f ) , < dt(b, f ) >≡ dt(b, f ).

from (9) :
∂ < dt(b, f ) >

∂ aLM
= M I

LM(b̂) ;

then we carry out the calculations...
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Making the map: maximum likelihood map

Defining the dirty map zLM :

zLM :=
∑
T , f

M I?
LM(b̂)

N(f )
dT (f , b̂) ; (17)

zLM =
∑
L̃M̃

AL̃M̃LMaI
L̃M̃

, AL̃M̃LM =
∑
T , f

M I
L̃M̃

(b̂)M I?

LM(b̂)

N(f )
, (18)

and the map solution which maximizes likelyhood is

aI
L̃M̃

=
∑
LM

(
AL̃M̃LM

)−1
zLM . (19)

We call aI
L̃M̃

the clean map and A the beam-pattern matrix.
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